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Abstract— Effective language processing relies on the brain’s 

capacity to decode rhythmic cues in speech, a function primarily 

supported by activity in the theta frequency band. According to 

the Temporal Sampling Framework, impairments in this 

process may contribute to the phonological deficits observed in 

individuals with Developmental Dyslexia (DD). These challenges 

cascade into higher-frequency bands, affecting the integration 

of phonemes, words, and phrases, ultimately compromising 

reading and writing fluency. Early diagnosis and treatment are 

crucial for ensuring proper personal and academic development 

in children. In this study, we propose a non-invasive 

methodology that combines ElectroEncephaloGraphy (EEG) 

data with a surrogate modelling framework to detect early 

imbalances in Excitation/Inhibition (E/I) mechanisms. We 

applied this methodology to a cohort of children, divided into 

controls and DD groups, and compared the inferred E/I 

mechanisms with patterns predicted by the neural noise 

hypothesis. We found that the results obtained using this 

framework align with both the Temporal Sampling Framework 

and the Neural Noise Hypothesis.  

Keywords-Developmental Dyslexia; EEG; E/I ratio; Neural Noise 

Hypothesis; Temporal Sampling Framework; Machine Learning; 
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I. INTRODUCTION 

Developmental Dyslexia (DD) is a learning disorder that 

affects an individual’s ability to read and write fluently. 

Contrary to popular belief, this condition is not associated 

with a motor, visual or cognitive disability, nor is it indicative 

of lower intellectual abilities. People with dyslexia encounter 

challenges in correlating words with their corresponding 

auditory representations, thereby impeding their capacity to 

effortlessly decode words with precision, a difficulty 

associated with the phonological processing area [1]. The 

Temporal Sampling Framework (TSF) [2] suggests that DD 

arises from a deficit in the ability to process rhythmic cues in 

speech, specifically within the theta frequency band (4-7 Hz), 

which is critical for syllable segmentation. This deficit 

disrupts the accurate temporal alignment necessary for 

decoding linguistic information, thereby impeding the 

formation of robust phonological representations. 

Consequently, these impairments extend to higher-frequency 

bands associated with the processing of phonemes and the 

integration of words and phrases, further complicating 

language comprehension and fluency. 

Early identification of this disorder is crucial for ensuring 

optimal development and preventing the onset of self-esteem 

issues in early childhood. The diagnosis of DD is based on 

tests that evaluate accuracy and fluency in reading and 

writing [3]. However, this approach is subject to external 

influences, and in the case of children, their results may be 

inadequate to rule out the disorder. Therefore, it would be 

worth exploring the development of an objective, 

neurophysiology-based diagnostic method that can be 

applied universally to all patients, complementing the 

existing neuropsychological tests. ElectroEncephaloGraphy 

(EEG) techniques emerge as a promising candidate for 

addressing this need due to their non-invasive nature, wide 

applicability in conjunction with various diagnostic tests, and 

cost-effectiveness. There are some studies that have 

documented differences in EEG patterns between individuals 

with and without developmental dyslexia, particularly in the 

theta, alpha and beta bands [4]. This underscores the 

importance of exploring potential biomarkers associated with 

specific EEG signal patterns to enhance diagnosis and 

monitoring of DD. 

In recent years, considerable attention has been directed 

toward investigating the relationship between neural noise 
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and DD [5]. Evidence suggests that a flatter aperiodic 

component in neural power (i.e., higher neural noise) can 

serve as an indicator of DD [6]. This flattening is believed to 

be associated with an increase in hyperexcitability in cortical 

circuits, offering deeper insight into the neural mechanisms 

underlying DD. 

In this study, we employ a mechanistic brain model 

combined with machine learning techniques to investigate 

the relationship between excitation-inhibition imbalances 

and DD. Specifically, we developed a surrogate model 

utilizing the catch22 feature subset [7] and employed it as an 

inference tool to estimate cortical circuit parameters from 

EEG data. We applied this methodology to a cohort of 50 

children, divided into control and DD groups, who were 

exposed to auditory stimuli at frequencies associated with 

different stages of language processing. The objective of this 

study is to assess whether our inference framework can 

reliably identify potential biomarkers of dysregulated brain 

activity linked to DD, ultimately contributing to improved 

diagnostic and predictive tools.  

The rest of the paper is structured as follows. In Section II, 

we explain the methodology followed in the study, 

explaining how the proposed framework works, and the 

database used to obtain the results. In Section III, we present 

the results computed following the previous section. In 

Section IV, we discuss the results, comparing them with the 

Temporal Sampling Framework and neural noise hypothesis 

in Dyslexia. Finally, we provide a conclusion and future work 

directives in Section V. 

II. METHODS 

In this section, we present the framework used to infer E/I 

imbalances in DD, detailing the computation of artificial 

EEG signals, the extracted features, and the creation of the 

surrogate model. We also describe the statistical analysis 

after inference and, finally, introduce the empirical dataset 

where our framework is applied. 

A. Simulation of EEG signals 

The EEG signal generation methodology employed in 

this study is based on the approach outlined in [8]. First, to 

generate cortical activity, we used a neural network of 

recurrent Excitatory (E) and Inhibitory (I) populations, 

composed of Leaky Integrate-and-Fire (LIF) neuronal 

models, with external stimuli generated by a fixed-rate 

Poisson process. We employed the best-fit parameters of the 

model given in [9], except for JEE, JEI, JIE, JII, τexc, τinh and Jext. 

These parameters represent, respectively, the weights of the 

synaptic currents between different neuron populations (JYX, 

where X is the presynaptic populations and Y is the 

postsynaptic populations), the time constants of the 

excitatory and inhibitory synaptic currents, and the weight for 

the external synaptic current. By varying these parameters, 

we generated a set of nearly two million simulations. 

To generate the current dipole moment that will 

determine the EEG signal, we convolved the simulated spike 

rates with spatiotemporal kernels that account for the 

biophysics of neurons and synapses, as well as their 

spatiotemporal distributions and the connectivity of an 

equivalent conductance-based multicompartmental neural 

model. We selected a ball-and-stick model for the 

multicompartmental neurons for the sake of simplicity. 

B. Feature extraction 

For the feature extraction process, we used catch22 [7], a 

set of features from the highly comparative time-series 

analysis toolbox [10] (hctsa). This set consists of the 22 best 

features from hctsa tested in different datasets that capture a 

broad and interpretable range of time-series characteristics, 

making it particularly well suited for analyzing the intricate 

temporal dynamics inherent in EEG signals. 

C. Machine learning for the inference of simulation 

parameters 

A multi-layer perceptron from scikit-learn Python library 

was trained considering the totality of the catch22 set as the 

inputs, and the parameters of the cortical circuit model as 

outputs. The model was trained using 20 repeats of 10-fold 

Cross Validation to ensure that it captures the general patterns 

of our problem, avoiding overfitting the simulation data.   

D. Statistical analysis 

To test if the parameters inferred from the database are 

statistically different between groups, we applied Linear 

Mixed-Effects (LME) models that consider variability 

between individuals and sensor location. Package lme4 from 

R was used to apply LME.  We implemented group 

membership and sensor location as fixed effects in the model. 

We implemented individual variability by using patient ID as 

a random effect, adjusting correlation between patients. 

After the model fitting, we computed the marginal means 

of the parameters for each group and electrode using the 

package emmeans. Following this, we conducted pairwise 

comparison between groups for each sensor, adjusting the p-

value using Holm-Bonferroni correction. 

E. Empirical dataset 

The data used in this research were provided by the 

LEEDUCA research group at the University of Malaga 

(Spain) [11]. This data comes from a study involving more 

than 1400 children aged 4 to 8 years. The empirical data used 

consists of a dataset of 50 subjects where 31 were control 

subjects and 19 subjects had developmental dyslexia. Each 

subject was in a resting state while receiving Auditory 

Steady-State Response-like (ASSR) auditory stimuli of three 

different frequencies: 4.8 Hz, 18 Hz and 40 Hz. The 

experiment started with a progressive increase of the 

frequency from 4.8 Hz up to 40 Hz and then returned to 4.8 

Hz. During the process, cortical activity was recorded using 

an EEG cap of 31 electrodes following the 10-20 system, with 

a sampling rate of 500 Hz. The captured signal on each 

electrode was split into 8 seconds epochs and then normalized 

using the z-score metric. 
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III. RESULTS 

The study started by generating a dataset of 2 million 

simulations of cortical activity using a model consisting of a 

recurrent network of excitatory and inhibitory neurons. 

Following this, we created synthetic EEG data by convolving 

biophysical spatiotemporal kernels with simulated spike rates 

and we then extracted the 22 features provided by catch22 

from the artificial EEG signals. We trained a neural network 

using simulated data, generating a surrogate model that allows 

us to infer the parameters of the model that can describe real 

EEG data. Once trained, we used the surrogate model to infer 

cortical parameters on a dataset that included 50 subjects 

divided into two groups: DD and control. We computed the 

metric E/I by using the inferred weights of the synaptic 

currents. We split the results for the three different auditory 

stimuli frequencies: 4.8 Hz, 16 Hz and 40 Hz, and applied 

LME analysis to compute significant differences between the 

two groups for each model parameter separately. 

Analyzing parameter predictions, we observed an increase 

in E/I concentrated in single-electrode positions of parietal 

and frontal regions for stimuli of 4.8 Hz and 16 Hz, 

respectively (Figure 1). We also observed an increase in Jext 

with 4.8 Hz stimuli in occipital regions while there was a 

small decrease in parietal zones for the 40 Hz stimuli. For τexc,  
 there were no significant differences for stimuli of 4.8 Hz and 

16 Hz. In contrast, for 40 Hz, there was a significant increase 

in this parameter on temporo-parietal zone. However, the 

greatest number of significant differences across electrode 

positions were observed for τinh. When subjects were 

stimulated at 4.8 Hz, this parameter increased in the frontal 

and parietal-central regions. As the stimulus frequency 

increases, the significant differences are confined to a smaller 

subset of electrodes. 

 

 
 

Figure 1. Representation of differences of each model parameter between 

control and DD groups for the three stimuli frequencies. It is plotted only 

the z-ratio with p-value ≤ 0.01. 

 

IV. DISCUSSION 

In this study, we propose an inference framework 

combining simulation with machine learning to explore and 

test predictions of imbalances in excitatory and inhibitory 

processes observed in individuals with Developmental 

Dyslexia. Using real EEG data, we extracted time-series 

features using the catch22 library, which provides a 

standardized set of 22 interpretable statistical and nonlinear 

metrics. These features were used to infer model parameters 

via a surrogate model and to identify significant group 

differences within the dataset. 

Our results revealed an increase in the 

Excitatory/Inhibitory (E/I) ratio in the parietal and frontal 

lobes for some of the stimuli frequencies consistent with the 

neural noise hypothesis in Dyslexia [5][6]. Additionally, we 

observed a prominent increment in the inhibitory time 

constant (τinh) at a stimulation frequency of 4.8 Hz, which 

decreases when the stimulus frequencies increased. This 

increase in the inhibitory time constant may imply a delayed 

response of inhibitory currents, which may lead to less 

effective inhibition (i.e., a shift of E/I that favors excitation). 

This phenomenon aligns with the neural noise hypothesis 

prediction of hyperexcitability in Dyslexia. The Temporal 

Sampling Framework hypothesis suggests that DD arises 

from a deficit in syllables processing. This process is 

associated with neural oscillations in the Theta band (4-7 Hz), 

which aligns with the frequency range where our results 

reveal the most significant group differences. Notably, as the 

stimulus frequency increases, these significant differences 

decrease, with almost no significant differences at 40 Hz, 

which is related to phoneme segmentation. 

Our computational model offers a valuable approximation 

of the neural circuit but is not designed to reproduce all its 

characteristics. It does not account for large-scale network 

dynamics, such as long-range corticocortical interactions 

between different brain regions. To mitigate this limitation, 

we introduce an external input that simulates the aggregate 

influence of corticocortical connections from other regions. 

This strategy helps us approximate the impact of macroscopic 

dynamics on our local predictions. In future work, 

incorporating alternative brain models could provide a more 

comprehensive representation of these large-scale 

interactions and improve the accuracy of our predictions. 

This study was conducted using only the features provided 

by catch22. Consequently, the selection of alternative feature 

sets, such as those offered by the highly comparative time-

series analysis (hctsa) toolbox [10], may allow for a more 

precise characterization of E/I imbalances and the behavior 

of other model parameters. This, in turn, could contribute to 

a more comprehensive understanding of the underlying 

neural dynamics in disorders such as DD. 

V. CONCLUSION AND FUTURE WORK 

    The inference framework proposed in this paper reveals 

promising results, suggesting that simple techniques such as 

EEG have potential for the diagnosis and monitoring of 

individuals with DD. However, this framework has some 

limitations, with the brain model being the main one. The use 

of models that account for macroscopic dynamics will be 

essential to improve the understanding of disorders such as 

DD. The search for new biomarkers, either by using 

alternative feature sets or techniques such as autoencoders, 
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could also enhance the comprehension of different neural 

dynamics. 
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