
 
 

Applying Certificate-Based Routing to a Kademlia-
Based Distributed Hash Table 

Michael Kohnen, Jan Gerbecks, Erwin P. Rathgeb 
University of Duisburg-Essen 

Computer Networking Technology Group 
Essen, Germany 

{Michael.Kohnen, Erwin.Rathgeb}@iem.uni-due.de, Jan.Gerbecks@stud.uni-due.de 
 

Abstract–Most Distributed Hash Table (DHT) algorithms have 
proven vulnerable against a multitude of attacks. 
Countermeasures using reputation systems to generate trust 
values have been developed and analyzed. These analyses mostly 
refer to unstructured peer-to-peer (P2P) networks. In this paper, 
we present our concept for applying trust values to the bootstrap, 
lookup, PUT and GET processes of structured P2P networks and 
evaluate it using the Kademlia DHT algorithm in a binary trust 
environment created by certificates. 

Keywords–DHT; Security; Kademlia; Trust; Reputation; 
Certificates 

I.  INTRODUCTION 
Research has proven that Distributed Hash Table (DHT) 

algorithms are vulnerable to different kinds of attacks [1]. 
These attacks include the Sybil Attack [2], eclipse attacks and 
attacks on the routing and storage mechanisms. As one possible 
solution against those threats, trust-based systems have been 
invented to improve security. A lot of the existing research 
about trust and reputation management in a peer-to-peer (P2P) 
environment focuses on unstructured networks [3] [4]. 
However, considering real-world implementations, the 
structured networks prevail: Popular P2P applications such as 
BitTorrent [5] and eMule [6], used by millions of users, 
implement the Kademlia algorithm. 

We, therefore, aim to analyze the feasibility of trust and 
reputation mechanisms in structured P2P networks. To test the 
general functioning, we use a simplifying assumption of binary 
trust created by certificates. In the following section, we 
present the related work. In Section III, we explain our concept, 
followed by Section IV with its evaluation. Section V 
concludes the paper. 

II. RELATED WORK 
Marti and Garcia-Molino [7] categorize P2P reputation 

systems and divides them into the three functionalities 
“information gathering”, “scoring and rating” and “response”, 
each having several sub functions. Furthermore, the authors 
define factors influencing reputation systems and discusses 
them. 

Gomez Marmol and Martinez Perez [8] offer an overview 
of the current state of P2P reputation systems. EigenTrust [3] is 
one of the popular ones. It uses a rating system similar to 
eBay’s: A node can receive either a positive or a negative 
rating after a transaction. The EigenTrust algorithm then 

defines how the ratings from different nodes can be combined 
and normalized. 

EigenTrust and the other algorithms presented in [8] either 
have been tested using unstructured P2P networks or mention 
structured networks only for storing the trust information. They 
do not analyze the specific impact of using trust information 
for routing and storing in structured networks. 

Therefore, we aim to analyze the consequences of using 
trust information in structured P2P networks during the joining, 
routing, storing and retrieving processes. According to [9], 
these processes will be referred to as bootstrap, lookup, PUT 
and GET process, respectively. In this paper, we present a basic 
concept of using trust values to enhance the security of a DHT 
algorithm. 

In the following, we discuss the trust values’ consequences 
for bootstrapping and performing lookup, PUT and GET 
actions. Afterwards, we evaluate our concept using the 
Kademlia DHT algorithm [10]. 

III. OUR CONCEPT 
We seek an approach that enables a node to determine the 

authenticity of a result on its own. A node shall be able to 
decide for itself whether it regards an action as successful. It 
shall also be able to abort or ignore an action if it does not trust 
the result. 

To achieve this, trust values are used: We have each node 
assign trust values to each other node it encounters. Then, we 
define a minimum trust value another node needs to have so 
that a node uses it for its actions in the network [7]. As a 
consequence, a node is able to determine whether the result of 
an action (bootstrap, lookup, GET, PUT) is valid. If it does not 
find enough trustworthy nodes, it cancels its action in order to 
protect itself from invalid results. 

A. Functioning 
Once a node’s trust value is known, it is used to determine 

whether the node should be used. We propose to use a single 
minimum trust value threshold defining whether another node 
is used for outgoing requests of all kinds, as a node that does 
not answer GET requests correctly, for example, should not be 
used for other purposes. 

Trust values are not assigned globally, but individually by 
each node. Possible reasons for this are, e.g., a result node 
possessing a certificate issued by another CA or the requesting 

85Copyright (c) IARIA, 2011.     ISBN: 978-1-61208-173-1

AP2PS 2011 : The Third International Conference on Advances in P2P Systems



 
 

node using a lower minimum trust value threshold than the 
responding node. This individual assignment of trust values 
leads to their local storage on each node and therefore an 
extension of the routing table. From this, it follows that… 

• … incoming requests shall always be answered in a 
correct way, regardless of the trust status of the 
requesting node, and … 

• … that the routing table of a node shall not only 
contain nodes it trusts, but also untrusted nodes. 

If nodes would only answer request coming from trusted 
nodes, a network partitioning could result. The same applies to 
the routing table: If a node can only answer with next hops that 
it trusts, the requesting node may not be informed about 
existing nodes itself may trust, but the responding node does 
not. 

When a node joins the network, it needs to perform a 
bootstrap procedure to obtain information about other nodes to 
fill its routing table. A node must send its bootstrap requests 
only to trusted nodes. As mentioned before, every node has its 
own view of trust, so the responses may contain all kinds of 
nodes. 

When a node performs a node lookup for a GET or PUT 
action, it must only query nodes it trusts. During a lookup, 
newly encountered nodes must be evaluated and the node must 
determine if they are trustworthy before they are used. At the 
end of the lookup, the candidate nodes for the GET or PUT 
action must also be evaluated (if not done so already) so that 
the action is performed using trusted nodes only. 

B. Consequences 
Our concept enables a node to determine the 

trustworthiness of e.g. the retrieved results of a lookup. Every 
node can individually choose a minimum trust value threshold 
and decide on its own whether it regards an action or a result as 
valid. The nodes do not need to refer to general assumptions 
such as the amount of malicious nodes in the network to 
evaluate the correctness of actions and results. 

As a drawback, our concept decreases the number of nodes 
that can be used for a node’s actions. A certain minimum 
amount of trusted nodes is therefore essential. Furthermore, the 
availability of content items cannot be as easily guaranteed as 
in normal DHT networks: The assignment of content items to 
nodes is not unique any longer, but it differs due to the 
different trust values nodes assign to other nodes. It is therefore 
possible that content inside the network cannot be found by a 
node despite its existence. Possible reasons are the following: 

• The content is only stored on nodes the requesting 
node does not trust. 

• There are not enough trusted nodes on the route to the 
(trusted) nodes storing the content so that the lookup 
terminates prematurely. 

IV. EVALUATION 
In order to analyze to which extent these effects influence 

the ability of the nodes to use the network, we evaluate our 

concept in a Kademlia-based DHT using a simulated network 
of 1,000 nodes. 

A. Assumptions 
This paper is intended as a proof of concept to show that 

trust values can improve secure bootstrapping, lookup, PUT 
and GET in structured P2P networks. For this proof of concept, 
we assume the following: 

• Nodes are either fully trusted or untrusted: We assume 
the existence of a certification authority. Nodes that 
possess a certificate are fully trusted, other nodes are 
untrusted. 

• Nodes possessing a certificate are never malicious: We 
assume that the algorithm generating the trust values 
(here: certification) determines the trustworthiness 
correctly. 

The first assumption requires a central entity which does 
not follow the peer-to-peer principle. The second assumption 
does not necessarily hold for real networks, as also nodes that 
are regarded as trustworthy may act maliciously. However, if 
the DHT would not work under these “perfect” conditions, it 
would not work in reality either. 

The simulation scenario differentiates between nodes with 
and without a certificate: Nodes without a certificate 
(“No Cert” nodes) use all other nodes, whereas nodes with a 
certificate (“Cert” nodes) use only other nodes with a 
certificate for their actions. In this “binary trust” environment, 
we are able to demonstrate the worst case for the application of 
our concept. For small fractions of trusted nodes, the absolute 
number of them is below 100, which is rather low. However, 
we will demonstrate that even this small number of nodes is 
able to operate. 

B. Choice of Kademlia 
We choose the Kademlia algorithm because its routing 

process does not set hard restrictions on the next hop choice: 
Kademlia uses the XOR operation to calculate the distance 
between two IDs. During the routing process, a node uses a list 
of potential next hop nodes that is ordered by XOR distance 
with the closest nodes at the top of the list. When the first k 
nodes on the list do no longer change and have been queried 
for closer nodes, the lookup terminates and the action is 
performed on those nodes. This action can either be a PUT 
action or a GET action. During a PUT action, a node stores a 
content item on the configured amount of nodes. Using a GET 
action, a node tries to retrieve a content item. 

C. Simulation Environment 
Our simulation scenario consists of one large network in 

which only a subset of the nodes uses trust-based routing. This 
way, we can compare the performance of nodes applying and 
not applying our concept. In our simulation, malicious nodes 
perform a storage attack called “invalid data attack”, which 
means they deliver randomly altered data if asked for a content 
item. We choose this attack type, because the Kademlia 
algorithm is rather robust against routing attacks: It has few 
restrictions regarding the choice of the next hop, so if a node 
propagates faulty routing information, the information might 
well be overridden by the responses of other nodes, only 

86Copyright (c) IARIA, 2011.     ISBN: 978-1-61208-173-1

AP2PS 2011 : The Third International Conference on Advances in P2P Systems



 
 

causing higher delays. So storage attacks generally pose a 
greater threat and therefore show the influence of our concept 
more clearly. 

For simulation, we use the OverSim [11] framework, which 
bases on OMNeT++ [12]. We vary the fraction of nodes 
possessing a certificate from 0% to 100% in steps of 10% and 
conduct additional simulations for fractions of 2% to 8% in 
steps of 2% for a detailed analysis. For each parameter 
combination, we perform 30 simulation runs using different 
seeds for the random number generator. 

D. Results 
All figures below show the arithmetic mean and the 

standard deviation of the results. 

1) Bootstrap 
At the beginning of each simulation run, the nodes perform 

bootstrap procedures. One node per second is inserted into the 
network and tries to bootstrap using a randomly chosen 
existing node. The first node is always a Cert node. As No Cert 
nodes use every kind of node to bootstrap, their first attempt to 
bootstrap will always succeed. Cert nodes use only other Cert 
nodes to bootstrap; their attempts to bootstrap may therefore 
fail if the randomly selected target node of the bootstrap 

request is not a Cert node. If the attempt fails, they pause for 
ten seconds and try to bootstrap again until they succeed. 

Figure 1 shows that for very low fractions of Cert nodes, 
the mean number of bootstrap attempts of the Cert nodes is 
rather high. However, this value quickly decreases when the 
fraction of Cert nodes increases. 

2) PUT and GET requests and malicious nodes 
In order to demonstrate our concept’s resilience against 

attacks, we introduce malicious nodes into the simulation 
network: We vary the fraction of No Cert nodes which are 
malicious from 0% to 100% in steps of 10%. As we assume 
that the trust values are correct, nodes with certificate cannot be 
malicious. 

The measurement phase begins when all nodes have 
attempted to bootstrap at least once (in our case after 1,000 
seconds). During the simulation, the nodes publish content with 
random identifiers and try to retrieve it. The Kademlia 
algorithm makes use of replication per definition. Baumgart 
and Mies argue in their S/Kademlia paper [13] that smaller 
replication factors than the original Kademlia’s 20 are 
sufficient. So, in our simulation, we use S/Kademlia’s default 
values: Content is stored on 4 nodes during a PUT action and a 
GET action tries to obtain the content from 4 nodes as well. 
The GET action is regarded as successful if at least 50% of the 
responses are identical. The nodes only try to retrieve content 
IDs that have been published previously. 

Content can be published either by Cert or by No Cert 
nodes. The same also applies to retrieving content, so there are 
four possible combinations of PUT and GET actions: Cert PUT 
& Cert GET, Cert PUT & No Cert GET, No Cert PUT & Cert 
GET and No Cert PUT & No Cert GET. 

The results show that our concept allows the Cert nodes to 
retrieve content published by other Cert nodes regardless of the 
fraction of malicious nodes. Figure 2 shows the success ratio of 
GET requests of Cert and No Cert nodes for content published 
by their respective kinds in dependence of the fraction of 
malicious nodes. In the absence of malicious nodes, the success 
ratio for retrieving content by No Cert nodes that was also 
published by No Cert nodes was the same as for the Cert/Cert 

 
Figure 1. Mean number of Cert nodes’ bootstrap attempts 

  
Figure 2. Success ratios of GET requests (10% Cert nodes) 

 
Figure 3. Success ratios of GET requests (20% malicious No Cert 
nodes) 

0

20

40

60

80

100

120

140

160

0% 20% 40% 60% 80% 100%

M
ea

n 
nu

m
be

r o
f b

oo
ts

tr
ap

 a
tt

em
pt

s

Fraction of Cert nodes

Cert nodes

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0% 20% 40% 60% 80% 100%

M
ea

n 
G

ET
 su

cc
es

s r
at

io

Fraction of malicious No Cert nodes

Cert PUT & Cert GET

No Cert PUT & No Cert GET

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0% 20% 40% 60% 80% 100%

M
ea

n 
G

ET
 su

cc
es

s r
at

io

Fraction of Cert nodes

Cert PUT & Cert GET

No Cert PUT & Cert GET

Cert PUT & No Cert GET

No Cert PUT & No Cert GET

87Copyright (c) IARIA, 2011.     ISBN: 978-1-61208-173-1

AP2PS 2011 : The Third International Conference on Advances in P2P Systems



 
 

case. The No Cert/No Cert success ratio decreases if the 
fraction of malicious nodes increases, whereas the Cert/Cert 
success ratio stays close to 100%. This demonstrates that the 
Cert nodes obtain a better performance than the other nodes: 
They are able to retrieve the desired content successfully 
despite the presence of malicious nodes. Furthermore, this 
result is independent of the fraction of malicious nodes. 

Figure 3 shows the GET success ratios for all four possible 
combinations of PUT and GET requests. As an example, the 
fraction of malicious No Cert nodes in Figure 3 is 20%. The 
results show that even for small fractions of Cert nodes (2% to 
4%, resulting in only 20 respectively 40 nodes), these are able 
to retrieve content published by other Cert nodes. Content 
stored by No Cert nodes can be retrieved increasingly 
successful by Cert nodes if the fraction of Cert nodes increases.  
However, the success ratio for this case is always higher than 
the fraction of Cert nodes: There are four replicas of each 
content item. If only one of them is stored on a Cert node, it 
can be found by another Cert node. The probability that at least 
one of the four nodes that store the item is a Cert node can be 
computed by using the following hypergeometric probability 
distribution formula: 

1 −
�𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑛𝑜𝑑𝑒𝑠 − 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐶𝑒𝑟𝑡 𝑛𝑜𝑑𝑒𝑠

4 �
�𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑛𝑜𝑑𝑒𝑠

4 �
 

The correlation coefficient of the simulation results and the 
theoretical values is 0.995, which shows that the results are 
close to the theory. 

In Figure 3, it is also visible that the No Cert nodes benefit 
from the presence of the Cert nodes, as the success ratio of No 
Cert GET requests increases when the fraction of Cert nodes 
increases. 

Figure 4 reveals this tendency more clearly: It shows the 
total GET success ratio of No Cert nodes (for content that is 
stored on both types of nodes) for different fractions of 
malicious No Cert nodes. The No Cert nodes benefit from the 
presence of Cert nodes: The higher the fraction of Cert nodes 
is, the better the success ratios of the No Cert nodes are as well. 
This can also be seen in the results in Figure 2: Even with 
100% malicious nodes, the success ratio of the No Cert/No 

Cert case is not 0%: No Cert nodes can still retrieve content 
items correctly if at least 50% of the responses originate from 
Cert nodes. 

V. CONCLUSION AND OUTLOOK 
We have presented a concept that uses trust values to 

enhance the security of lookups and PUT and GET actions in a 
structured P2P network. Nodes shall react to incoming requests 
as usual and use only trusted nodes when performing their own 
actions. We have shown that this concept works as intended 
using a Kademlia-based DHT: Despite the presence of 
malicious nodes, nodes applying our concept are able to 
continue operation normally as if no malicious nodes were 
present. 

Further research is required to investigate the application of 
our concept to other DHT algorithms: Other algorithms have 
stricter requirements regarding the placement of other nodes 
into a routing table, for example. This may require an extension 
of our concept. 

Our simplifying assumptions regarding certification and 
maliciousness do not hold in reality, so further research is 
required to analyze the effects of using a reputation system to 
generate the trust values. These values are typically not binary, 
so research regarding the minimum trust value threshold is also 
required. 

Our simulations did not include message exchanges for the 
determination of the trust values and did not account for 
additional time required to validate the certificate. Further 
analyses of performance issues are therefore required. 

VI. REFERENCES 
[1] Guido Urdaneta, Guillaume Pierre, and Maarten van Steen, "A Survey of 

DHT Security Techniques," ACM Computing Surveys, vol. 43, no. 2, pp. 
8:1-8:49, Jan. 2011. 

[2] John R. Douceur, "The Sybil Attack," in IPTPS '02: Revised Papers from 
the First International Workshop on Peer-to-Peer Systems, Cambridge, 
MA, USA, 2002, pp. 251-260. 

[3] Sepandar D. Kamvar, Mario T. Schlosser, and Hector Garcia-Molina, 
"The Eigentrust Algorithm for Reputation Management in P2P 
Networks," in Proceedings of the 12th International Conference on 
World Wide Web, Budapest, Hungary, 2003, pp. 640-651. 

[4] Loubna Mekouar, Reputation-based Trust Management in Peer-to-Peer 
File Sharing Systems. Waterloo, Ontario, Canada: University of 
Waterloo, 2010. 

[5] (2011, Sep.) BitTorrent. [Online]. http://www.bittorrent.com/ 
[6] (2011, Sep.) eMule Project. [Online]. http://www.emule-project.net/ 
[7] Sergio Marti and Hector Garcia-Molino, "Taxonomy of Trust: 

Categorizing P2P Reputation Systems," Computer Networks: The 
International Journal of Computer and Telecommunications Networking, 
vol. 50, no. 4, pp. 472-484, Mar. 2006. 

[8] Felix Gomez Marmol and Gregorio Martinez Perez, "State of the Art in 
Trust and Reputation Models in P2P Networks," in Handbook of Peer-to-
Peer Networking, Xuemin Shen et al., Eds.: Springer, 2010, pp. 761-784. 

[9] Frank Dabek, Ben Zhao, Peter Druschel, John Kubiatowicz, and Ion 
Stoica, "Towards a Common API for Structured Peer-to-Peer Overlays," 
in Proceedings of the 2nd International Workshop on Peer-to-Peer 
Systems (IPTPS ’03), Berkeley, CA, USA, 2003, pp. 33-44. 

[10] Petar Maymounkov and David Mazières, "Kademlia: A Peer-to-Peer 
Information System Based on the XOR Metric," in IPTPS: Revised 
Papers from the First International Workshop on Peer-to-Peer Systems, 

 
Figure 4. Total No Cert GET success ratio 

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0% 20% 40% 60% 80% 100%

M
ea

n 
to

ta
l N

o 
Ce

rt
 G

ET
 su

cc
es

s r
at

io

Fraction of Cert nodes

0% mal. nodes
10% mal. nodes
20% mal. nodes
40% mal. nodes
60% mal. nodes
80% mal. nodes
100% mal. nodes

88Copyright (c) IARIA, 2011.     ISBN: 978-1-61208-173-1

AP2PS 2011 : The Third International Conference on Advances in P2P Systems

http://www.bittorrent.com/
http://www.emule-project.net/


 
 

Cambridge, MA, USA, 2002, pp. 53-65. 
[11] Ingmar Baumgart, Bernhard Heep, and Stephan Krause, "OverSim: A 

Flexible Overlay Network Simulation Framework," in Proceedings of 
10th IEEE Global Internet Symposium (GI '07) in conjunction with IEEE 
INFOCOM 2007, Anchorage, AK, USA, 2007, pp. 79-84. 

[12] (2011, Sep.) OMNeT++. [Online]. http://www.omnetpp.org/ 
[13] Ingmar Baumgart and Sebastian Mies, "S/Kademlia: A practicable 

approach towards secure key-based routing," in Proceedings of the 13th 
International Conference on Parallel and Distributed Systems, Hsinchu, 
Taiwan, 2007, pp. 1-8. 

 

 

89Copyright (c) IARIA, 2011.     ISBN: 978-1-61208-173-1

AP2PS 2011 : The Third International Conference on Advances in P2P Systems

http://www.omnetpp.org/

	I.  Introduction
	II. Related Work
	III. Our Concept
	A. Functioning
	B. Consequences

	IV. Evaluation
	A. Assumptions
	B. Choice of Kademlia
	C. Simulation Environment
	D. Results
	1) Bootstrap
	2) PUT and GET requests and malicious nodes


	V. Conclusion and Outlook
	References

