
Dynamic Emotion Analysis in Piano Music Based on Performance Techniques
Recognition

Yueyan Wu
School of Science and Engineering

the Chinese University of Hong Kong, Shenzhen
Shenzhen, China

e-mail: 121090620@link.cuhk.edu.cn

Clement Leung
School of Science and Engineering

the Chinese University of Hong Kong, Shenzhen
Shenzhen, China

e-mail: clementleung@cuhk.edu.cn

Abstract—The relationship between music and emotion has
always been essential in musicology and psychology. This study
aims to automatically identify the playing technique in piano
performance through deep learning technology and analyze its
influence on the dynamic change of emotion. We propose a
technique recognition method based on a deep Convolutional
Neural Network (CNN), which can accurately identify different
techniques (such as octave, vibrato, glissando, etc.). In addition,
we design a simple temporal analysis model to analyze the
evolution of emotion over time based on the dynamic change
of playing technique. The experimental results show that the
identification of playing techniques achieves nearly 86% accuracy,
outperforming traditional methods, and specific playing techniques
are significantly related to certain emotions. There are also results
on the dynamic emotion analysis task. This study not only provides
a new perspective and method for the field of music emotion
recognition but also provides a new tool and method for music
analysis and music education.

Keywords-Performance Techniques Recognition; Convolutional
Neural Network (CNN); Music Emotion Recognition (MER).

I. INTRODUCTION

Music, as a vital part of human culture, has long been
regarded as a ’language of emotions’ [1]. Therefore, it is natural
to associate music with emotions and classify it based on
emotional content. Music Emotion Recognition (MER) refers
to the use of computers to extract and analyze music features,
establish mapping relationships between these features and
emotion spaces, and recognize the emotions expressed in music
[2]. In recent years, significant progress has been made in MER,
especially with the development of deep learning techniques.
For instance, a bimodal Deep Belief Network (DBN) model
that combines audio and lyrics has shown improved accuracy
in emotion recognition [3].

Additionally, Convolutional Neural Networks (CNNs) have
become widely used in Music Emotion Recognition (MER)
due to their ability to automatically extract music features,
reducing the need for manual feature extraction [4]. Liu et al.
transformed the audio signal into a spectrogram using Short-
Time Fourier Transform (STFT), which was then processed
through convolution, pooling, and hidden layers, followed
by Softmax for emotion prediction. The innovation of the
method is that the use of CNN reduces the burden of artificial
feature extraction and uses convolution to capture local time
and frequency patterns in the spectrogram. However, a major

drawback is that it is difficult to interpret which features are
most relevant to identifying the emotions in the music [5].

Despite the growing body of research on music and emo-
tion, much of the existing work primarily focuses on lyrics,
volume, and dynamics, with little attention given to how
performance techniques affect the emotional expression of
music. Performance techniques, such as vibrato, glissando,
and arpeggio, play a crucial role in shaping the emotional
content of a musical piece. For example, vibrato is often
associated with expressiveness and tension, while glissando
can evoke a sense of excitement or anticipation [6]. However,
the relationship between specific performance techniques and
emotional expression remains underexplored, particularly in
the context of dynamic emotion analysis. Most studies rely
on holistic emotion assessments, overlooking the temporal
evolution of emotions within individual audio segments. This
gap in the literature limits our understanding of how emotions
fluctuate over time in response to different performance
techniques.

Furthermore, existing methods for performance technique
recognition face significant challenges. Traditional approaches,
such as spectral analysis and cepstral analysis, can detect
fundamental frequencies and harmonics but are limited by
trade-offs between time and frequency resolution [7]. Moreover,
harmonic relationships in Western music can cause spectral
overlap, reducing the accuracy and reliability of recognition.
Recent advances in deep learning, such as CNNs and Long
Short-Term Memory Networks (LSTMs), have shown promise
in capturing complex performance gestures by integrating
performance gestures and timbral information [8]. However,
these methods still face two major challenges: (1) the lack
of datasets with annotated performance technique labels, and
(2) the complexity and time-consuming nature of integrating
non-audio factors, such as performer gestures and contextual
information.

This study aims to address these gaps by proposing a deep
learning model that not only automatically identifies various
performance techniques in piano music but also analyzes how
these techniques influence dynamic emotional changes over
time. Our approach leverages a CNN to recognize performance
techniques and a temporal analysis model to track the evolution
of emotions within segmented audio clips. By combining
these two components, we provide a novel framework for
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understanding the dynamic interplay between performance
techniques and emotional expression in piano music.

The remainder of this paper is organized as follows: Section 2
outlines the proposed method and model architecture. Section 3
presents the experimental results and data analysis, and Sections
4 and 5 conclude the paper with a summary of findings and
future directions for research.

II. RELATED WORK | METHODS

A. Data Preprocessing

Data preprocessing steps have been applied to ensure the
consistency, quality, and efficiency of the audio data used in
our analysis.

1) Data Format Conversion
To ensure consistency and quality, all audio files were

converted to WAV format, a widely supported, uncompressed
format that guarantees high-quality, lossless audio representa-
tion. The following standardization steps were applied:
• Sampling Rate: All audio files were resampled to 44.1 kHz

to balance quality and computational efficiency.
• Bit Depth: Audio files were stored with a 16-bit depth to

preserve quality while maintaining manageable file sizes.
• Mono Channel: Audio was converted to mono format to

eliminate potential issues from stereo channels.
This standardization ensured compatibility with the feature

extraction and neural network training pipelines.
2) Audio Segmentation
To improve recognition accuracy, the audio files were divided

into segments of 1.5 seconds and 3 seconds, chosen based on
the characteristics of the relevant performance techniques:
• 1.5-second segments: Used for techniques like glissando

and octave, which typically occur rapidly within a short time
frame.

• 3-second segments: Used for techniques like arpeggios and
vibrato, which generally involve longer durations and require
more time to capture fully.
This dual-segmentation strategy accommodates the unique

temporal characteristics of different performance techniques,
enhancing the model’s recognition capabilities.

3) Data Augmentation
To enhance the model’s generalization and robustness, two

data augmentation techniques were applied:
• Time Shifting: Each audio sample had a 50% chance of

being shifted randomly along the time axis by -500 to +500
samples, simulating different starting points.

• Adding Gaussian Noise: Each audio sample had a 50%
probability of having Gaussian noise added, with a stan-
dard deviation of 0.5% of the original signal’s amplitude,
simulating real-world noisy conditions.

B. Performance Techniques Recognition Model

The model aims to accurately identify piano performance
techniques, such as glissando, vibrato, octave, and arpeggio,
using state-of-the-art machine learning and deep learning
techniques. The recognition process involves data collection,
feature extraction, model training, and evaluation.

1) Data Collection
We built the dataset by collecting additional audio samples

using the following methods:
• Online Audio Collection: We gathered audio recordings

from online platforms such as YouTube and audio libraries.
These recordings specifically highlight piano performance
techniques, including glissando, octave, arpeggio and vibrato.

• Self-recorded Data: We also recorded our own piano
performances, specifically designed to feature the techniques
listed above.
2) Feature Extraction
Feature extraction is a critical step in our audio classification

pipeline, where both static and dynamic features are extracted
from raw audio signals to capture spectral and temporal
information. Specific methods are applied for each playing
technique—glissando, vibrato, octave, and arpeggio—based on
their unique characteristics.

a) Mel-Spectrogram
To obtain a time-frequency audio signal representation, we

utilize the Mel-spectrogram, computed with a sampling rate of
22,050 Hz and 128 Mel bands. The Mel-spectrogram transforms
the audio signal into the Mel scale, which aligns more closely
with human auditory perception.

Mel-spectrogram(y, sr = 22050, n_mels = 128) (1)

b) Decibel Conversion
We convert the power spectrogram to decibel (dB) units to

enhance the dynamic range of the Mel-spectrogram, using the
following transformation:

Mel-spectrogramdB = 10 · log10(Mel-spectrogram + ϵ) (2)

where ϵ is a small constant (e.g., 10−6) to avoid taking the
logarithm of zero. This conversion normalizes the amplitude
variations, making the spectrogram more suitable for neural
network training.

c) Glissando Feature Extraction
Glissando is a playing technique characterized by rapid

and continuous pitch changes within a short time frame. To
capture these dynamic changes, we extract Delta and Delta-
Delta features from the Mel-spectrogram:
• Delta Features: Calculated as the first-order temporal

derivative of the Mel-spectrogram to capture the rate of
change in spectral features.

∆X(t) = X(t+ 1)−X(t) (3)

• Delta-Delta Features: Calculated as the second-order tem-
poral derivative of the Mel-spectrogram to capture the
acceleration of changes in spectral features.

∆2X(t) = ∆X(t+ 1)−∆X(t) (4)

d) Vibrato Feature Extraction
Vibrato is a technique involving slight and continuous pitch

fluctuations over a longer duration. To effectively recognize
vibrato, we extract frequency modulation features based on the
Mel-spectrogram:
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• Modulation Frequency Features: The modulation frequency
refers to the rate at which pitch fluctuates over time, while
the modulation amplitude describes the extent of these
fluctuations, helping to capture the distinctive characteristics
of vibrato in musical performance.

Modulation Frequency =
df

dt
(5)

e) Octave Feature Extraction
Octave playing involves the simultaneous occurrence of two

notes separated by an octave. To capture the frequency rela-
tionships between these notes, we employ harmonic spectrum
features:
• Harmonic Analysis: We apply harmonic decomposition

methods to extract the harmonic components of the audio
signal, analyzing the relationships between harmonic fre-
quencies.

Harmonic Components(t) =
N∑

k=1

Ak · sin(2πkf0t) (6)

f) Arpeggio Feature Extraction
Arpeggio involves playing the notes of a chord in sequence

rather than simultaneously. The main features we extract for
arpeggio detection include Delta, Delta-Delta Features and
Time Interval Features.
• Time Interval Features: The time interval features are

calculated by detecting the onset of each note in the arpeggio
and computing the time intervals between successive onsets.

g) Feature Stacking and Normalization
For each playing technique, we stack the extracted features

to form a multi-channel input tensor. For example, glissando
features include the Mel-spectrogram, Delta, and Delta-Delta
features. Figure 1 shows an example of glissando features.
Similarly, for vibrato, octave, and arpeggio, we stack the
respective features accordingly. All features are standardized
before stacking to ensure zero mean and unit variance, which
stabilizes the training process and accelerates convergence.

Feature Stacking: For example, glissando features are
stacked as follows:

Mel combined = Stack(Mel-spectrogramdB,∆,∆2) (7)

This results in a tensor of shape [3, 128, 65], where 3 channels
correspond to the Mel-spectrogram, Delta, and Delta-Delta.128
Mel bands represent the frequency dimension. 65 frames
represent the temporal dimension.

For other techniques, the stacking procedure is similar, with
the number of channels adjusted based on the features extracted.
For instance, vibrato features may include Mel spectrograms
and frequency modulation features, resulting in a 2-channel
input tensor, while octave and arpeggio may use 4 channels,
incorporating Mel spectrograms, harmonic features, and time-
related features.

Normalization: After stacking the features, we normalize
them to ensure all input features are on a similar scale:

Mel combined =
Mel combined − µ

σ + ϵ
(8)

Figure 1. Example of glissando features.

where µ is the mean and σ is the standard deviation of the
combined features across the dataset, and ϵ is a small constant
(e.g., 10−6) to avoid division by zero.

3) Model Architecture and Loss Function
We designed four Convolutional Neural Networks (CNN) to

recognize different piano performance techniques, including
glissando, vibrato, arpeggio, and octave. The architecture of
the model consists of several sequential layers. For specific
details of Vibrato detection, refer to Table I.

TABLE I
CNN ARCHITECTURE FOR BINARY CLASSIFICATION (GLISSANDO

DETECTION)

Layers Operator Input Size Output Size
Conv1 Conv2D 3× 3 3× 128× 65 32× 128× 65
MaxPool MaxPool 2× 2 32× 128× 65 32× 64× 32
Conv2 Conv2D 3× 3 32× 64× 32 64× 64× 32
MaxPool MaxPool 2× 2 64× 64× 32 64× 32× 16
Conv3 Conv2D 3× 3 64× 32× 16 128× 32× 16
MaxPool MaxPool 2× 2 128× 32× 16 128× 16× 8
Conv4 Conv2D 3× 3 128× 16× 8 256× 16× 8
MaxPool MaxPool 2× 2 256× 16× 8 256× 8× 4
AAP AdaptiveAvgPool 256× 8× 4 256× 1× 1
Flatten Flatten 256× 1× 1 256
FCL1 Fully Connected 256 128
ReLU, Dropout Dropout 128 128
FC1 Fully Connected 128 1

a) Convolutional Layers
The model utilizes a series of convolutional layers that

applies filters to the input feature maps. Each convolutional
layer is followed by a Batch Normalization layer and a Rectified
Linear Unit (ReLU) activation function to improve convergence
and introduce non-linearity. The operation for a convolutional
layer can be described as:

Hi = ReLU (BatchNorm(Conv2D(Xi−1,Wi, bi))) (9)

where Xi−1 is the output of the previous layer, Wi and bi are
the weights and bias of the i-th convolutional layer, and Hi is
the output of the convolutional layer.

b) Pooling Layers
After each convolutional block, max pooling is applied to

reduce the spatial dimensions of the feature maps while pre-
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serving the most relevant features. The max pooling operation
can be described as:

Hpool
i = MaxPooling(Hi) (10)

where Hi is the feature map after convolution, and Hpool
i is

the output of the pooling layer.
c) Adaptive Pooling

An adaptive average pooling layer is applied at the end of
the convolutional layers to reduce the feature map to a fixed
size, regardless of the input dimensions. The adaptive pooling
operation is:

Hfinal = AdaptiveAvgPool2d(Hpool) (11)

where Hpool is the pooled feature map, and Hfinal is the fixed-
size output feature map.

d) Fully Connected Layers
After the feature maps are extracted, they are flattened into

a one-dimensional vector and passed through fully connected
layers. The output of the fully connected layer can be written
as:

z1 = ReLU(W1 ·Hfinal + b1) (12)

where W1 and b1 are the weights and bias of the first fully
connected layer, and z1 is the output of this layer. The second
fully connected layer produces the final output:

z2 = W2 · z1 + b2 (13)

and the final classification output is obtained using a sigmoid
activation:

ypred = Sigmoid(z2) (14)

e) Output Layer
The final output of the model is a probability value between

0 and 1, indicating whether a specific performance technique
(such as vibrato, glissando, etc.) is present in the audio segment.

f) Loss Function
The model is trained using the binary cross-entropy loss,

which is appropriate for the binary classification task of
detecting the presence or absence of a musical technique. The
binary cross-entropy loss can be defined as:

L = − (y log(ŷ) + (1− y) log(1− ŷ)) (15)

where y is the ground truth label (0 or 1), and ŷ is the predicted
probability of the model. This loss function is minimized during
training using optimization algorithms like Adam [9].

C. Correlation Analysis between Performance Techniques and
Emotions

In this section, we describe the methodology used to analyze
the relationship between various piano performance techniques
and the emotional expressions conveyed through the audio
data. The goal of this analysis is to understand how different
performance techniques, such as glissando, tremolo, arpeggio,
and octave, influence emotional expression, based on musical
features such as pitch, rhythm, and dynamics.

1) Emotion Labeling using GEMS (Geneva Emotional Music
Scales)

For emotion labeling, we employed the Geneva Emotional
Music Scales (GEMS), a comprehensive model specifically
designed for music-induced emotion. GEMS includes 45
emotional tags, which are divided into nine distinct categories
[8]:
• Amazement, Solemnity, Tenderness, Nostalgia, Calmness,

Power, Joyful Activation, Tension, and Sadness.
Emotion labels for the performance techniques were man-

ually annotated by professional musicians with expertise in
emotional interpretation in music. These musicians listened to
the performances techniques and assigned appropriate emotion
labels based on their auditory perception of the emotional
content.

2) Pearson Correlation Analysis
To explore the relationship between performance techniques

and emotional expression, we performed a Pearson correlation
analysis. Pearson’s correlation coefficient (r) quantifies the
linear relationship between two variables, ranging from −1
to +1, where +1 indicates a perfect positive correlation, −1
indicates a perfect negative correlation, and 0 indicates no
linear relationship.

We calculated the Pearson correlation coefficient between
the following variables:
• Performance Techniques: Glissando, tremolo, arpeggio, and

octave.
• Emotions: Amazement, Solemnity, Tenderness, Nostalgia,

Calmness, Power, Joyful Activation, Tension, and Sadness.
The Pearson correlation coefficient for each pair indicates

the strength and direction of the relationship between each
performance technique and the corresponding emotional ex-
pression. A positive correlation suggests that the performance
technique is associated with the emotion, while a negative
correlation suggests the opposite.

D. Dynamic Emotion Analysis

Dynamic emotion analysis aims to capture the temporal
evolution of emotional expression in piano performances.
Given the segmented audio clips, each representing a 3-second
segment, we analyze the emotional changes as a function of
the performance techniques detected in the audio.

To quantify emotional progression, each audio clip was
assigned an emotion vector based on a specific performance
technique, and the emotion vector of each clip was tracked
throughout the performance. Finally we visualized the temporal
progression of emotions to show how emotional intensity
evolves throughout the performance. This analysis helps to
identify the emotional peaks and transitions generated by
specific techniques and how they relate to the performance
dynamics.

1) Emotion Weighting Based on Performance Techniques
To enhance the precision of emotion analysis, the emotional

contribution of each performance technique is weighted accord-
ing to its decibel level. The decibel level of each technique
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reflects its relative prominence in the audio, thus affecting the
emotional expression of the segment. The weight wi for each
technique is computed using the following formula:

wi =
di∑n
i=1 di

, di = 20 log10

(
Pi

Pref

)
(16)

where di is the decibel value associated with the technique i,
and

∑n
i=1 di is the total sum of decibel values for all techniques

in the segment. The weighted emotional vector Efinal for each
segment is then computed by:

Efinal =

n∑
i=1

wi ·Ei (17)

where Ei is the emotional vector associated with technique
i, and wi is the weight determined by its decibel level. This
ensures that techniques with higher decibel values contribute
more to the final emotional expression of the segment.

III. RESULTS

A. Performance Metrics

Table II summarizes the classification performance of our
AudioClassifier model.

TABLE II
PERFORMANCE METRICS FOR PIANO PERFORMANCE TECHNIQUES

Technique Accuracy Precision Recall F1-score
Glissando 89.5% 88.3% 87.6% 89.9%
Octave 86.2% 88.1% 84.7% 86.4%
Arpeggio 83.0% 82.9% 84.3% 83.1%
Vibrato 85.8% 83.7% 88.2% 85.9%

Glissando performed best in accuracy, accuracy, recall and
F1 score, especially in the F1 score of 89.9%. Octave accuracy
is the highest at 88.1%, but the overall F1 score is slightly
lower than that of the glissando. Arpeggios performed the worst
among the indicators, with the lowest accuracy of 83.0%. The
vibrato performed better in recall and F1 scores, but still fell
short of the glissando and octaves.

B. Pearson Correlation Analysis Results

The Pearson correlation coefficients between the perfor-
mance techniques and emotions are summarized in Table
III. Glissando has a strong positive correlation with pleasure
activation, surprise and power. Vibrato are highly associated
with nostalgia and tenderness, and are positively associated with
sadness. Arpeggios were positively correlated with nostalgia
and tenderness, but negatively correlated with tension and
sadness. The octave shows a strong sense of power and pleasure
activation, and is negatively associated with tenderness and
sadness.

C. Dynamic Emotion Analysis Results

In this section, we present the results of the dynamic emotion
analysis applied to the performance of Czerny Op. 365 No.
33, a Polish dance. For the purpose of this analysis, the 1-
minute audio was segmented into 20 equal parts, each lasting
3 seconds. These segments were analyzed for the presence
of specific performance techniques and their corresponding
emotional expressions. The emotional vectors for each segment
were determined based on the techniques detected. Specifically:
• The octave technique, present in the majority of the segments,

was predominantly associated with the emotion of joyful.
• The vibrato technique, observed in segments 4, 5, 13, 15, 16,

17, 19, and 20, was associated with emotional expressions
such as amazement, tension, and sadness.

• The glissando technique, detected in segments 7 and 10,
elicited emotions like joyful and activation.
The results shows in Figure 2.

Figure 2. Dynamic emotion Cchange in 1-minute piano performance.

Peaks in emotional intensity were found to correlate with
specific techniques, highlighting how the performer’s use of
these techniques influenced the emotional flow of the piece. The
emotional transitions between segments revealed that the piece,
while maintaining an overall joyful tone due to the dominance
of octave, also incorporated dramatic shifts, reflecting the
emotional depth of the work.

IV. DISCUSSION | EVALUATION

The CNN-based model achieves high accuracy in classifying
piano performance techniques, with training accuracy reaching
96% and validation accuracy stabilizing at 86% (Figure 3),
indicating robust generalization without overfitting. However,
two limitations persist:
• Overlapping Spectral Features: Techniques with similar

harmonic patterns, such as arpeggios and trills, are occa-
sionally misclassified. For instance, trills involve rapid note
alternations that may overlap with arpeggio harmonics in
the Mel-spectrogram.

• Independent Technique Detection: The current framework
processes each technique independently, leading to redundant
computations. A unified multi-label classification approach
could better capture inter-technique dependencies (e.g.,
vibrato often co-occurs with legato phrasing).
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TABLE III
PEARSON CORRELATION COEFFICIENTS BETWEEN PERFORMANCE TECHNIQUES AND EMOTIONS.

Performance Technique Joyful Activation Calmness Tension Amazement Sadness Solemnity Power Tenderness Nostalgia
Glissando 0.65 0.21 0.71 0.55 -0.31 -0.47 0.62 -0.20 -0.60
Vibrato 0.30 -0.25 0.65 0.53 0.65 -0.40 -0.35 0.78 0.80
Arpeggio 0.62 -0.10 -0.26 -0.55 -0.32 -0.30 0.13 0.73 0.82
Octave 0.75 -0.45 0.60 0.60 -0.50 0.54 0.90 -0.80 -0.56

Figure 3. Training and validation accuracy over epochs.

Our analysis of the association between playing skills
and emotion reveals some interesting findings, suggesting
that different playing skills are significantly associated with
specific emotions. This analysis provides a valuable perspective
for further understanding of emotional expression in piano
performance. However, the perception of musical emotion
is highly subjective. Even though we invited professional
musicians to conduct data annotation, there is still some
disagreement. Different listeners or players may have different
emotional responses to the same playing technique. It is
worth noting that while there is a correlation between playing
technique and emotion, the same technique may trigger different
emotions in different musical contexts. For example, a glissando
technique may elicit anger in a fast-paced part, while a slow-
paced part may convey anticipation. Identifying emotions
accurately is still tricky.

Dynamic emotion analysis, which combines technical recog-
nition with emotion time series tracking, provides a valuable
perspective on the evolution of emotion over time in piano
performance. By tracking emotional changes in the temporal
dimension, we could observe fluctuations in emotional intensity
and identify the impact of playing techniques on emotional
dynamics. However, when performing sentiment analysis, we
combined the decibel level of each technique for weighted anal-
ysis. While this provides some basis for quantifying emotional
intensity, there are still some problems. First of all, simply
weighting by decibel intensity may oversimplify the expression
of emotion because changes in emotion are not only affected
by volume but also related to pitch, rhythm, performance
expression, and other factors. Second, decibel levels can have
different effects on players and sound equipment, leading to
sentiment analysis bias. Therefore, future research needs to
explore a more integrated approach to sentiment analysis that

may include more audio features.

V. CONCLUSION AND FUTURE WORK

In this study, we propose a deep learning approach for
dynamic emotion analysis of piano music by combining
piano performance technique recognition with emotion time-
series tracking. Our CNN-based model effectively identifies
various performance techniques and achieves high classification
accuracy. We found that different techniques are strongly
associated with specific emotional expressions, though emo-
tional perception remains subjective and context-dependent.
Despite the model’s strong performance, challenges remain,
such as distinguishing overlapping techniques and simplifying
sentiment analysis based on decibel levels. These results
demonstrate the potential of this approach but also highlight
areas for further improvement.

Future research could focus on integrating multiple per-
formance techniques into a single model and expanding the
range of performance techniques recognized. Additionally,
incorporating more audio features, such as tone, timbre, and
rhythm, could provide a more comprehensive understanding
of emotional expression. Real-time emotion tracking during
performance could also open up new applications in music
education and interactive environments. Lastly, developing
larger and more diverse annotated datasets would enhance
model generalization and improve recognition accuracy.
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