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Abstract—We argue that virus-host interactions mediated by
short linear motifs can be used to analyze common viral attack
strategies. In this direction we develop a method for predicting
interactions between human protein-synthesis machinery and
viral proteins mediated by linear motifs in order to study
common protein-synthesis subversion strategies. The method
consists in finding viral instances of host linear motifs. We filter
these instances by conservation in viral sequences, location in
protein disordered regions and scarcity in randomized protein
sets. With the filtered motifs we deduce virus-host interactions
using the motif-domain associations in the Eukaryotic Linear
Motifs (ELM) database. We validate the results against the
Linear Motif mediated Protein Interaction Database (LMPID)
and obtain a network of interactions between the human protein-
synthesis machinery proteins and viruses influenza AH1N1,
Dengue1, Ebola, MERS, Rotavirus, WestNile, and Zika.

Index Terms—virus; host; protein; interaction; short; linear;
motif; prediction; eukarya; protein-synthesis; subversion

I. INTRODUCTION

The objective of this paper is to present a work in progress
for predicting virus-host protein-protein interactions (VHPPIs)
between several viruses and the human protein-synthesis ma-
chinery (HPSM) mediated by short linear motifs (SLiMs). Our
motivation to conduct this study is to unveil common viral
strategies to subvert protein translation.

There is no known virus that encodes a complete protein-
synthesis system. This implies that viruses are forced to
use the HPSM to translate their messenger RNA (mRNA)
into products: microRNA (miRNA), peptides and proteins.
Viruses must control the HPSM and disrupt innate host defense
systems capable of disabling protein synthesis [1].

The control and disruption of host signaling pathways is
conducted through VHPPIs like the ones DNA viruses engage
with the PI3K–Akt–mTOR pathway (phosphatidylinositol 3-
kinase-Akt-mammalian target of rapamycin) [2]. The conse-
quences of VHPPIs can be as significant as the shutdown of
host protein synthesis done by Rotavirus protein NSP3 [3].

There are open questions about the viral control of the
HPSM like the role of phosphorylation in activity of protein
eIF4E and how viral mRNA is preferentially translated [4].
These questions could be investigated with a systems biology
approach.

Systems biology uses VHPPIs for the discovery of infection
mechanisms [5]. However, the scarcity of virus-host PPIs with
experimental evidence is an obstacle to system approaches [6].
This lack of data has encouraged the development of VHPPI
prediction methods.

VHPPI prediction methods have been mostly based on ma-
chine learning classifiers like random forests [7] and support
vector machines [8]–[10]. Most of these classifiers use protein
sequences and other features like gene ontology (GO) function
and gene expression as inputs to infer the interactions because
structural data for viral proteins is scarce [11].

There are other prediction methods like information inte-
gration [12], asking experts [13], literature mining [14] and
focusing on PPIs mediated by SLiMs [15].

We focus our study on SLiM-mediated interactions. The
inference of this kind of interactions is guided by biological
hypotheses like the conservation of motifs and localization of
motifs in protein disordered regions.

Recently, the role of SLiMs has been studied in a wide set
of viruses. These pathogens use SLiMs extensively as means
to interact with host proteins [16]. Human proteins targeted
by viruses have a high number of SLiMs [17].

If virus-host PPIs are divided in domain-motif interactions
(DMI) and domain-domain interactions (DDI), DMI are the
predominant ones. Furthermore, DMI are used by several
viruses while DDI are virus-specific [17]. This supports our
use of SLiMs as a way to find common viral subversion
strategies.

Eukaryotic organisms use SLiM instances as as mechanisms
to tune the regulation of multi-protein complexes. These
instances are short, allowing viruses to evolve them de novo
and retain them if they are useful to disrupt o subvert a host
protein complex [18]. If the SLiM instances are encoded in
different host genomic locations, the viral evolution of SLiM
instances is robust in a virus-host coevolutionary arms race
[19].

SLiMs are represented computationally as regular expres-
sions like PxIxIT for the PCNA-binding PIP box motif of
Flap endonuclease 1 (FEN1), where the x stands for any amino
acid. A SLiM instance is a subsequence in a protein that
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matches the regular expression, like PRIEIT in the human
protein NFATC1 [18].

Viral instances of regular expressions representing host
SLiMs can be found by chance. For this reason, filtering
methods of viral instances must be implemented.

Evans et al. find that HIV-1 instances of human SLiMs are
significantly conserved in HIV-1 proteins [15]. They propose
a criterion to filter SLiMs if they are conserved above a 70%
in the available viral sequences.

Hagai et al. propose two criteria to filter SLiMs: the first is
based on SLiM location in protein disordered regions and the
second in SLiM rarity in a big set of randomized (chimeric)
proteins [16]. A SLiM is judged as rare, or hard to form by
pure chance, if it is counted in less than a fraction of the
sequences in the set of randomized proteins, e.g. 1% of the
sequences.

We implement a combinaion of filtering criteria: 1) conser-
vation, 2) location in disordered region and 3) difficulty to
find the SLiM by chance. Our contribution is computational,
the development of a platform to predict SLiM-mediated
interactions that can be generalized to other subsystems and
hosts. The clear limitation of our platform is our reliance on
the ELM motifs database that makes the method appropriate
for eukaryotic hosts only.

The organization of this paper is as follows. In Section III
we present the results or our work. In Section II we describe
the computational methods used and the Section IV contains
the conclusion and directions for further research.

II. METHODS

Algorithmically, the prediction of SLiM-mediated VHPPI
we propose is divided into: 1) collecting regular expressions
representing SLiMs in the HPSM proteins, 2) finding instances
of the collected SLiMs in viral proteins, 3) filtering the
instances, 4) infer VHPPIs using SLiM instances in viral
proteins and counter domains (CDs) in host proteins.

In order to complete the phases enumerated above we: 1)
use the ELM database as a catalog of SLiMs [22], 2) imple-
ment software to find SLiM instances in protein sequences,
3) develop three filtering criteria described below, and 4) use
the SLiM-domain associations in the ELM database together
with Pfam protein-domain associations to infer protein-protein
interactions [23].

A. Sequences and disorder prediction

HPSM proteins are taken from reference [1] and the Ri-
bosomal Protein Gene database (RPG) [24]. All proteins are
mapped to Uniprot identifiers in order to match protein entries
in the ELM database [25].

Viruses are selected for their availability of protein se-
quences in the National Center for Biotechnology Informa-
tion (NCBI) viral genomes resource: Dengue virus, West
Nile virus, Middle East Respiratory Syndrome coronavirus
(MERS), Ebolavirus, Rotavirus and Zika virus [26]. For in-
fluenza we choose type A, subtype H1N1, for Dengue we
choose type 1, for Ebola the Zaire species.

We download every viral protein for each virus. For all
viruses, we set the parameter region as any, the parameter
“Full-length sequences only” to true and the parameter host as
human. For Influenza AH1N1 proteins we set the parameter
collapsed sequences, with the exception of proteins M1,M2
and NS2 for which the collapsed sequences option was deac-
tivated.

For viruses Dengue type 1, West Nile and Zika the NCBI vi-
ral genomes resource gives the complete polyprotein sequence
that must be manually cleaved. The viral reference genomes
stored in Genbank files are computationally translated to
protein sequences that are used as reference for cleaving the
polyprotein into viral proteins.

Disorder prediction is computed with IUPred [27]. We
develop a wrapper to call IUPred on each protein sequence
to compute the disordered regions with a sliding-window
algorithm proposed by Hagai et al. [16].

B. SLiMs

We download all the SLiMs, instances and interactions from
the ELM database and create a SLiM dictionary indexed by the
ELM unique identifiers containing the SLiM name, class and
its full regular expression [28]. We develop scripts to compute
for a set of sequences: the number of sequences with a given
SLiM, the number of SLiM instances per protein, the number
of SLiMs conserved above a percentage of sequences (set C)
and the number of SLiMs in disordered regions (set D).

We write a script to randomize viral sequences. For each
sequence in a protein file, we create 1000 shuffled versions
randomizing the residues located in disordered regions of the
sequence, as computed with IUPred. Then, we counted the
rare (scarce) SLiMs in these shuffled data sets, i.e. the SLiMs
that are found in 1% of the randomized sequences or less (set
R).

Finally, we use the scripts to generate the sets C,D and
R for every viral protein using all the SLiMs in the ELM
database.

C. Interactions

We compute the SLiM instances in viral proteins for all
the human SLiM regular expressions in the set C ∪ D ∪ R.
With the SLiM instances we infer PPIs between humans and
the corresponding virus using the SLiM-domain associations
in the ELM database and the protein-domain associations in
the Pfam database [23]. We validate the interactions obtained
with the LMPID database [29].

D. Analysis of the interactions

The PPIs inferred are analyzed statistically. The proteins in
the HPSM are sorted by the number of interactions predicted
with viral proteins. The viral proteins are classified by the
number of interactions with different human proteins.

We classify the interactions as tentatively disrupting or
bridging the human protein-protein interaction network. A
viral protein that interacts with only one protein in the HPSM
probably disrupts a pathway, while a viral protein that interacts
with two or more HPSM proteins probably wires a new path.
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TABLE I
NUMBER OF INTERACTIONS PREDICTED WITH VIRAL PROTEINS

Human HPSM protein Interactions with viral proteins
EIF4A1 30
EIF4A2 30
EIF4A3 30
EIF3B 44
EIF3G 44
PABPC5 44
PABPC1 50
PABPC3 50
PABPC4 50
EIF4E 55
EIF4E1B 55
EIF4E2 55
EIF4E3 55
EIF3I 78

Fig. 1. Protein-protein interaction network predicted for protein-synthesis and
viral proteins. Human protein-synthesis proteins are represented as ellipses and
viral proteins as boxes. Boxes are colored differently for each virus.

The disrupting or wiring interactions are contrasted with
the information in the KEGG pathway database [21] and gene
ontology [20].

III. RESULTS

There are only two kinds of human proteins in the HPSM
targeted by the selected viruses: 1) eukaryotic Initiation Fac-
tors (EIF*), 2) polyadenilate-binding proteins (PABPC*). No
cytoplasmic ribosomal proteins or components of the ribo-
somal units are predicted to interact with the viral proteins.
The number of interactions with viral proteins for the targeted
proteins is reported in Table I.

Targeted proteins EIF3B, EIF3G and EIF3I belong to the
module A of the EIF3 complex involved in the recruitment of
the 43S ribosomal complex at the translation initiation phase.

Proteins EIF4A1, EIF4A2, EIF4A3, EIF4E, EIF4E1B,
EIF4E2 and EIF4E3 are part of the EIF4 complex that binds
to capped mRNAs in the translation initiation phase.

Finally, proteins PAPBPC1, PAPBPC3, PAPBPC4 and
PAPBPC5 bind to the tail (end) of mRNAs recognizing
poly(A) regions. This helps to mRNA circularization.

We obtain a network of interactions between human proteins
in the HPSM subsystem and the proteins of the selected viruses
represented in Figure 1.

We present two degree distributions for the network, one for
the human proteins with respect to the number of interactions

TABLE II
DEGREE DISTRIBUTION FOR HUMAN PROTEINS

Human protein degree Number of proteins
30 3
44 3
50 3
55 4
78 1

TABLE III
DEGREE DISTRIBUTION FOR VIRAL PROTEINS

Viral Degree Number of proteins
1 16
4 1
5 11
7 5
8 5

10 1
11 11
14 27

with viral proteins in Table II, and other for viral proteins with
respect to the number of interactions with human proteins in
Table III. For human proteins there is a clear hub, the protein
EIF3I, predicted to interact with 78 viral proteins through
SLiMs, but the other proteins have a large degree, Table II.
On the other hand, there are 27 viral hub proteins that have
14 interactions with human proteins, Table III.

We classify the viral proteins in two groups: 1) the ones
that have only one interaction with human proteins, poten-
tially disrupting the protein-synthesis process and 2) the ones
that have two or more interactions with human proteins,
potentially bridging unexpected interactions between human
protein-synthesis proteins or proteins in other pathways. These
first group of potentially disrupting proteins is presented in
Table IV and the viral hubs are presented in table V.

We find that the protein EIF3I, the Eukaryotic translation
initiation factor 3 subunit I is the hub of the HPSM system,
with 78 interactions. EIF3I is involved in the formation of
translation preinitiation complex, regulation of translational

TABLE IV
VIRAL PROTEINS WITH ONE INTERACTION (POTENTIALLY DISRUPTING)

Virus Viral protein
Zika PR

MERS NS5
Rotavirus NSP6
WestNile C
Dengue1 NS4B
Dengue1 NS4A
WestNile C-anchored
Dengue1 M
WestNile M
Dengue1 NS2A
MERS E

WestNile NS4A
WestNile NS4B

Zika C
AH1N1 NS2

Zika Canchored
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TABLE V
VIRAL HUB PROTEINS (POTENTIALLY BRIDGING)

Virus Protein
AH1N1 NP
AH1N1 M1
AH1N1 NS1
AH1N1 PA
AH1N1 PB1
AH1N1 PB2
Dengue1 NS3
Dengue1 NS5

Ebola GPspike
Ebola MA
Ebola NP
Ebola NPminor
Ebola POL
Ebola POLc
MERS N
MERS ORF1AB

Rotavirus NSP4
Rotavirus NSP5
Rotavirus VP2
Rotavirus VP4
WestNile E
WestNile NS1
WestNile NS3
WestNile NS5

Zika NS1
Zika NS3

initiation and assembly of the eukaryotic 48S preinitiation
complex [20]. The EIF3I protein is in the hsa03013 RNA
transport KEGG pathway, in which it is part of a multifactor
complex with EIF1, EIF2 and EIF5 [21].

We tried to validate the interactions found against the
LMPID database but did not found any candidate interaction
there. Perhaps the coverage of SLiM-mediated VHPPIs is too
limited at the moment.

IV. CONCLUSION AND FUTURE WORK

We propose the prediction of SLiM-mediated host-virus
PPIs between the human HPSM and some selected viruses.
Further analysis of the interactions obtained might yield clues
about common viral strategies for subverting protein transla-
tion.

Our main contribution is the combination of SLiM filtering
methods. Having a general implementation of SLiM finding
and filtering allows that the methods can be extended to other
subsystems like the interferon [30] and apoptosis proteins [31]
to investigate viral infection mechanisms at different stages.
The methods can even be used with non-human eukaryotic
hosts.
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