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Abstract — Sequence comparison remains one of the main 
computational tools in bioinformatics research. It is an 
essential starting point for addressing many problems in 
bioinformatics; including problems associated with 
recognition and classification of organisms. Although 
sequence alignment provides a well-studied approach for 
comparing sequences, it has been well documented and 
reported that sequence alignment fails to solve several 
instances of the sequence comparison problem, particularly 
for those sequences that contains errors or those that 
represent incomplete genomes. In this work, we propose an 
approach to identify the relatedness among species based on 
whether their sequences contain similar short sequences or 
signals. We cluster species based on biological signals such as 
restriction enzymes or short sequences that occur in the 
coding regions, as well as random signals for baseline 
comparison. We focus on identifying k-mers (motifs) that 
would produce the best results using this approach. The 
obtained results showed that specific k-mers with biological 
significance such as restriction enzymes produce excellent 
results. They also make it possible to obtain good comparisons 
while using shorter or incomplete sequences, which is a 
critical property for comparing genomes obtained from next 
generation sequencers.  

Keywords–sequence comparison; alignment; biological motifs; 
alrignment-free; k-mers; restriction enzymes; coding sequences; 
phylogenetic trees 

I.  INTRODUCTION 
The second generation of sequencing provided the 
bioinformatics domain with more genomes for comparison 
and analysis, which in turn motivated more researchers to 
compare these genomes and identify their similar structures 
and functionalities. The need for more research in the 
comparative genomic came from the fact that sequence 
alignment methods have limitations, such in quality and 
speed. The focus for this research is to find better results for 
the comparison process.  

Although the default sequence comparison methods in 
the literature are based on alignment, other methods are 
alignment-free as discussed by S. Vinga et al. [1]. These 
alignment-free methods introduced alternative solutions to 
overcome the limitations of alignment-based methods, 
which led to the question; “how much have these methods 
achieved to overcome the addressed limitations?” These 
limitations could be briefed in two major issues, the speed 
issue and the quality issue. The speed issue was addressed 
before in the literature, and several accomplishments were 
reached based on alignment, such as the work of BLAST by 

S. F. Altschul et al. [2] for pair-wise comparison. Other 
work focused on multiple sequence alignment with heuristic 
speeds like the work done in MUSCLE by R. Edgar [3] and 
DIALIGN by A. Subramanian [4]. In addition to alignment-
based methods, other techniques are alignment-free [1] and 
had a focus on addressing the speed issue as well the quality 
issue.  

Alignment-free methods are not new subject and they 
are in the literature for a while as discussed by K. Song et al. 
[5]. Alignment-free methods are categorized mainly into 
two categories. The first category is based on compression 
techniques, which improved the speed problem in 
comparing the biological sequences; the improvement came 
from the fact that many of the compression algorithms could 
be implemented in a linear time complexity. Compression-
based techniques also showed very good quality with the 
results, especially those techniques that are dictionary-
based. The two major techniques for compression are 
Lempel-Ziv complexity and Kolomogrov complexity [1].  

The second category of alignment-free methods is based 
mainly on considering all possible k-mers [1, 6] to identify 
the relatedness between species, and it is specific for each k 
value. The core of the k-mer method is accomplished by 
generating vectors that represent the probability of each k-
mer within each sequence. The distance is then measured 
between these vectors. Several proposed techniques were 
applied to the second approach, either using different 
formulas for measuring the distance between the vectors, or 
integrating several vectors of different k values within the 
same distance measure’s formula. 

Several approaches were introduced to construct the 
measuring vectors, and several formulas were provided 
and/or designed to calculate the distance between these 
vectors. Bonham-Carter et al. [7] surveyed the methods that 
were conducted in this domain/area in [7], and we are 
summarizing some of these methods.  

Liu et al. [8] explained the development of base-base 
correlation, which is based on generating frequency vectors 
for all the possible combination of DNA nucleotides of 
length two (AA, AC…., GT, GG), and each vector is 
normalized, then a mathematical distance measure is applied 
to find how closely are the pair sequences. Another 
approach was discussed by V. Arnau et al. [9] which is 
called Feature Frequency Approach, and it is also based on 
generating vectors of specific k-mer, these vectors could 
also be normalized, then a mathematical measure is applied; 
which would result in a numerical value for the distance 
measure. Also application of block-FFP method was 
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necessary, a method similar to the one described by T. J.  
Wu et al [10]. In another work Sims et al. [11] applied 
different distance measures that are based on Jensen-
Shannon Divergence and Kullback-Leibler Divergence 
which were discussed in J. Lin [12]. G. Lu et al [6] 
discussed the same concept of generating the vectors of the 
k-mers with more in-depth. In their models; they applied 
several values for k which led to several groups of vectors, 
each with a different k value, these vectors are called 
compositions vectors, then applied basic mathematical 
distance measure, and then tuned up better distance measure 
that would produce better results.  

Application of other distance measures to the 
composition vectors were borrowed from Z. G. Yu et al. 
[13] as in the work of R. H. Chan et al. [14] and G Lu et al. 
[6]. A different approach to generate the vectors was based 
on suffix trees, a data structure that searches for words of 
length k, and generates the vectors based on its reading; as 
of the work of Soares et al. [15].  

In general Bonham-Carter et al. [7] discussed in depth 
more statistical (frequency) measures of different k-mers 
values, with different distance measures, and these methods 
would address the frequency and also the occurrence of the 
k-mers, but they never addressed the order of these k-mers. 

Our proposed algorithm is primarily based on exploring 
information embedded in the k-mers of given sequences, it 
also considers the order of these k-mers as well as the ability 
of assigning weights for specific signals (k-mers). 

The paper is organized as follows: section II is the 
motivation for this work; section III is the experimental 
design and the needed algorithms and the utilized methods 
for this work; section IV is the provided experiments; 
section V is the results and analysis; and finally section VI 
is the conclusion followed by references. 

II. MOTIVATION 
Sequence comparison has been addressed in the literature 
for several decades, especially with the birth of the very first 
alignment-based method, Needleman and Wunsch method 
for sequence alignment was introduced in 1970. This 
method dominated the domain for a long time, though its 
limitations showed up with other advances in the 
bioinformatics sub-domains, especially with the new 
sequencing machines and the generation of longer genomes, 
as well as genomes that have sequencing errors or 
evolutionary history.  

Other problems with sequence alignment were addressed 
by either biologists or computer scientists. Problems like 
poor quality of results with longer sequences; 
misinterpretation of results that include biological 
assumptions (such as the gap filling part of the alignment 
algorithm; as there is no proof exists that these filled gaps 
are results of possible evolutionary mutations). Other errors 
resulted from the genomic translocations; reverse 
subsequence; mutations; or any other errors that would 
result from non-biological assumptions. Other errors that are 
difficult to address with the alignment algorithm; are errors 
resulting from the sequencing machines; these errors come 
from mutations and/or assembly errors. Another limitation 

with sequence alignment is the speed issue, but this work 
addresses and focuses mainly on the quality issue. 

To address the quality issue, integration of biological 
features and computational theories, and understanding the 
nature of the DNA sequences are the major motivations for 
the work, with a hypothesis that considering these major 
factors would enhance the quality of the comparison results. 

DNA sequences are not random in their structures, and it 
is believed that each fragment/subsequence of the DNA 
sequence carries a message or a signal. The hypothesis used 
in this research is that closely related or similar genomes 
would carry similar signals/fragments.  

For example, sequences that carry the same restriction 
enzymes’ cut positions [16] might be related and would 
have similar functions. It would be the same with sequences 
that carry transcription factor binding sites; other signals 
would be motifs of specific nature, unique shortest 
substrings [17] within the sequences, or just motifs with 
biological relevance that are not known to the literature.  

Another feature that DNA sequences has; is that they 
carry tandem repeats in their structures. These tandem 
repeats could also be significant signals, and all of these 
features need to be addressed when comparing the 
sequences. 

A motivation of the comparison problems is based on 
the fact that similar genomes have similar structures and 
functions; although subsequences with similar functions do 
not necessarily have similar exact structures, they carry 
similar signals within these structures. By identifying these 
signals, we would be able to classify these genomes and 
address better measurement for their relatedness. 

Notice that these signals might be hidden and/or 
overlapping with other signals. They might also be of 
different lengths. To identify these signals or at least take 
advantage of using them, we need to consider all of the 
available features. For the previous reasons, we designed an 
approach that would consider all or a group of prospective 
signals of specific length k, which could help in addressing 
the unknown hidden signals. Our approach is variable and 
would consider different lengths of k, also would consider 
the overlapping signals. 

The challenge of identifying such hidden and unknown 
signals is not easy. Trying to identify these signals and their 
functions, taking advantage of their existence and their 
relevant order within the sequences, and using them for 
clustering purposes are collectively the focus of this work. 
The hypothesis of this work is that we can have an approach 
that takes advantage of these hidden signals within the 
sequences. Identifying the relatedness among species would 
be done by considering all the possible chances for the 
existence of these signals within the sequences and using 
them to identify the biological distance between the 
sequences. 

Investigating whether or not addressing such signals 
would improve the clustering process. and reveal a better 
measurement for the relatedness among species is the focus 
and challenge of this work. As we consider different signals 
of different lengths to compare the sequences, we also 

77Copyright (c) IARIA, 2014.     ISBN:  978-1-61208-335-3

BIOTECHNO 2014 : The Sixth International Conference on Bioinformatics, Biocomputational Systems and Biotechnologies



consider random groups of these signals in order to measure 
the quality of the results in each case, and to measure 
whether randomly selected signals would have better results 
than those that contained all k-mers or signals with 
biological nature. In addition, this work also considers the 
use of signals that have biological relevance like restriction 
enzymes, as well as signals that occur within specific 
regions that have biological functionality in the DNA 
sequence, such as those in CDs regions. Finally and as a 
conclusion of the strength of this approach, applications to 
datasets with errors were conducted. 

III. EXPERIMENTAL DESIGN 
The design of the experiment should meet the needed 
requirements to test the hypothesis. Recall that comparing 
DNA sequences results in numerical values that represent 
biological distances between species. These values are 
subjective with each dataset and would be meaningless if 
they are not used to address the relationship for the entire 
group of species.  

Verification of the correctness of these distances is not 
an easy task and simply looking at these numerical values 
will not reveal the correctness of the results. Hence, we 
propose another way to measure the correctness.  

Clustering the species based on the resulting distances 
would provide a way to evaluate the correctness of these 
results. The clustering would be done using bi-clustering 
algorithms for phylogeny. Using the resulting trees of the 
phylogeny would be a good way to evaluate the quality of 
the results. Evaluating the correctness of these trees can then 
be done by comparing them to known gold standard trees; 
those are trees that have been verified biologically, hence 
would be a good proof of the quality of the approach and  
sequence alignment is used as a baseline for comparison. 

The steps necessary to accomplish the proposed 
experiment in this work are listed as follows: 

1. Generate the list of the k-mers. For example, k = 3 
for all the possible 3-mers, would result in 64 words 
(43). Alternatively, the list could be a random 
selection of about 20 percent of all possible words, 
which would be 13 random 4-mers. It could also be 
a list of biological signals of different lengths. 

2. Convert the DNA sequences according to the 
compiled list of k-mers (refer to Figure 1).  

3. Generate the scoring matrix based on pair-wise 
comparison, using longest common subsequence 
(LCS) and Lempel-Ziv complexity of distance 
measure 2 (LZC). 

4. Build the phylogenetic trees using UPGMA and 
Neighbor-Joining (NJ) phylogenetic algorithms. 

5. Repeat Step 4 using the scoring matrix generated by 
multiple sequence alignment (MSA) [3]. 

6. Measure the distance between the generated trees 
and the gold standard tree; the method used to 
measure this distance is the path-length-difference. 

 

 
Figure 1.  The list on the right side includes the preferred signals to be 

used for the approach. The sequence on the left is parsed to subsequences 
each of the same length as the signal lengths on the right, If there is a 

match, it will be reported with the proper code and in the correct order. 

A. Conversion of DNA sequence to sequence of signals 
Consider all possible signals of specific length k (all 

possible k-mers); a production of all the possible 
combination of the length k is generated. This would result 
in a word’s list of size 4k, where 4 is the number of the used 
nucleotides in a DNA sequence (A, C, T, and G). 

The content of the generated list is used as the main 
seeds for the signals needed to be identified within the 
sequences. We substitute any existence of a signal in the 
DNA sequence with a unique code, which would save 
conservation of the order for the signals within the 
sequences. This design would also save computational time 
when the list is small and the sequences are longer. 

Figure 1 shows how to identify the existence of these 
signals in the sequences, as well as how to convert the DNA 
sequence to a sequence of signals/words in the proper order 
of these signals. The used motifs/signals list in Figure 1 is 
on the right side of the figure. In this list, each motif/signal 
has a name (code). The left side of the figure has the 
original sequence, parsed as words of length k (k = 4 in this 
case). 

The used motifs/signals list in Figure 1 is on the right of 
the figure. Each motif/signal has a name (code). On the left 
side is the original DNA sequence. We identify the signals 
from this list that exist in the sequence. If they occur, their 
codes would be assigned with the proper order to the new 
sequence of signals. Thus we convert a DNA sequence to a 
sequence of signals. Also notice that this approach considers 
all the overlapped signals.  

We also need to mention that occasionally some of these 
signals do not exist in the sequence, or they occur more 
frequent. Either way would impact the results of the 
relatedness between the sequences; this would be a major 
difference between the converted sequences and would 
address similarity or dissimilarity among species. 

B. The experimental design steps and discussion on the 
remaining steps 

The conversion step is the heart of this work. In this 
step, we address the signals in preference, but the work 
remains incomplete as long as there is no way to compare 
the converted sequences.  

The nature of the converted sequences is that they carry 
two main features. The first feature is a new alphabet of 
preferred signals; this motivates us to use similar 
comparison algorithms/approaches as in regular DNA 
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sequences. Simple and efficient algorithms such as the 
longest common subsequence (LCS) [18] would address the 
distances between the converted sequences.  

The second feature of converted sequences is the 
conservation of the signals’ order within the sequences. This 
was missed by other research that was also based on k-mers 
[6, 7]. The order of the signals would have a great impact on 
the results, with some possibility of having few or more 
mobile subsequences. We would still be able to use an 
algorithm that would address the order feature, like Lempel-
Ziv Complexity (LZC) [19]. LZC is based on compression 
complexity and has a great success in identifying the 
relatedness of different strings. Please notice that LCS 
addresses the order factor as well. 

The comparison method would result in numerical 
values that represent the distances between species. As 
previously discussed, it is necessary to cluster the species to 
measure the correctness of the resulting distances using 
hierarchical clustering algorithms such as UPGMA and NJ. 
Therefore the results of these algorithms are in the form of 
trees. Although most researchers use visual inspection to 
evaluate phylogenetic trees, we don’t recommend it for the 
following reasons: 
• Visual inspection uses personal judgment, and 

personal judgment is not usually accurate. It can 
mislead the evaluation process, especially if it is not 
compared against some reference.  

• Visual inspection cannot identify the correctness of 
trees with large numbers of species. In fact with some 
trees that have 1,000 species or more, it would be 
impossible to find out the relationships between each 
species. 

• Visual inspection does not provide numerical value for 
the comparison. Therefore, no clear decision could be 
achieved based on its results. Using a computational 
method to measure the distance of the resulting tree to 
a reference tree would yield a decision for the entire 
experiment. 

For these reasons, a computational approach to 
measuring the distance between resulting trees to a gold 
standard tree was used. This approach is called path-length-
difference, and it was modified to give normalized values. 
Finally, it is important to compare the trees from our 
approach to the resulting values from MSA and evaluate 
whether our approach would have better results. 

 

C. Different algorithms of the experiments 
This subsection describes some of the methods used to 

verify the hypothesis of this work, specifically methods that 
are new to the reader or those that have been modified to fit 
the work. 

• Normalizing Longest Common Subsequences  
LCS is based on dynamic programming and has a well-
established reputation and implementations. However, the 
generated scores are not normalized, and these scores cannot 
be used to build a phylogenetic tree. To understand this 
problem, consider these sequences: 

S1 : GTTAATGCCACCAAAAAAAAA (length 21) 
S2 : GTTAATGCCACCGA (length 14) 
S3 : TCCCTAGCT (length 9) 
 

The LCS for all the pair-wise comparisons is as follows: 
S1 : GTTAATGCCACCAAAAAAAAA  
S2 : GTTAATGCCACCGA  
LCS is GTTAATGCCACCA and the score is 13 
S1 : GTTAATGCCACCAAAAAAAAA 
S3 :  TCCCTAGCT 
LCS is TTAGT and the score is 5 
S2 : GTTAATGCCACCGA 
S3 : TCCCTAGCT 
LCS is TTAGC and the score is 5 

TABLE I.  THE SCORES OF USING LCS ON THE EXAMPLE SEQUENCES 

 S3 S2 S1 
S3 9 5 5 
S2 5 14 13 
S1 5 13 21 

 
The resulting scores of using LCS for these sequences 

are shown in Table 1. Note that the scores in the table are 
not normalized. To address this issue, we divide the 
resulting score by the length of the shortest sequences of the 
measured pair. In addition, to simplify the clustering step we 
reverse the meaning (average) of the score, by subtracting 
the normalized score from one, so smaller values imply 
closer species or higher degree of similarity. The resulting 
values are shown in Table 2 below. 

TABLE II.  THE RESULTS AFTER USING THE NORMALIZING FUNCTION AS 
SUGGESTED 

 S3 S2 S1 

S3 0 1-5/9 1-5/9 

S2 1-5/9 0 1-13/14 

S1 1-5/9 1-13/14 0 
 
  

• Lempel-Ziv complexity:  
Lempel-Ziv complexity of distance measure 2 was used. 
Please refer to [19, 20] for more details. 

• Path-Length-Difference:  
The comparison between trees was done by estimating the 
path-length-difference metric [20]. The main concept here is 
to give penalties for changing relative positions of species in 
the generated tree, relative to the reference tree (gold 
standard tree). Each change would make a species closer to 
a group of species and further from the rest of species; that 
should cause a penalty value.  

The method begins by generating two matrices; one for 
the generated tree (resulting tree of our approach), and the 
other matrix is for the gold standard tree. The dimensions of 
the matrices are m x m, where m represents the number of 
species for the dataset (or the tree). Each cell has a value  
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Figure 2.  Two trees for the comparison method. The one on the left is the 

gold standard tree, while the one on the right is the algorithmic tree. 

IV. EXPERIMENTS 
The experiments are designed and carried out to answer 

the following questions: 
1. Would some motifs/words/signals provide good 

results for sequence comparison? Would these signals 
have better comparison results over traditional 
sequence comparison methods such as those that are 
alignment based? 

2. If the answer for question 1 is positive, is it possible to 
change the selection of the k-mers for the experiment? 
Would that enhance the results? In other words, are 
there certain words/k-mer(s) that would improve the 
clustering pattern? 

3. If the answer for question 2 is positive, would we be 
able to use signals with biological relevance to 
improve the results? Like restriction enzymes..etc. 

4. If the answer for question 3 is positive, would it be 
possible to find hidden signals within the sequence 
with biological relevance and then use them to have 
valid results? 

5. Finally, if the first four questions have been answered 
positively, is it possible to use the approach on 
datasets that have errors and still get valid results? 

V. RESULTS AND ANALYSIS 
To answer the above questions, an experiment for each 
question was conducted. All the experiments follow the 
same process, as discussed in the Methodology section, with 
each experiment using a different list of used k-mers.  

 
Datasets: 

• The first dataset used was the mycobacterium 
dataset. We used it for the first three experiments. 

• The second dataset was a mitochondrial genomic 
dataset. We used it for experiments 3, 4, and 5. 
 

A. The First Experiment: Viability of the method 
The goal of this experiment is to evaluate whether using 
generic signals within the sequences would provide good 
results, as well as whether those results would be better than 
the results of traditional alignment-based methods (MSA). 
This experiment deals with all the possible k-mers, as some 
of them might be hidden signals with strength and within 
the sequences. The used list of k-mers includes all possible 
k-mers. 

Figure 3 shows the results of using all possible k-mers, 
and it shows very good results. All distances of any value 
for k were less than 1.25 percent, while with MSA the 
results were above 1.8 percent, be aware that smaller values 
express better distance measures, and are interpreted as 
closer distance to the gold standard tree. 

Figure 3 shows significance in the results using our 
approach compared to those of MSA. That proves our 
hypothesis that emphasizing such signals would improve the 
results and would answer the first question. Please notice 
that MSA refers to the result of applying Multiple Sequence 
Alignment, and 7LCS means applying longest common 
subsequence on k-mer of length 7. 

 
 
 
 
 
 
 
 

 
 

Figure 3.  This shows the results of using our algorithm with different 
parameters. Here, k ranges from 3 to 9. The used methods of comparison 
are LCS and LZC, and the clustering methods are UPGMA and NJ. The 
chart shows that in all cases our approach outperformed MSA (multiple 

sequence comparison) with significant results. 

B. The Second Experiment: Using random k-mers 
For this experiment, we used lists of random signals 

selected from all possible k-mers with percentages of 10–90 
percent. These selections were applied to k values of 3 to 9, 
using comparison methods LCS and LZC and clustering NJ 
and UPGMA. We tested the impact of charging the 
parameter k on the quality of the results by measuring how 
similar the obtained phylogenetic tree produced by our 
approach and MSA from the gold standard tree.  

Expectations for the randomly generated lists were that 
the list carries strong signals, carries weak signals, or carries 
both. The purpose of carrying on this experiment was to test 
whether results would be better, worse, or close to those 
obtained from the first experiment.  

Overall, the majority of the experiments we conducted 
using random k-mers showed better results obtained from 
our proposed approach as compared to MSA.  Some of them 
were even better than the results obtained in the first 
experiment. Few cases produced results slightly below the 
level produced by the first experiment, and some were very 
close to the results of the first experiment.  We tested the 
approach using the two comparison methods LCS and LZC 
while using two clustering algorithms NJ and UPGMA.  

For example, when using using LCS as a comparison 
method and NJ as a clustering method. The results of this 
experiment showed that with just a random selection of k-
mers, the approach would still provide better performance 
than using alignment-based methods for all the values of k 
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that we used. Even with a small list for k-mers (up to 10 
percent of all the possible k-mers of specific k), the results 
would still outperform MSA.  

In addition, some runs showed better results than those 
obtained in the case when for all possible k-mers are used, 
as in the case with 60 percent random selection of k-mers of 
length 6. The resulting tree has a distance to the gold 
standard tree of 0.489 percent, which outperformed any 
result of all possible motifs, which you can compare by 
referring to Figure 3. When the random selection of 10 
percent for k-mers of length 5, the distance to the standard 
tree has a value of 1.877005 percent, which is slight worse 
than any value in Figure 3. That shows that while some 
signals would do better when they are used alone, others 
would do slightly worse.  

Similar results were produced when the algorithm used 
LZC as a comparison method and NJ or UPGMA were as 
the clustering method.   

C. The Third Experiment: Using restriction enzymes’ cut 
positions as the words list 

The second experiment showed that results would be 
impacted with the selection of the words (k-mers) list, and 
that some signals would have a higher impact over others. 
This motivated us to proceed with the third experiment that 
deals with words that have biological relevance and to see 
how these words would impact the results. The used signals 
were obtained from a database of restriction enzymes’ cut 
positions. 

Restriction enzymes are special nucleotide signals that 
cut the DNA double- or single-stranded sequence at specific 
recognition positions. We believe that DNA sequences that 
share similar restriction enzymes’ cut positions would also 
have similarities in their functions and structures. 

We used restriction enzymes’ cut positions that have 
lengths of 4 to 8 nucleotides. As the number of words for 
each length was small, we had to use all of them as the 
words list. Therefore, we used a modified implementation 
for the conversion algorithm, which would integrate 
different lengths of the words. The following subsection 
shows how we modified our conversion approach to take 
advantage of all restriction enzymes’ cut positions. 

Since there are a limited number of restriction enzymes, 
we had to integrate all of them in the converted sequence.  
To do so, we looked at restriction enzymes of length 4 and 
identified their locations in the sequences. Then we moved 
on to restriction enzymes of length 5, 6, 7, and 8. This 
would give priority to words with shorter lengths first, then 
move up with longer words.  

Again, these words have names/codes in their list, so the 
generated sequences would have a new alphabet that 
represents words of different lengths and biological 
relevance. The rest of the experiment would be the same as 
in the previous two experiments. The following example 
shows the new modification for the conversion approach. 
For example, assume this sequence: ACCGTGC, the 
restriction enzymes list we have with their codes is: 

ACCG    = RE1 

CGTG    = RE2 
ACCGT = RE3 

Applying the restriction enzymes of length 4 would 
generate: RE1 (at position 1), RE2 (at position 3), while 
applying the restriction enzymes of length 5 would generate 
RE3 (at position 1). The final sequence of restriction 
enzymes after integrating both lengths would be: RE1, RE3, 
RE2. 

Figure 4 shows the results of using a list of restriction 
enzymes’ cut positions on the mitochondria dataset. The 
results showed better quality for the application of the 
restriction enzymes’ list than those results from using MSA. 
Similar results are shown in Figure 9, using mitochondrial 
genomes. Again the results of the proposed approach 
outperformed those obtained by MSA. 

Figures 4 and 5 show that the results obtained using 
restriction enzymes are generally better than those obtained 
using multiple sequence alignment. However in some cases, 
the random selection (refer to the second experiment) might 
produce better results, as shown in Figure 4. Using k = 6 
and the random selection of 60 percent, we got a 0.489 
percent of tree distance difference to the gold standard tree. 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.  These are the results of using the algorithm with a list of 
restriction enzymes’ cut positions on the mitochondrial dataset and using 

LZC; MSA results are included for comparison. 

 

 
 

 

 

 

Figure 5.  These are the results of using our algorithm with a list of 
restriction enzymes on the mitochondrial dataset and using LCS. MSA 

results are included for comparison. 

 
That proves that there are some strong signals known to 

the literature, and those signals would improve the results of 
the comparison method. This yields a positive answer for 
the third question. 
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D. The Fourth Experiment: Using k-mers that occur only 
in CDs regions of the genomes 

As our hypothesis of using words with biological relevance 
provided promising results, we continued searching for 
more signals that would also give high quality. One way to 
find such signals is to use signals/words from the CDs 
regions of the genomes. As these regions are rich with 
biological information, we proposed that they would 
improve the results. In fact, CDs are the main DNA source 
for functional genes, and a lot of species that are closely 
related would have similar functions, and in turn genes with 
similar structures that exist in these CDs regions. Therefore, 
we generated a list of k-mers that occur in the CDs regions. 

We eliminated word lists of lengths 3, 4, and 5, as those 
lists were all possible k-mers of these lengths and would 
have same exact results as in the first experiment. The used 
dataset here was entire genomes. These mitochondrial 
genomes are rich with CDs regions and were a good fit for 
this experiment, as they also have a gold standard tree. 
Figure 6 shows better results when signals from the coding 
sequences are used in our approach. Figure 6 shows that 
these signals are rich with information that would improve 
the quality of the method. Therefore, these signals would be 
a major source as input lists of the approach. This yields a 
positive answer for the fourth question. 

 
Figure 6.  This figure shows the results of using our algorithm with lists 

that were generated from CDs regions, k ranges from 6 to 9. The used 
methods of comparison are LCS and LZC, and the clustering methods are 

UPGMA and NJ. 

E. The fifth experiment: Application of the approach to 
datasets with different level of gaps errors 

We finally applied the approach to special datasets. These 
datasets were generated and manufactured from the 
mitochondrial genome dataset. They are incomplete 
genomes and/or with errors. The reason for applying the 
approach to such datasets is to measure if it would be 
possible to identify the relatedness among species with 
errors.  

These datasets are divided into three categories. The first 
category is for a dataset where each sequence is a fragment 
from the original genome, each fragment’s content is a 
percentage of the original genome’s content, and was 
chosen randomly from the genome’s content. For this 
category, we generated two datasets: one with 50 percent 
content, and the second for 70 percent content. 

The second group was for datasets composed of several 
fragments from the original genomes, and these fragments 
are in order. So each sequence would be the merging of 
several fragments from the original sequence, and these 
fragments would have a content represented as a percentage 
of the original genome. These fragments were chosen 
randomly from the genome’s content and did not overlap. 
For this category, we generated two datasets with 
percentages 30 percent and 90 percent. 

The third category is similar to the second one, but the 
fragments were switched randomly. This means that now a 
sequence has fragments that are not in order, yet would still 
have a content that is represented as a percentage amount of 
the original genome. These datasets were generated with 
percentages of 40 percent and 80 percent. 

We compare the results of using our approach on these 
datasets to those resulting from MSA on the same datasets. 
We are evaluating whether our approach would identify the 
relatedness of the species in these datasets, even if they have 
errors, and whether these results would be better than those 
of MSA. 

Figure 7 shows the results of applying the approach to 
these datasets. Each group of columns (blue, red, and green) 
represents one dataset and the use of one clustering 
algorithm (NJ or UPGMA). Each column shows the result 
of using LCS, LZC, or MSA.  The results show that in most 
cases our approach outperforms MSA, except in two cases. 
As with the dataset of using several fragments, with 30 
percent contents of the original sequences, and using all 
possible 4-mers, and LCS comparison method with 
UPGMA clustering algorithm, the quality of result was 
lower than MSA, same with the dataset of (80% contents, 
several fragments not in order, 6-mers selected from CDs 
and using LCS and UPGMA), the result again was lower 
than MSA. 

Using the motif-based approach for comparing 
sequences in datasets that contain errors would be more 
effective than using MSA, as most of the results of our 
approach outperformed MSA results. Thirty-four results 
were better than MSA out of 36 runs (94.44 percent).  

 

 

 

 

 

 

 

 

 

Figure 7.  The results of applying proposed approach to datasets with 
high degree of errors.  Abbreviations: APK(All Possible K-mers), 

CDs(Coding Regions), OF(One Fragment), SF(Several Fragments), 
SFN(Several Fragments Not in order). 
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VI. CONCLUSIONS 

In this paper, we introduced an alternative approach to 
compare biological sequences, and that method in several 
cases outperforms the traditional alignment-based 
approaches. The proposed method is developed to compare 
sequences based on their inclusion of short biological 
signals or motifs. The conducted experiments showed that 
the effectiveness of the approach depends on which motifs 
used. In particular, the results showed that with a number of 
biologically significant signals/words, we should be able to 
produce results far superior than those obtained using 
alignment.  

The proposed approach produced comparable results, 
and even better in certain cases, when random or generic 
motifs are used to compare sequences. Better results were 
obtained when certain motifs were used. Future work should 
focus on identifying different types of biological signals that 
can be utilized for better classification. 

When we used short motifs associated with biological 
significance, such as restriction enzymes, the motif-based 
comparison produced even better results. Similar results 
were obtained when motifs are selected from rich regions in 
the genome such as coding regions. These motifs made it 
possible for the approach to outperform traditional methods 
like MSA in identifying the relatedness between genomes.  

We also compared the proposed method with MSA 
using datasets that contain sequencing errors, and again for 
the majority of the cases, the signals-based comparison 
produced better results and better identified relationships 
among species. So for genomic datasets that have errors, it 
would be better to use this approach instead of using 
traditional alignment-based methods. The overlapped 
signals would identity such relationships among species. 
Overlapped signals are powerful marks for comparing 
biological sequences and would identify more accurate 
relationships between species as compared to alignment-
based methods. 
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