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Abstract— Protein structure prediction from the primary 

sequence remains a major challenging problem in 

bioinformatics. The main issue here is that it is 

computationally complex to reliably predict the full three-

dimensional structure of a protein from its one-dimensional 

sequence. A two-dimensional contact map has, therefore, been 

used as an intermediate step in this problem. A contact map is 

a simpler, yet representative, alternative for the three-

dimensional protein structure. In this paper, we propose a 

pattern matching approach to locate similar substructural 

patterns between protein contact map pairs using protein 

sequence information. These substructural patterns are of 

particular interest to our research, because they could 

ultimately be used as building blocks for a bottom-up 

approach to protein structure prediction from contact maps. 

We further demonstrate how to improve the performance of 

identifying these patterns by incorporating both protein 

sequence and evolutionary information. The results are 

benchmarked using a large standard protein dataset. We 

performed statistical analyses (e.g., Harrell-Davis Quantiles 

and Bagplots) that show sequence information is more helpful 

in locating short-range contacts than long-range contacts. 

Moreover, incorporating evolutionary information has 

remarkably improved the performance of locating similar 

short-range contacts between contact map pairs.    
 
Keywords-protein structure prediction; protien contact maps; 

structural pattern matching; evolutionary information; harrell-

davis quantiles. 

I.  INTRODUCTION  

Since the human genome sequence was revealed in April 

2003, the need to predict protein structures from protein 

sequences has dramatically increased [1]. Proteins are 

macromolecules with a wide range of biological functions 

that are vital for any living cell. They transport oxygen, ions, 

and hormones; they protect the body from foreign invaders; 

and they catalyze almost all chemical reactions in the cell. 

Proteins are made of long sequences of amino acids that fold 

into three-dimensional structures. Because protein folding is 

not easily observable experimentally [2], protein structure 

prediction has been an active research field in bioinformatics 

as it can ultimately broaden our understanding of the 

structural and functional properties of proteins. Moreover, 

predicted structures can be used in structure-based drug 

design, which attempts to use the structure of proteins as a 

basis for designing new ligands by applying principles of 

molecular recognition [3]. 

In recent decades, many approaches have been proposed 

for understanding the structural and functional properties of 

proteins. These approaches vary from time-consuming and 

relatively expensive experimental determination methods 

(e.g., X-ray crystallography [4] and NMR spectroscopy [5]) 

to less-expensive computational protein modeling methods 

for protein structure prediction (e.g., ab-initio protein 

modeling [6], comparative protein modeling [7], and side-

chain geometry prediction [8]). While the computational 

methods attempt to circumvent the complexity of the 

experimental methods with an approximation to the solution 

(predicted protein structures versus experimentally-

determined structures), analyzing the three-dimensional 

structure of proteins computationally is not a 

straightforward task. Hence, two-dimensional 

representations of protein structures, such as distance and 

contact maps, have been widely used as a promising 

alternative that offers a good way to analyze the 3D 

structure using a 2D feature map [9]. This is because they 

are readily amenable to machine learning algorithms and 

can potentially be used to predict the three-dimensional 

structure, achieving a good compromise between simplicity 

and competency [26].  

     The paper is organized as follows: Section II provides 

the reader with the background material required to 

understand the concepts used in this study. It describes 

distance and contact maps, gives examples of structural 

patterns of contact maps, and discusses protein similarity 

relationships at different representational levels of detail, as 

well as the structural classification of protein domains. 

Section III presents the experimental setup and the details of 

the multi-regional analysis of the contact map method used 

in our experiments. Section IV discusses the experimental 

benchmark dataset used in this study and shows the 

performance of the proposed method using statistical 

analyses, including a quantile-based analysis as well as a 

correlation analysis. The final section highlights the 

contributions and summarizes the main results of the study. 

It also presents a set of potential directions for future 

research.   
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II. BACKGROUND MATERIAL 

Contact and distance maps provide a compact 2D 

representation of the 3D conformation of a protein, and 

capture useful interaction information about the native 

structure of proteins. Contact maps can ideally be calculated 

from a given structure, or predicted from protein sequence.  

The predicted contact maps have received special attention 

in the problem of protein structure prediction, because they 

are rotation and translation invariant (unlike 3D structures). 

While it is not simple to transfer contact maps back to the 

3D structure (unlike distance maps), it has shown some 

potential to reconstruct the 3D conformation of a protein 

from accurate and even predicted (noisy) contact maps [10].   

A. Distance and Contact Maps 

A distance map, D, for a protein of n amino acids is a 

two-dimensional n x n matrix that represents the distance 

between each pair of alpha-carbon atoms of the protein, as 

shown in Figure 1(a). The darker the region is, the closer the 

distance of its corresponding atom pairs is. The distance 

information can be used to infer the interactions among 

residues of proteins by constructing another same-sized 

matrix called a contact map.  

A contact map, C, is a two-dimensional binary 

symmetric matrix that represents pairs of amino acids that 

are in contact, i.e., their positions in the three-dimensional 

structure of the protein are within a given distance threshold 

(usually measured in Ångstroms), as shown in Figure 1(b).  
According to extensive experimental results presented 

in [11], contact map thresholds, ranging from 10 to 18 Å 

allow the reconstruction of 3D models from contact maps to 

be similar to the protein’s native structure. 

An element of the ith and jth residues of a contact map, C(i,j), 

can be defined as follows: 

                               1;    if  D(i,j)    Threshold 

         C(i,j) =   

                                0;    otherwise 

Where D(i,j) is the distance between amino acids i and j, 1 

denotes contacts (white), and 0 denotes no contacts (black). 
 

 (a)                                               (b) 

Figure 1.  (a) Distance map for a protein of 99 amino acid residues. (b) 

contact map for the same protein of 99 amino acids after applying a 

distance threshold of 10 Ångstrom (1 nm) on its distance map.                                     

(local contacts < 3.8 Å are ignored – refer to Section III-C for details.) 

B. Structural patterns of Contact Maps 

Different secondary structures of proteins have 

distinctive structural patterns in contact maps. In particular, 

an α-helix appears as an unbroken row of contacts between 

i, i ± 4 pairs along the main diagonal, while beta-sheets 

appear as an unbroken row of contacts in the off-diagonal 

areas. A row of contacts that is parallel to the main diagonal 

represents a pair of parallel β-sheets, while a row of contacts 

that is perpendicular to the main diagonal represents a pair 

of anti-parallel β-sheets [12]. 

C. The Classification of Protein Domains 

The Structural Classification of Proteins (SCOP) database 

was designed by G. Murzin et al. [15] to provide an easy 

way to access and understand the information available for 

protein structures. The database contains a detailed and 

comprehensive description of the structural and 

evolutionary relationships of the proteins of known 

structure. Structurally and evolutionarily related proteins are 

classified into similar levels in the database hierarchy. 

Evolutionarily-related proteins are those that have similar 

functions and structures because of a common descent or 

ancestor.  The main levels in the classification hierarchy of 

the SCOP database are as follows: 1) Family level that 

implies clear evolutionary relationship, 2) Superfamily level 

that implies probable common evolutionary origin, and 3) 

Fold  level that implies major structural similarity.  

D. Protein Similarity Relationships 

Understanding protein similarity relationships is vital for 

the further understanding of protein functional similarity 

and evolutionary relationships. Although a protein with a 

given sequence may exist in different conformations, the 

chances that two highly-similar sequences will fold into 

distinctly-different structures are so small that they are often 

neglected in research practice [13]. This suggests that 

sequence similarity could generally indicate structure 

similarity. Furthermore, a pair of proteins with similar 

structure has similar contact maps [14]. Therefore, as shown 

in Figure 2, by the transitivity relationship, a logical 

inference could be drawn regarding the association between 

sequence similarity and contact map similarity. The premise 

of the method of multi-regional analysis of contact maps in 

this paper is based on this transitive similarity relationship 

between contact map and protein sequence (via structure).  

 

 
Figure 2.  Protein similarity relationships at different levels of detail. 
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III. METHOD AND EXPERIMENTAL SETUP  

This section describes the multi-regional analysis of the 

contact maps method used in the experiments. The method 

examines whether sequence similarity information helps in a 

pattern matching approach to locate regions of similarity in 

contact maps (the target substructural patterns) that 

correspond to local similarities in protein structures. The 

first stage of this method aims to align pairs of protein 

sequences for each combination pair of contact maps to find 

the most local similar subsequences. The next stage aims to 

quantify the similarity of contact maps regions that 

correspond to these similar subsequences found in the first 

stage. Finally, different statistical analyses were considered 

to evaluate the performance of the method, and to determine 

how well local protein sequence similarity leads to 

corresponding local contact map similarity. 

A. Experimental Dataset 

The benchmark Skolnick dataset is adopted for our 

experiments. The Skolnick dataset is a standard benchmark 

dataset of 40 large protein domains, divided into four 

categories as shown in Table I. It was originally suggested 

by J. Skolnick and described in [16]. The dataset has been 

used in several recent studies related to structural 

comparison of proteins [16][17][18]. 

TABLE I.  PROTEIN DOMAINS IN SKOLNICK DATASET  

Categories      Global sequence   

           similarity 

Sequence length 

(residues) 

Domain 

indices 

1       15-30%    (low) 124 1-14 

2  7-70%     (Med) 170 35-40 

3  35-90%   (High)   99  (Short) 15-23 

4  30-90%   (High)  250 (Long) 24-34 

B. Sequence Analysis 

For the sequence analysis stage, we align every 

combination pair of sequences. The SIM algorithm [19] is 

used for this purpose. This algorithm employs a dynamic 

programming technique to find user-defined, non-

intersecting alignments that are the best (i.e., with the 

highest similarity score) between pairs of sequences. The 

results from the alignments are sorted descendingly 

according to their similarity score [20].  

In this method, we are only interested in alignments of 

subsequence of at least 10 residues, and at most 20 residues. 

We are not interested in alignments of length less than 10 

residues because these alignments would not form a 

complete substructural pattern (for example, the lengths of 

alpha helices vary from 4 or 5 residues to over 40 residues, 

with an average length of about 10 residues [21]). We are 

also not interested in long alignments because most methods 

for contact maps analysis are known to be far more accurate 

on local contacts (those contacts that are clustered around 

the main diagonal), than nonlocal (long-range) 

contacts [22]. Thus, to eliminate one source of uncertainty 

of the long-range contacts, alignments of a length greater 

than 20 residues are not considered.  

In this experiment, BLOSUM62 [23] is used as the 

similarity metric to score sequence alignment. As for gaps, 

the open and extended gap penalties are set to 10 and 1 

respectively. This is because a large penalty for opening a 

gap and a much smaller one for extending it have generally 

proven to be effective [24]. An open gap penalty is a penalty 

for the first residue in a gap, and an extended gap penalty is 

a penalty for every additional residue in it. To analyze pairs 

of sequences, the best 100 local subsequence alignments are 

generated from every pair of sequences. Then, a selection 

strategy is used to select the two alignments of 10-20 

residues with the most and least similarity score (to check 

the performance in case of low and high similarity).  

C. Contact Map Analysis 

The second stage of the method is to locate contact map 

regions that correspond to the most and least similar protein 

subsequences. In order to unbiasedly analyze the diagonal 

contact map regions, we ignored local contacts between 

each residue and itself on the main diagonal. Comparing the 

main diagonal of contact maps (protein backbone) will 

neither add meaningful information for their similarity nor 

dissimilarity, (for example, even too distant contact maps 

will share a similar main diagonal). Based on the fact that 

the minimum distance between any pair of different residues 

cannot be less than 3.8 Å [22], every local contact of each 

residue and itself that is less than this threshold is ignored.  
Jaccard’s Coefficient (J) [25] is used as a similarity 

metric to score contact map regions. J is suitable for 

measuring contact map similarity, because it does not 

consider counting zero elements in the matrix (no contacts) 

of both contact maps, removing the effect of the “double 

absence” that has neither meaningful contribution to the 

similarity, nor the dissimilarity, of contact maps.  

00

11

CS

C
J


                                         (1) 

Where C11 is the count of nonzero elements (contacts) of 

both contact maps, C00 is the count of zero elements (no- 

contacts) of both contact maps, and S is the contact map size 

(i.e., the square of the sequence length for the contact map). 

D. Sequence Gap and Region Displacement Problem  

The displacement problem happens when a pair of 
aligned subsequences is very similar (greater than 70%), but 
their corresponding diagonal contact map regions are not as 
similar (less than 50-60%). This is noticed to occur as a 
result of a slight shift in the aligned subsequence pair either 
because of a gap in the alignment, or because of a slightly 
shifted alignment. In this case, if the right displacement is 
considered for one of the aligned subsequence in the correct 
direction with the correct number of residues, their 
corresponding diagonal contact map regions will perfectly 
overlay one another and their similarity can go up to 90%, as 
shown in Figure 3. The current experimental setup, however, 
(e.g., open gap penalty, extended gap penalty, etc.) are 
optimized to minimize the displacement problem. As shown 
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in Figure 4, the proposed method was successful in locating 
the exact correct boundaries of contact map regions that 
perfectly overlay one another, in an effort to maximize their 
similarity. That is, if any boundary is shifted only by one or 
two residues, the local contact map similarity will be 
significantly dropped, as shown in Figure 3 and Figure 5.   

Figure 3.  One example of the calculated region boundaries (n1 = 94 &     

n2 = 95) shows that the selected boundaries have the maximum Jaccard’s 

coefficient (J = 94%) as opposed of 68% and 56% if the lower boundary is 

shifted by only one residue at a time, or 62% and 53%  if the upper 

boundary is shifted by one residue at a time, instead. 

Figure 4.  An illustration of the displacement problem between two 

highly-similar proteins (1AMK & 1AW2A). The gap length is subtracted 

from the start position of the upper boundary (n1 of Ex. a) and the lower 

boundary (n2 of Ex. b), since contact maps have no representation of gaps.  

 
Figure 5.  Another example of the calculated region boundaries of (Ex. b)  

also shows that the selected boundaries have the maximum Jaccard’s 

coefficient (J = 73%) as opposed of 62% and 50% if the lower boundary is 

shifted by only one residue at a time, or 58% and 50% if the upper 

boundary is shifted by one residue at a time, instead.  

IV. RESULTS AND DISCUSSION 

A. The Big Picture 

To see the big picture of the problem, an all-against-all 

pair-wise analysis is performed on the benchmark Skolnick 

dataset, yielding several hundreds of pairwise alignment 

instances. The entire results of sequence and contact map 

similarity of each pairwise instance are presented as a 2D 

scatter plot to study the correlation between them, as shown 

in Figure 6. This figure draws a clear distinction between the 

correlation between sequence similarity and their contact 

map similarity in the diagonal area (short-range contacts), 

and the correlation between sequence similarity and their 

contact map similarity in the off-diagonal areas (long-range 

contacts).  

Firstly, for long-range contacts, no matter how high the 

sequence similarity is the majority of the corresponding 

contact map similarity is very low (less than 20%). Thus, 

even high sequence similarity cannot help to suggest 

corresponding similarity for the long-range contacts.    

Secondly, for the short-range contacts, the plot reveals two 

different trends: 1) when sequence similarity is low (less 

than 60%), contact map similarity is indiscriminately 

dispersed between a very low similarity level (35%) and a 

very high one (90%), making it hard to reliably associate 

low sequence similarity to short-range contact map 

similarity. 2) When sequence similarity is high (greater than 

60%), contact map similarity is apparently clustered in the 

upper-right corner of the plot (around 80%), suggesting a 

high correlation between local sequence similarity and 

short-range contact map similarity.  

   

 
Figure 6.  A 2D scatter plot showing the correlation between sequence 

similarities and their contact map similarities in the diagonal area (short-

range contacts ) and the off-diagonal areas (long-range contacts). 

B. Harrell-Davis Quantiles 

In an effort to improve performance in locating similar 
patterns in the diagonal regions of contact map pairs, 
evolutionary information (represented in SCOP family 
information) is proposed to be incorporated with the 
sequence information. As described in [18], the 40 protein 
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domains of the Skolnick dataset are classified into five 
SCOP families.  Based on SCOP family information, the 
results are distributed into four different groups: 1) the first 
group includes the results of pairs of protein subsequences 
that are most similar and of the same SCOP family. 2) The 
second group includes the results of pairs of protein 
subsequences that are most similar and of a different SCOP 
family. 3) The third group includes the results of pairs of 
protein subsequences that are least similar and of the same 
SCOP family. 4) The last group includes the results of pairs 
of protein subsequences that are least similar and of a 
different SCOP family.  

Quantile-based analysis is performed to compare the 
different groups. The qth quantile of a dataset is defined as 
the value where the q-fraction of the data is below q and the 
(1- q) fraction of the data is above q. Some q-quantiles have 
special names: the 2-quantile (or the 0.5 quantile) is called 
the median (or the 50th percentile), the 4-quantiles are called 
quartiles, the 10-quantiles are called deciles, and the 100-
quantiles are called percentiles. For example, the 0.01 
quantile = the 1st percentile = the bottom 1% of the dataset, 
and the 0.99 quantile = the 99th percentile = the top 1% of the 
dataset.  

Using the online R statistics software in [27], the Harrell-
Davis method for 100-quantile estimation is computed for 
this study. The Harrell-Davis method [29] is based on using 
a weighted linear combination of order statistics to estimate 
quantiles. The standard error associated with each estimated 
value of a quantile is also computed and plotted as error bars, 
as shown in Figure 7.  Error bars are commonly used on 
graphs to indicate the uncertainty, or the confidence interval 
in a reported measurement. Figure 7(a) clearly shows that the 
results of contact map similarity of the same family are much 
better (higher) than those of a different family as in      
Figure 7(b). This supports the previous hypothesis that 
incorporating evolutionary information with sequence 
information improves the performance of locating 
remarkably better (highly-similar) diagonal contact map 
region.  Comparing Figure 7(a) and Figure 7(c) reveals that 
low sequence information considerably deteriorates the 
method performance, even for the results of the same SCOP 
family.  Whereas, comparing Figure 7(c) and Figure 7(d) 
demonstrates that with low sequence information, the 
performance is almost the same (poor), no matter if the 
protein pairs are of the same or of a different SCOP family.   

C. Bagplots 

A bagplot, initially proposed by Rousseeuwet et al. [30],  

is a bivariate generalization of the well known boxplot [31]. 

In the bivariate case, the “box” of the boxplot changes to a 

convex polygon forming the “bag” of the bagplot. The bag 

includes 50% of all data points. The fence is the external 

boundary that separates points within the fence from points 

outside the fence (outliers), and is simply computed by 

increasing the bag by a given factor. Data points between the 

bag and fence are marked by a light-colored loop. The loop 

is defined as the convex hull containing all points inside the 

fence.  The hull center is the centre of gravity of the bag. It is 

either one center point (the median of the data) or a region of 

more than one center points, usually highlighted with a 

different color. Therefore, the classical boxplot can be 

considered as a special case of the bagplot, particularly when 

all points happen to be on a straight line. The bagplot 

provides a visualization of several characteristics of the data: 

its location (the median), spread (the size of the bag), 

correlation (the orientation of the bag), and skewness (the 

shape of the bag) [30].  

In this statistical analysis, we study the effect of the 

global sequence similarity on the method performance. Thus, 

the factor that varies in this analysis is the global similarity 

information, while other factors will be fixed at their best 

settings obtained from Figure 7(a). In particular, 1) for the 

local similarity information, the subsequence pairs of the 

most local similarity will be used. 2) For the region of 

similarity, short-range contacts in the diagonal area will be 

considered. 3) For the evolutionary information, protein pairs 

will be of the same protein SCOP family.  According to the 

global similarity information of the four categories of the 

Skolnick dataset (shown in Table I), the pair-wise results are 

further grouped into four clusters. Namely, 1) Low vs. Low, 

2) Med vs. Med, 3) High vs. High (Short), and 4) High vs. 

High (Long). Using the online R statistics software in [28], 

the bagplots are computed for each cluster, in an effort to 

perform an in-depth correlation study of the experimental 

results between short-range contacts and most similar local 

subsequences at different ranges of global similarity. 

Although the available samples at the best settings are found 

to be considerably few, the global sequence information 

does appear to affect the method performance, as shown in 

Figure 8. For example, in Figure 8(a), even at the best 

settings, the centre of gravity of the bag is fairly low (around 

~62% for contact map similarity) in the case of low global 

similarity (15-30%). As for the rest of plots, the center of 

gravity is higher and remains almost the same (around 80% 

for contact map similarity), when global sequence similarity 

is medium and high.  

V. CONCLUSION AND FUTURE WORK 

The paper proposes a pattern matching approach that 
incorporates both protein sequence and evolutionary 
information, with the goal of locating similar substructural 
patterns between contact map pairs. These patterns could 
ultimately be used as building blocks for a computational 
bottom-up approach to protein structure prediction from 
contact maps [9]. A standard benchmark dataset of carefully-
selected 40 large protein domains (Skolnick dataset) is 
adopted for this study as the experimental dataset. 

To the best of our knowledge, this is the first-of-its-kind 
study to utilize sequence and evolutionary information in 
locating similar contact map patterns, with no comparable 
state-of-the-art results. The paper provides an extensive 
analysis for the three different factors believed to affect the 
performance of short-range pattern matching in the diagonal 
area, in particular, 1) local sequence information, 2) 
evolutionary information, and 3) global sequence 
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Figure 7.  Harrell-Davis quantiles for different categories of the results, along with the error bars of the associated standard error for each reported quantile. 

(a) Shows the first category of the results of pairs of protein subsequences that are most similar and of the same protein class. (b) Shows category 2 of pairs 

of protein subsequences that are most similar and of the different protein class. (c) Shows category 3 for pairs of protein subsequences that are least similar 

and of the same protein class. (d) Shows the last category of pairs of protein subsequences that are least similar and of the different protein class.  

Figure 8.  Bagplots for different clusters of the pair-wise results of most similar local subsequences and short-range contacts. (a) Shows the results of first 

cluster of pairs of protein sequences that are of low global sequence similarity (15-30%). (b) Shows the results of pairs of protein sequences that are of 

medium global sequence similarity (7 – 70%). (c) Shows the results of pairs of protein sequences that are of high global sequence similarity (35 – 90%) and 

short length (99 residues). (d) Shows the results of pairs of sequences that are of high global sequence similarity (30-90%) and long length (250 residues).  
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information. Firstly, for local sequence information, high 

sequence similarity (above 60%) has demonstrated (using a 

scatter-plot analysis) to be a good indicator of a 

corresponding high diagonal contact map similarity (around 

70-90%). This correlation, however, does not appear to be 

suitable when contacts are long-range (i.e., in the off-

diagonal areas of contact maps), or when local sequence 

similarity is low (less than 60%). Secondly, for evolutionary 

information, the results proved (using a quantile-based 

analysis) to be considerably higher when protein pairs have 

a clear evolutionary relationship, i.e. when they are of the 

same SCOP family.  Lastly, for global sequence 

information, the results are observed (using a bagplot 

analysis) to be superior when the global sequence similarity 

is not low (more than 30%).    

Possible future work to improve pattern matching in the 

diagonal area would be to perform a dynamic expandable 

multi-regional analysis of contact maps to reduce any 

possibility of region displacement. That is, we may consider 

looking further in the neighborhood of the corresponding 

regions of similar local subsequences.  As for the off-

diagonal areas, alternative approaches could be employed 

instead of sequence and evolutionary information that both 

did not appear helpful in these areas. We are currently 

looking into exploring Swarm Intelligence techniques [32] 

as a promising way to tackle the problem in the off-diagonal 

areas of contact maps, where the most uncertain, yet 

important, long-range contacts exist.     
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