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Abstract—The degree of variation in nucleotide content across
all prokaryotic genomes is expansive and ranges from ∼15%
to ∼75% guanine and cytosine (GC). There is an ongoing
debate as to the causes of this extensive variation, however, since
variation in nucleotide content is a genome-wide trait that affects
the genome as a whole, it is highly interesting to understand
what drives such variation. Employing 183 metagenomic datasets
(959G) from numerous types of environments, a Unix environ-
ment pipeline of command-line bioinformatics tools, scripting lan-
guages, and statistical programs was employed to investigate the
influence of environment on GC-content. Using several statistical
approaches, we show that each type of environment has a distinct
GC-signature that cannot be entirely explained by disparities
in phylogenetic composition. Further, our results indicate that
environment and phylogeny impact nucleotide composition.
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I. INTRODUCTION

The causes of the great variation in nucleotide composition
of prokaryotic genomes have long been disputed [1]–[3].
In our previous work, we used extensive metagenomic and
whole-genome data containing over 31 million sequences to
demonstrate that both phylogeny and the environment shape
prokaryotic nucleotide content [4]. The GC-content – which
is the percentage of guanine and cytosine in a genome or
fragment of DNA is important as it can describe the makeup
of an organism, provide insight into an organism’s evolution,
and expand our understanding of gene expression.

II. METHODOLOGY

Shotgun-sequenced fasta files (183 datasets) from 14 en-
vironments were obtained from MG-Rast [5]. The details
of each project’s methodology, metadata and geographic lo-
cation can be found utilizing a mapping API we created
(http://simlab.biomed.drexel.edu/maps/map.php) [6]–[17].

After screening each dataset (e.g., ambiguous/short reads),
the remaining sequences were extracted and classified accord-
ing to phylogeny [18]. The GC-content was calculated for each
classified read, followed by a mean GC-content calculation for
each phylum, each sample (there were multiple samples in an
environmental category), and each environmental category.

III. RESULTS

After calculating the mean GC for all environments, we
found that each environment carried a distinct GC-content
signature. We found a similarly distinct GC-level trend in 111
samples that comprised a single type of environment. To rule
out the possibility that variation in GC-composition between

environments could be explained by differences in phyloge-
netic composition, each environment’s prokaryotic community
was investigated from two standpoints; the microbial composi-
tion and the phylum pair-wise correlation level in GC-content
in each environmental category.
A. Microbial Composition

The relative abundance of each phylum in an environment
was calculated. Additionally, to assess whether phyla differed
at the genus-level, a taxonomic list of the genus names present
in each environment was compiled. Using the intersection and
union of the lists, the level of similarity (Jaccard similarity
coefficient) in the genera contained within two environments
was calculated.
B. Phyla and GC-Content

In the process of looking at phylogenic distribution, we
found that different phyla were characterized by different mean
GC-contents. Additionally, some phyla were characterized by
a much broader GC-content range than others. These averages
and possible ranges of nucleotide compositions for each tax-
onomic classification (phylum-level) were, to a large extent,
maintained across different environments and were in accord
with the GC-levels of fully-sequenced prokaryotic genomes.
Phylogeny therefore seems to impose a clear limit on the range
of nucleotide content a prokaryote can adopt.
C. Hypergeometric Distribution, Phyla, and GC-Content

The GC-content variation seen in prokaryotes provided an
opportunity to observe the behavior of a phylum. Using our
largest environmental dataset (111 samples), we found that the
GC-content of a phylum with a high range of variability would
be at its upper bounds in a high GC sample and the lower
bounds in a low GC sample.
D. Correlations, Phyla, and GC-Content

The correlative relationship between the GC-content of
each phylum was assessed using the Spearman correlation
coefficients. Our analysis showed a number of statistically
significant correlations which appeared at a frequency much
greater than expected by chance. A significant correlation
would indicate that whatever force influenced the nucleotide
content in one phylum, had a similar effect on the nucleotide
content of the remaining phyla.
E. Assessing Correlations: Phyla, GC-Content, and the 3rd
Codon Position of 4-fold Redundant Amino Acids

We confirmed our results and ensured that our findings
were not related to artifacts due to amino acid usage by
annotating the classified sequences and re-running the correl-
ative analysis on them [19]. The annotated sequences were
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examined for the location of those amino acid with four-fold
redundancies (Alanine, Arginine, Glycine, Leucine, Proline,
Serine, Threonine, Valine) and the 3rd codon positions of these
codons were extracted for GC-content calculations. As the
third codon positions of fourfold degenerate codons do not
affect the amino acid sequence of a protein, their nucleotide
content should not be affected by selection at the level of amino
acid usage. We found that the GC-content of the 3rd codon
position of fourfold degenerate codons within protein-coding
genes was correlated between phyla across environments far
more frequently than expected by chance.

IV. CONCLUSION

Employing numerous shotgun-sequenced datasets as well
as data from all currently available fully-sequenced genomes,
we show that both phylogeny and environment influence
prokaryotic nucleotide composition. We demonstrate that,
across environments, different phyla have distinct nucleotide
compositions. We then show that GC-levels vary by envi-
ronment in a manner that can not be explained solely by
differences in phylogenetic composition. Combined, our re-
sults demonstrate that both phylogeny and the environment
significantly affect nucleotide composition and that the envi-
ronmental differences affecting nucleotide composition are far
subtler than previously appreciated.
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