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Abstract— We propose a Matroska feature selection method 
(Method 2) for microarray datasets (the datasets). We had 
already established a new theory of the discriminant analysis 
(Theory) and developed an optimal Linear Discriminant 
Function (OLDF) named Revised IP-OLDF. This LDF can 
naturally select features for the datasets. The dataset consists of 
several small genes subspaces that we call small Matroskas 
(SMs) and are linearly separable. We confirmed this feature 
selection of Revised IP-OLDF by Swiss banknote data and 
Japanese automobile data, also. Therefore, we need not struggle 
with high-dimension genes space. In this paper, we develop a 
LINGO program to find all SMs and confirm that the dataset 
consists of disjoint union of SMs and high-dimension subspace 
that is not linearly separable. Because it is very easy for us to 
analyze these SMs that are small samples, we may be able to find 
new facts of gene analysis. Lasso researchers will have better 
results compared with our results. 

Keywords- Minimum Number of Misclassifications (MNM); 
Revised IP-OLDF; SVM; Fisher’s LDF; Gene Analysis; Small 
Matroska (SM); Basic Gene Subspase (BGS); Lasso. 

I. INTRODCTION 
Fisher [6] [7] developed a Linear Discriminant Function 

(Fisher’s LDF) under Fisher’s assumption and established the 
theory of discriminant analysis. Because Fisher’s assumption 
was too strict for the real data, a Quadratic Discriminant 
Function (QDF) was developed. In addition to two 
discriminant functions, logistic regression [4] and a 
Regulalized Discriminant Analysis (RDA) [9] were proposed 
as the statistical discriminant functions. These statistical 
discriminant functions apply for many applications, and 
statistical software packages became essential tools for the 
science and industries. On the other hand, it is well known 
that Mathematical Programming (MP) can define the 
discriminant models [16]. Linear Programming (LP) sets out 
Least Absolute Deviation (LAD) discriminant function. 
Quadratic Programming (QP) defines an L2-norm 
discriminant function (Least square method). Nonlinear 
Programming (NLP) defines Lp-norm discriminant functions. 
Before 1997, there were many papers of MP-based 
discriminant functions summarized by Stam [57]. We think 
the first generation research ended in 1997 because these 
researches lacked examination of real data and comparison 
with statistical discriminant functions. Vapnik [61] proposed 
three Support Vector Machines (SVMs) such as a Hard-
margin SVM (H-SVM), Soft-margin SVM (S-SVM) and 
kernel SVM in 1995. H-SVM clearly defined a Linearly 
Separable Data (LSD) and generalization ability. However, 
because most real data are not LSD, and H-SVM can be used 

only for LSD, we use S-SVM for actual data. QP defines 
these SVMs. Although kernel SVM is one of nonlinear 
discriminant function and provides an attractive idea, we do 
not discuss it in this research because our concern is a 
comparison of LDFs. Many researchers use SVMs because 
there are many examinations of real data compared with the 
first generation research of MP-based discriminant theory. 
From 1971 to 1974, we became a member of the project to 
develop a computer system for an Electrocardiogram (ECG) 
data. Project leader, Doc. Nomura gave us a theme to develop 
a diagnostic logic using Fisher’s LDF. Our research was 
inferior to Nomura’s experimental decision tree algorithm. At 
first, we thought this failure was caused by our poor 
experience and knowledge of statistics. However, we 
considered the discriminant functions based on the variance-
covariance matrices were not suitable for the medical 
diagnosis discussed in Section Ⅱ. Moreover, we found all 
LDFs cannot correctly discriminate the cases on the 
discriminant hyperplane (Problem 1). 

In Section Ⅱ, although Fisher established discriminant 
analysis based on variance-covariance matrices, we explain a 
new theory of MP-based discriminant analysis (Theory) [53]. 
At first, we developed an Optimal LDF based on a Minimum 
Number of Misclassifications (minimum NM, MNM) 
criterion (IP-OLDF) in (1) [19] - [21]. It reveals two 
important facts of discriminant analysis. Those are 1) the 
relation of NM and LDF in the discriminant coefficient space, 
2) monotonic decrease of MNM that is very crucial for gene 
analysis. It shows the good result by comparison with 
Fisher’s LDF and QDF using Fisher’s iris data [2] and 
Cephalo Pelvic Disproportion (CPD) data [14]. It finds Swiss 
banknote data is LSD [8]. All LDFs except for H-SVM and 
Revised IP-OLDF in (2) cannot discriminate LSD 
theoretically (Problem 2). Experimentally, Revised LP-
OLDF in (2), one of L1-norm LDF using LP, can 
discriminate LSD. Nevertheless, it tends to gather cases on 
the discriminant hyperplane (Problem 1). Student data [24] 
reveals the defect of IP-OLDF caused by Problem 1. 
Therefore, Revised IP-OLDF is developed. It is only LDF to 
solve Problem 1. The pass/fail determination using exam 
scores [28]  shows the defect of QDF and RDA caused by the 
defect of generalized inverse of variance-covariance matrices 
(Problem 3). If we add random noise to constant values of 
some particular variable, we can solve Problem 3. Japanese 
automobile data [35] explain Problem 3, also. Because Fisher 
never formulate the equation of Standard Error (SE) of error 
rate and discriminant coefficient, discriminant analysis is not 
traditional inferential statistics based on normal distribution 
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(Problem 4). A 100-fold cross-validation for small sample 
method (Method 1) offers the 95% Confidence Interval (CI) 
of error rate and discriminant coefficient [23] [25] - [27]. 
Moreover, because the best model with minimum mean of 
error rate in the validation samples is powerful model 
selection method and we can explain the meaning of 
discriminant coefficient [51][52], we understand to establish 
Theory. However, we know many researchers have been 
struggling in the gene analysis for more than ten years 
(Problem 5) [12]. 

In Section Ⅲ, we propose a Matroska feature selection 
method for gene analysis (Method 2). When we discriminate 
six microarray datasets (the datasets) [12], our three OLDFs 
can naturally select features [37] - [44]. However, three 
SVMs cannot select features. Moreover, Fisher’s LDF cannot 
discriminate six datasets correctly because six NMs are not 
zero. In [42] [43] we explained in detail the results of Fisher’s 
LDF. Revised IP-OLDF by Method 2 reveals the dataset 
consists of disjoint union of small linearly separable 
subspaces (SMs) and high-dimensional subspace that is not 
linearly separable (MNM >=1). This perception is essential 
for gene analysis. 

In Section Ⅳ, we explain how to analyze each SM and 
find a Basic Gene Subspace (BGS) in each SM by ordinary 
statistical methods. We can analyze each SM very easy 
because all SMs are small samples. Moreover, we can 
understand the structure of dataset by BGSs because of 
monotonic decrease of MNM. 

II. NEW THEORY OF DISCRIMINANT ANALYSIS 
      We develop four OLDF including IP-OLDF that find two 
new facts and solve four problems. Moreover, we confirm the 
best models of Revised IP-OLDF are better than other seven 
LDFs by six ordinary data introduced in Section Ⅰ. 

A. Four Problems of Discriminant Analysis 
There are four problems with the discriminant analysis 

[31][35] [36].              

Problem 1: The discriminant rule is very simple. Let f(x) 
be LDF and yi*f(xi) be a discriminant score for xi. If yi*f (xi) 
> 0, xi is classified to class1/class2 correctly. If yi*f(xi) < 0, 
xi is misclassified. We cannot properly discriminate xi on the 
discriminant hyperplane (f(xi) = 0). Many researchers ignore 
this unresolved problem until now. They consider a 
discriminant rule as follows: If f (xi) >= 0, xi is classified to 
class 1 correctly. Otherwise, if f (xi) < 0, xi is classified to 
class 2 correctly. Their discriminant rule is not logical. Only 
Revised IP-OLDF can treat this problem appropriately. 
Indeed, except for Revised IP-OLDF, no LDFs can count the 
NMs correctly. These LDFs should count the number of cases 
where f(xi) = 0, and display this figure alongside the NM in 
the output. Student data tells us the defect of IP-OLDF. 
Therefore, we develop Revised IP-OLDF. 

Problem 2: Only H-SVM and Revised IP-OLDF can 
recognize LSD theoretically. Experimentally, Revised LP-
OLDF discriminates LSD correctly. Nevertheless, it tends to 

collect cases on the discriminant hyperplane (Problem 1). If 
we discriminate exam scores by four testlets score, and the 
pass mark is 50 point, we can obtain a trivial LDF such as f = 
T1 + T2+ T3+ T4 -50 [36]. We can judge the student pass the 
exam if f(xi) >= 0 and fail the exam if f(xi) < 0. However, 
error rates of Fisher’s LDF and QDF are very high [35] 
because exam scores do not satisfy Fisher’s assumption. 
Therefore, these LDFs should not be used in important 
applications such as medical diagnosis, pattern recognition, 
and rating.  

Problem 3: Problem 3 is the defect of generalized inverse. 
When we discriminated math exam scores by QDF and RDA, 
all pass students were misclassified in the failed class because 
all pass students answered some item scores correctly, and 
scores of failed student vary. In this case, if we add random 
noise to the constant values, we can solve this problem.  

Problem 4: Fisher never formulated the equation of SE of 
discriminant coefficients and error rates based on the normal 
distribution. Because there is no model selection procedure 
instead of a leave-one-out (LOO) procedure [13], we propose 
Method 1. It offers the 95% CI of error rates and discriminant 
coefficients. Moreover, it offers simple and powerful model 
selection procedure such as the best model with a minimum 
mean of error rate in the validation samples. We confirmed 
the best models of Revised IP-OLDF were better than 
Fisher’s LDF, logistic regression and five MP-based LDFs 
using six ordinary data [29] [30] [33] [34]. Fisher’s LDF and 
logistic regression discriminate these data by JMP script [15]. 
JMP division of SAS Institute Inc. Japan supports us to 
develop it. Six MP-based LDFs are Revised IP-OLDF, 
Revised LP-OLDF, Revised IPLP-OLDF, H-SVM and two 
S-SVMs such as SVM4 (penalty c = 10000) and SVM1 
(penalty c = 1) by LINGO program that is supported by 
LINDO Systems Inc [17]. We can establish Theory by JMP 
and LINGO. 

B. MP-based LDFs 
Although we developed a diagnostic logic of ECG data 

by Fisher’s LDF, our research was inferior to the decision tree 
logic developed by the medical doctor. After this experience, 
we concluded it is not adequate for the discrimination of the 
normal and abnormal diseases because of two main reasons 
[18]. 

1) There are many cases nearby the discriminant 
hyperplane. Medical doctors are striving to discriminate the 
cases nearby the discriminant hyperplane. 

2) If the value of some variable increases or decreases, 
the probability belonging to abnormal disease increases from 
0 to 1. Fisher’s LDF assumes the typical abnormal patients 
are the average of the abnormal classes. However, the typical 
patients are far from the normal patients. Taguchi et al. [58] 
method was one of multi-class discrimination by 
Mahalanobis-distance based on the variance-covariance 
matrices. The authors claim that the cases belonging to 
abnormal states are far from the normal state. Their claim is 
the same perception as our claim. If some independent 
variable of logistic regression increases or decreases, the 
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probability ‘p’ belonging to class1 (abnormal symptom) 
increases from 0 (class2) to 1 (class1). Therefore, most 
medical users use logistic regression instead of Fisher’s LDF. 
However, because JMP does not support logistic regression 
for the datasets, we never discuss logistic regression in 
Section Ⅲ.                                                                                      

After many experiences of the discriminant analysis [14] 
[22], we developed IP-OLDF in (1). Because we fix the 
intercept of IP-OLDF to one, it is in the p-dimensional 
coefficient space. Although yi*(txib+1) is discriminant scores, 
yi*(txib+ 1) = 0 is a linear hyperplane and divides 
discriminant space to two half planes such as plus half plane 
(yi*(txib+1) > 0) and minus half plane (yi*(txib+1) < 0). If we 
choose bk in plus hyperplane as LDF, LDF such as 
yi*(tbkxi+1) discriminate xi correctly because of yi*(tbkxi+1) 
= yi*(txibk+1) > 0. On the other hand, if we choose bk in 
minus hyperplane, LDF misclassify xi because of yi*(tbkxi+1) 
= yi*(txibk+1) < 0.  However, we must solve other two models 
such as the intercept = -1 and 0. It looks for the right vertex 
of an Optimal Convex Polyhedron (optimal CP, OCP) if data 
is a general position. There are only p-cases on the 
discriminant hyperplane, and it becomes the vertex of OCP. 
On the other hand, if data is not general position, it may not 
look for the correct vertex of OCP because there are over 
(p+1) cases on the discriminant hyperplane, and we cannot 
correctly discriminate these cases. Therefore, we developed 
Revised IP-OLDF that looks for the interior point of true 
OCP in (2) directly. Because b0 is free variable, it is defined 
in (p+1)-dimensional coefficient space. If it discriminates xi 
correctly, ei = 0 and yi*(txib+b0) >= 1. If it cannot 
discriminate xi correctly, ei = 1 and yi* (txib+b0) >= -9999. 
Although support vector (SV) for classified cases are 
yi*(txib+b0) = 1, SV for misclassified cases are yi*(txib+b0) = 
-9999. Therefore, we expect a discriminant score of 
misclassified cases are less than -1, and there are no cases 
within two SVs. Therefore, if M is small constant, it does not 
work correctly [27]. Because there are no cases on the 
discriminant hyperplane, we can understand the optimal 
solution is an interior point of OCP defined by IP-OLDF. All 
LDFs except for Revised IP-OLDF cannot solve Problem 1 
theoretically. Therefore, these LDFs must check the number 
of cases (h) on the discriminant hyperplane. Correct NM may 
increase (NM + h). 
 

MIN = Σ ei; yi*(txib + 1) >= - ei ;                         (1) 
ei: 0/1 integer variable corresponding to    

classified/misclassified cases.  
yi: 1/-1 for class1/class2 or object variable.   
xi: p-independent variables.                
b: discriminant coefficients.  

 
Because we can consider IP-OLDF in (1) on the data and 

discriminant coefficients spaces, we find two relevant facts 
as follows.  

1) We explain the notation of IP-OLDF by the Golub et 
al. dataset [10]. It consists of two classes such as “All (47 

cases)” and “AML (25 cases)” with 7,129 genes. Our 
primary concern is to discriminate two classes by 7,129 
variables (genes). The 72 linear hyperplane, the 7,129 
coefficients of those are values of each case, divide the 
discriminant coefficient space into finite CP. The interior 
points of each CP correspond to the discriminant coefficient 
of LDF that discriminates the same cases correctly and 
misclassifies another same case. Therefore, because the 
interior points of each CP have unique NM, we can define the 
OCP with MNM. Many examinations show the best models of 
Revised IP-OLDF are better than other seven LDFs. 

2)  Let MNMk be MNM in the k-dimensional subspace. 
MNM decreases monotonously (MNMk >= MNM(k+1)). If 
MNMk = 0, all MNMs including these k-variables (genes) are 
zero. This fact tells us the smallest Matroska (Basic Gene 
Subspace, BGS) can completely describe the structure of 
gene space by monotonic decreases of MNM. 

When we discriminate Swiss banknote data with six 
variables, IP-OLDF finds two-variables models, such as (X4, 
X6), is linearly separable. By the monotonic decrease of 
MNN, 16 MNMs including these two variables are zero 
among 63 models (= 26-1 = 63). Other 47 MNMs are greater 
than one. Revised IP-OLDF in (2) can naturally select 
features for ordinary data and six datasets. However, we 
develop more powerful model selection procedure such as the 
best model by Method 1. Therefore, we had ignored the 
natural feature selection for ordinary data before Method 2.  

 
MIN = Σei ;   yi* ( txib + b0) >= 1 - M* ei ;     (2)   

b0: free decision variables. 
M: 10,000 (Big M constant). 
 

If ei is non-negative real variable, equation (2) changes 
Revised LP-OLDF. Revised IPLP-OLDF [32] is a mixture 
model of Revised LP-OLDF in the first phase and Revised 
IP-OLDF in the second phase. The equation (3) is S-SVM. 
If we set c=104 or c=1, it becomes SVM4 or SVM1. If we 
omit “c* Σei” and “- ei”, it becomes H-SVM. QP solves both 
SVMs.  

 
MIN = ||b||2/2 + c*Σei ;   yi* ( txib + b0) >= 1 - ei ;     (3)   

c: penalty c to combine two objectives. 
ei: non-negative real value. 

C. New Theory of Discriminant Analysis (Theory) 
We explain the outlook of Theory. There are four serious 

problems with the discriminant analysis. We developed four 
MP-based OLDFs. IP-OLDF finds two new facts of 
discriminant analysis. Revised IP-OLDF solves Problem 1 
and Problem 2 related to this paper. Because Method 1 solves 
Problem 4 and four problems are solved completely, we 
misunderstand to establish Theory. In 2015, when we 
discriminated six datasets by MP-based LDFs and Fisher’s 
LDF, only Revised IP-OLDF could naturally select features 
because coefficients less than 173 are not zero and other 
coefficients become zeroes [37]. After we recognize this fifth 
problem, we completely solve Problem 5 by Method 2 in Dec. 
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2015. Although we had observed the feature selection of 
Revised IP-OLDF by Swiss banknote data and Japanese 
automobile data that are LSD, we ignore this fact because the 
best model is an excellent model selection procedure for 
ordinary six data. In gene analysis, if we call all linearly 
separable models as Matroskas that are linearly separable 
gene subspaces, Revised IP-OLDF reduces the high-
dimension gene space, the big Matroska, to small subspace 
(SM) drastically. After we remove genes in the first SM1 
from the big Matroska, Revised IP-OLDF discriminates the 
new gene space (the second big Matroska), again. It can find 
the second different SM2. We repeat this process and locate 
the dataset that consists of the disjoint union of SMs and high-
dimension gene subspace (MNM>=1). Therefore, we 
develop Method 2. We make a program of Method 2 by 
LINGO and can list up all SMs of the six datasets very easy. 
Although many researchers have been struggling to analyze 
the high-dimension gene datasets by a statistical approach 
[55] [60], we can analyze each SM very easy because it is a 
small sample. In Section Ⅳ, we show how to find BGSs by 
manual operation and analyze one of each SM by the ordinary 
statistical approach. In Section Ⅴ,  we discuss the use and 
application of our results. 

D. Short Story of  Feature Selection 
At the end of October 2015, we presented our Theory at 

Japanese statistical conference and knew six datasets  
presented by another researcher presentation. After the 
conference, we discriminated six datasets by seven LDFs. 
Because error rates of Fisher’s LDF were very high for 
eighteen exam scores [35], it is self-evident we cannot obtain 
better results in the gene datasets. Therefore, users never use 
it for gene analysis. Although NMs of three SVMs are zero, 
all coefficients are not zero. Therefore, three SVMs are not 
helpful for the feature selection. Several coefficients of 
Revised IP-OLDF are not zero, and most of the coefficients 
are zero. It can naturally select features of the datasets within 
few seconds and reduce high-dimension genes spaces to the 
smaller subspace that is one of the Matroska. Next, when we 
discriminate the Matroska again, we can find smaller 
Matroska. Therefore, the dataset has the structure of 
Matroska. When we cannot locate the smaller Matroska 
again, we call the last subspace as the Small Matroska (SM1). 
Moreover, after we exclude the first SM1 from the dataset, 
we find the second different SM2. At last, we can list up all 
SMs by a LINGO program of Method 2 and conclude the 
dataset consists of the disjoint union of SMs and another 
high-dimension gene subspace that is not linearly separable. 
Six studies [45] - [50] include full genes lists of the SMs 
about six datasets. If we analyze all SMs, we may be able to 
obtain new facts of gene analysis. Although some 
researchers try to discriminate the dataset by LASSO based 
on variance-covariance matrices, our Theory showed only 
H-SVM and Revised IP-OLDF can discriminate LSD 
theoretically, and revealed the structure of datasets. If 
LASSO researchers compare their results with our results 
using our two ordinary data and six datasets, it is expected to 
improve the research of feature selection method more 
deeply.  

III. MATROSKA FEATURE SELECTION METHOD 
      In this section, we introduce Method 2. 

A. Outlook of Method 2 
When we discriminate Shipp et al. data [54] on Oct. 28, 

2015, only Revised IP-OLDF can select thirty-two genes 
among 7129 genes [37]. Although we misunderstand the 
discrimination having 7129 variables requests huge CPU time, 
Fisher’s LDF by JMP ver.12 (JMP12) and other MP-based 
LDFs coded by LINGO can solve the datasets less than 20 
seconds because the datasets are LSD. However, most 
coefficients of these LDFs except for Revised IP-OLDF are 
not zero. Therefore, these LDFs are not helpful for feature 
selection for gene analysis in addition to ordinary data. In this 
research, we call the smallest Matroska as the BGS with k-
variables. The biggest Matroska with 7129 variables includes 
many smaller Matroskas from 7128 (= 7129 - 1) variables to 
k variables. LINGO program found the datasets are the 
disjoint union of SMs with h-variables (p > h >= k) and 
another high-dimension gene subspace with “MNM >= 1.” 
Now, we must survey the BGSs from SM by manual operation. 
If Revised LINGO program can find all list of BGSs,we can 
understand the structure of the dataset by these BGSs 
completely. Because we can analyze each SM using ordinary 
statistical methods, we expect to obtain new facts of gene 
analysis and hope many researchers try to analyze these SMs. 
By our breakthrough, the feature selection becomes exciting 
theme.  

We guess the reason why Revised IP-OLDF can naturally 
select features as follows. 

1) MNM criterion works well for the feature selection. 
This expectation will be right if LASSO cannot list up all SMs 
or BGSs correctly as same as Revised IP-OLDF because it 
does not use MNM criterion. We consider the discrimination 
of LSD requests MNM criterion or maximization of two SVs. 

2) The algorithm of LINGO IP solve uses the branch and 
bound. We believe Revised IP-OLDF coded by another IP 
algorithm cannot naturally select features. On the other hand, 
we cannot control the flow of the branch and bound. When IP 
solver finds the model with MNM=0 at first, LINGO program 
output it and end. This treatment is the reason why LINGO 
program may not be able to find BGS directly. This research 
is our future theme. 

B. Results of Six Microarray Data 
Table Ⅰ shows the summary of six datasets. Rows 

“Description” show two classes. Rows “Size” are the case 
number by the gene number. Rows “SM: Gene” are the 
number of SM [with reference number]: the total number of 
genes including in all SMs. Six lists of full gene name are in 
the references. Rows “Min, Mean, Max” are the minimum, 
mean and maximum values of genes including in all SMs. 
Rows “JMP12” are 2 by 2 tables of the discrimination by 
Fisher’s LDF. Six NMs are 5, 3, 8, 3, 10 and 29. Rows “% 
and error rate” are the percentages of (Maximum value/case 
number) and error rates of JMP12. Maximum percent is 63% 
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by Alon et al. dataset. Minimum percent is 43% by Golub et 
al. dataset. Maximum error rate is 17% by Tian et al. dataset 
and minimum error rate is 1% by Chiaretti et al. dataset 

TABLE I.  SUMMARY OF SIX MICROARRAY DATASETS 

Data Alone et al. [1] Chiaretti et al. [2] 

Description Normal (22) vs. 
 tumor cancer (40) 

B-cell (95) vs. 
 T-cell (33) 

Size 62 *2000 128*12625 

SM: Gene 64 [47]:1152 270 [50]:5385 

Min/Mean/Max 11/18/39 9/19/62 

JMP Ver.12 20:2/3:37 94:1/2:31 

% and error rate 63%, 8% 49%, 1% 

Data Golub et al. [10] Shipp et al. [54] 

Description All (47) vs.  
AML (25)  

Follicular lymphoma 
(19) vs. DLBCL (58) 

Size 72*7129 77 *7130 

SM: Gene 69 [46]:1238 213 [45]:3032 

Min/Mean/Max 10/18/31 7/14/43 

JMP12 20:5/3:44 17:2/1:57 

% and error rate 43%, 11% 56%, 4% 

Data Singh et al. [56] Tian et al. [59] 

Description Normal (50) vs.  
tumor prostate (50) 

False (36) vs.  
True (137) 

Size 102 *12626 173 *12625 

SM: Gene 179 [48]:3990  159 [49]:7221 

Min/Mean/Max 13/22/47 28/45/104 

JMP Ver.12 46:4/6:46 16:20/9:128 

% and error rate 46%, 10% 60%, 17% 

C. Detail of the Matroska Feature Selection Method 
We explain Method 2 briefly. TableⅡis the output of 

Golub et al. dataset by LINGO program. Two columns 
“LOOP1 and LOOP2” are the sequence number of big and 
small loops of Method 2. Revised IP-OLDF discriminate the 
dataset with 7129 genes in the LOOP1=1 and LOOP2=1, and 
only 34 coefficients of Revised IP-OLDF are not zero. In 
general, this number is less than the case number such as 72. 
In the second small loop (LOOP1=1, LOOP2=2), we 
discriminate the smaller Matroska with 34 genes again, and 
only 11 coefficients are not zero. Therefore, we get the 
Matroska sequence such as Matroska7129 → Matroska34 → 
Matroska11. We stop at LOOP2=4 because we cannot find 
the smaller Matroska. We call Matroska11 as the SM1 
because Revised IP-OLDF cannot locate the smaller 
Matroska. We exclude the first SM1 with 11 genes from the 

big Matroska with 7129 genes and make the second big 
Matroska with 7118 genes. In the second big loop at LOOP1 
= 2, we get the second SM2 with 16 genes.  

TABLE II.  THE OUTLOOK OF THE THEORY 2 

SN LOOP1 LOOP2 Gene MNM 

1 1 1 7129 0 

2 1 2 34 0 

3 1 3 11 0 

4 1 4 11 0 

16 2 1 7118 0 

17 2 2 36 0 

18 2 3 18 0 

19 2 4 16 0 

20 2 5 16 0 
 

After LINGO program finds sixty-nine SMs in Table Ⅲ, it 
stops the big loop when we find MNM is greater than one at 
LOOP1=70. However, we can continue this loop until it 
cannot naturally select features and list up all small subspaces 
with “MNM >= 1.” Therefore, Method 2 can discriminate 
other types of genes datasets that are not LSD. Because Golub 
et al. dataset consists 69 SMs that are linearly separable 
models or subspaces, it is very easy for us to analyze all SMs 
because the 68th and 69th SMs are the biggest samples with 72 
cases by 31 genes.  

TABLE III.  ALL SMALL MATROSKA OF GOLUB ET AL. DATA 

LOOP1 LOOP2 Gene n MNM 35 11 6630 17 0 

1 11 7129 11 0 36 11 6613 19 0 

2 11 7118 16 0 37 11 6594 12 0 

3 11 7102 11 0 38 11 6582 16 0 

- - - - - - - - - - 

32 11 6683 19 0 67 11 5976 23 0 

33 11 6664 16 0 68 11 5953 31 0 

34 11 6648 18 0 69 11 5922 31 0 

IV. BGS AND STATISTICAL ANALYSIS 
     In this section, we introduce how to find BGS and analyze 
it. 

A. How to find BGSs 
Because we cannot control the flow of branch and bound 

algorithm, there may be several BGSs in the SM. We propose 
how to find BGSs by manual operation as follows: 

1) To find the smaller linear separable model in SM 
We analyze the first SM1 with 11 genes by the forward 

stepwise procedure and obtain the five columns from ‘Step’ to 
‘BIC’ in Table Ⅳ . The last column is NM of logistic 
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regression. Although there is no theoretical guarantee that 
logistic regression can discriminate LSD correctly [5], we 
judge it discriminates LSD correctly under the condition of 
“MNM=0 and NM=0”. Therefore, we can judge BGS exists 
among all combination models in four genes subspace [11]. 
We know the four-variable model is linearly separable. Cp, 
AIC and BIC recommend this model. Usually, these three 
statistics recommend the different models by our many trials. 

TABLE IV.  FORWARD STEPWISE AND LOGISTIC REGRESSION. 

Step Gene Cp AIC BIC logistic 

1 M11722_at 72.56  137.78  144.26  5 

2 X59871_at 38.42  118.62  127.13  2 

3 U05259_rna1_at 9.92  96.07  106.54  2 

4 D21063_at 3.88  90.15  102.52  0 

5 M22919_rna2_at 3.80  90.30  104.49  0 

6 M21624_at 4.27  91.09  107.02  0 

7 M25280_at 4.63  91.79  109.38  0 

8 L13210_at 6.15  93.93  113.09  0 

9 X82240_rna1_at 8.02  96.56  117.21  0 

10 HG3039-HT3200_at 10.01  99.44  121.47  0 

11 L76159_at 12.00  102.41  125.73  0 

TABLE V.  FIFTEEN MODEL BY FOUR GENES 

p X1 X2 X3 X4 ｃ MNM ZERO 

4 1 1 1 1 1 0 0 

3 1 1 1 0 1 1 0 

3 1 1 0 1 1 1 0 

3 1 0 1 1 1 3 0 

3 0 1 1 1 1 2 0 

2 1 1 0 0 1 2 0 

2 1 0 1 0 1 4 0 

2 0 1 1 0 1 3 0 

2 1 0 0 1 1 4 0 

2 0 1 0 1 1 13 0 

2 0 0 1 1 1 6 0 

1 1 0 0 0 1 5 0 

1 0 1 0 0 1 25 0 

1 0 0 1 0 1 10 0 

1 0 0 0 1 1 17 0 

2) Search BGSs by all possible combination models 
We search BGSs by all possible combination models 

using Revised IP-OLDF. Table Ⅴ is the 15 models by four 

genes that are four combinations of 0/1 values from the 
second column to the fifth column. Column “c” is the 
intercept of Revised IP-OLDF. The column “p” is the number 
of independent variables from four-variable model (p=4) to 
four one-variable models (p=1). The binary values, such as 
1/0, mean each model include or not include four variable in 
the model. Column “MNM” is MNM of 15 models. Column 
“ZERO” is the number of cases on the discriminant 
hyperplane. Only full model is linearly separable. Therefore, 
we find one BGS in the first SM, such as (X1: M11722_at, 
X2: X59871_at, X3: U05259_rna1_at, X4: D21063_at). All 
MNMs including these four genes are linearly separable in 
Golib et al. dataset.  Therefore, although there are numerous 
Matroskas in the dataset, we can understand the structure of 
Matroska by BGS because of the monotonic decrease of 
MNM. The big Matroska with 7129 genes includes numerous 
smaller Matroska from 7128 genes to four genes. Although 
there are 7129 subspaces with 7128 genes, there are 7125 
smaller Matroska with 7128 genes and four subspaces with 
7128 genes that are not Matroska. By monotonic decrease of 
MNM, we can completely understand the structure of 
Matroska. It is hard for us to analyze the dataset by the 
ordinary statistical methods without knowledge of this fact. 

B. How to analyze each SM 
Figure 1 is the output of principal component analysis 

(PCA). Left figure is the eigenvalues. Two eigenvalues are 
greater than one and contribution ratio is about 0.75. The 
middle figure is the scatter plot.  The symbol + are “AMLs” 
that are in the third quadrant. Forty-seven cases of “ALL” are 
situated in the fourth, first and second quadrant. The right plot 
is the factor loading plot. “M11722_at” is overlapped on the 
first component and “X59871_at” is overlap on the second 
component. It is very important for specialists of gene 
analysis to consider the reason why two groups are 
orthogonal. We expect specialists of gene analysis to examine 
the meaning of statistical outputs of SMs. 
 

 
Figure 1.  The principal component analysis. 

 
Figure 2 is two score plots. X-axis is the first component. 

Y-axis of left and right score plots correspond the second 
component and the third component. Because PCA cannot 
separate two classes, ordinary statistical analysis such as one-
way ANOVA, cluster analysis, and PCA cannot conclude 
clear results for the datasets directly. Jeffery et al. compared 
the efficiency of the ten feature selection methods using 
conventional statistical approaches. It tells us the limitation 
of conventional statistical methods.  
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  Figure 2.  Two score plots. 

 
Table Ⅵ is the correlation matrix. The absolute correlations 
of “X59871_at” with other three genes are less than 0.088 
that are the same result as the factor loading plot.  

TABLE VI.  CORRELATION MATRIX. 

Var. X1 X2 X3 X4 
M11722_at 1 0.076 0.713 0.371 
X59871_at 0.076 1 -0.088 0.052 
U05259_rna1_at 0.713 -0.088 1 0.220 
D21063_at 0.371 0.052 0.220 1 

V. CONCLUSION 
We developed Theory, Method 1 and Method 2. Revised 

IP-OLDF solves Problem 1, Problem 2 and Problem 5. 
Moreover, the best models of Revised IP-OLD are better than 
another seven LDFs. Although H-SVM discriminate LSD 
correctly, it cannot naturally select features for six datasets. 
Because Problem 3 is the defect of the generalized inverse and 
error rates of Fisher’s LDF and QDF are very high for LSD, 
we guess the discriminant analysis and regression analysis 
based on variance-covariance matrices may not be helpful for 
gene analysis. Although the discriminant analysis is not the 
traditionaly inferential statistical method, Method 1 offers the 
95% CI of error rate and discriminant coefficient and the 
validation of Revised IP-OLDF by six ordinary data. In this 
paper, we do not discuss the validation of six microarray 
datasets. However, because Method 1 validated already six 
ordinary data, we will validate the results of six microarray 
datasets in near future. Because the best model is powerful 
model selection procedure for ordinary data, we ignore some 
parameters of Revised IP-OLDF are zeroes in ordinary data. 
Because other LDFs cannot naturally select features, they may 
be difficult for gene datasets. If we can develop Revised 
LINGO program that can find all BGSs, it will be more useful 
in gene analysis. LINGO program is useful for other gene 
dataset, such as RNA-Seq., in addition to the six datasets. 
Although we surveyed to clarify the long-term survivors of the 
Maruyama vaccine (SSM) administration patients, our trial 
failed [22]. If we compare two lists of cancer genes, (normal 
and cancer patient data) vs. (normal and SSM Administration 
patient data), and find the differences between two gene lists, 
it may show the proof of the effectiveness of SSM. Now, we 
plan this new theme and have proposed a joint research with 
the inspection agency of microarray in Japan. 

We would like to propose a joint research with medical 
doctors in the world. 
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