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Abstract—The adoption of Artificial Intelligence (AI) in agri-
culture and animal husbandry has accelerated in recent years,
driven by the versatility and relatively low costs for development
and deployment of smart systems. However, many farms still
rely on aging equipment and manual labour rendering these
innovations inapplicable. In turn, the inability to harness AI and
modernise operations may pose an existential risk. To address this
challenge, we advocate for retrofitting existing machinery with
AI-based modules as a practical alternative. In this paper, we
demonstrate how a poultry egg grading machine can be enhanced
with smart capabilities through the integration of deep learning
and low-cost commodity edge hardware to enable precise egg
counting. We present the methodology and algorithms behind
this system that enables real-time processing while maintaining
high accuracy. In a limited set of experiments, we demonstrated
that the Raspberry Pi 5 (RPi5) running the EfficientDet-lite0
model performed just as well as a desktop with an NVIDIA
GPU (graphics processing unit), accurately counting all the eggs
it was presented with.
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I. INTRODUCTION

Egg production remains to this day as one of the most
important farming enterprises providing a steady supply of
a highly nutritious and affordable food source. Poultry egg
producers are required to follow specific processes for egg
handling, processing, labeling, and marketing to ensure the
safety and quality of eggs reaching consumers. These are
labour-intensive processes that are assisted by purpose-built
equipment, such as egg grading and sorting machines, pack-
aging, storage, etc. However, replacing existing equipment
and processes can be costly, time consuming and may cause
operational disruption. To reduce the cost of modernising
existing poultry egg production facilities with little to no
interruption the idea of retrofitting can bring about significant
gains [1], [2]. Instead of replacing the equipment farmers have
learned to rely on, add-on digital devices can be introduced
that provide new advanced capabilities.

This work explores the feasibility of ”smart retrofitting” for
animal farm equipment. We design, implement, and deploy
a low-cost, AI-based edge computing system that integrates
with a traditional egg grading and sorting machine. The system
automatically counts eggs using computer vision and classifies
them based on the configuration of the egg sorting machine.
This low-cost solution primarily benefits farms seeking to
digitally transform on a limited budget (i.e., the proposed
Raspberry Pi 5 system costs approximately one hundred
euros).

AI-powered computer vision systems have been widely

adopted in animal and food production industries, improving
efficiency, product quality, and distribution speed [3], [4].
AI is expected to continue playing a key role in the agri-
food industry’s transformation [5], [6]. This success is largely
due to the availability of pre-trained computer vision models.
However, these models usually perform poorly for specialized
field applications, such as egg detection, and require to be
retrained or fine tuned. Furthermore, most AI models still
require substantial computational resources to run in real-time,
making them difficult to implement on low-end devices and
deploy them in the field.

The system presented in this work demonstrates that with
very limited computational resources, widely available AI
models can be employed to improve operations in animal
farms. Our system provides extremely accurate egg counts
through a robust object detection algorithm enabling low-end
single-board computers (e.g., the Raspberry Pi) to perform
object detection and tracking in real time. The system’s
hardware is inexpensive (i.e., Raspberry Pi and the Pi Camera)
and it can be trivially deployed in the field without expert
knowledge.

The remainder of this paper is structured as follows: Sec-
tion II provides information regarding the setup of the system
in the environment that it is intended to be used. Section III
provides a brief overview of related research that informed
our approach. In Section IV, we outline our methodology and
present our solution for egg counting at the edge. Section V
details the experiments conducted to evaluate the system and
discusses the results. Finally, Section VI provides a summary
of the paper and highlights key conclusions.

II. ENVIRONMENT

The system developed in this work is based on a Raspberry
Pi 5 single-board computer with a Pi Camera V2 module. It
was deployed to a chicken farm with a Riva-Selegg Grader,
configured to sort eggs into four weight classes (Extra Large,
Large, Medium, and Small) with a single feeding lane, shown
in Figure 1(a). As eggs move along the horizontal feeding
lane, they drop into preconfigured collection areas when their
weight exceeds the machine’s preset value. These areas are
slightly inclined, causing the eggs to roll towards the operator,
following random paths, until collected by hand. The machine
itself is purely mechanical, without digital features for count-
ing or recording data, so egg counting is done manually by
the operators.

The vision-based egg counting edge device was placed
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(a) (b)

Figure 1: (a) A snapshot of the images obtained by our system. Egg weighting
positions are below the eggs running horizontally and located above the
egg grading zones separated with metal rods aligned vertically. (b) Ceiling-
mounted egg counting Raspberry Pi 5 deployed above a Riva Selegg egg
grading machine.

directly above and almost perpendicular to the egg grading
machine at a distance of around 2m, as shown in Figure 1(b),
in order to provide a top view of the feeding lane and the
weighting positions of the eggs.

The system is composed of two subsystems running as
independent services: (a) a back-end developed in Python
and providing for image acquisition, object detection and
tracking, egg counting, and (b) a front-end implemented in
ReactJS providing a web interface for controlling the system
and its parameters (e.g., calibration, start/stop egg detection,
view/edit/confirm egg counts, etc.)

Once deployed, the system requires a simple calibration
procedure (detailed in Section IV-E) and is then ready for use.
Re-calibration is needed if either the egg detector or grading
machine are adjusted.

III. RELATED WORK

In the past decade, the application of computer vision and
AI in agriculture and animal husbandry has seen a significant
increase. In poultry egg production, deep learning has been
used to address egg grading [7], identify egg defects [8], [9]
or assess freshness [10]. Egg counting, alongside detection,
has also been a popular use case for deep learning based
applications in the industry [11]–[14].

Automated egg counting using deep learning entails the
training of a convolutional neural network to detect eggs first
and then the development of a tracking and a counting algo-
rithm to maintain eggs detected through time. Thus, we review
some relevent work in object detection, tracking, alongside
their application in edge computing.

A. Object detection Models

Ulaszewski et al. [12] conducted experiments comparing
MobileNet-SSD (Single Shot Detector) v2, YOLOv3 (You
Only Look Once), and Faster-RCNN (Region-based Convo-
lutional Neural Network) for egg detection and counting on
various hardware platforms. Using inference speed (fps) and
counting accuracy as the primary performance metrics, their

results demonstrated that MobileNet-SSD was the fastest and
most reliable model under the specific conditions of their
experiments.

Yang et al. [8] employed four different versions of RTMDet
(Real-Time Models for object Detection) [15] models to
perform egg detection for automated defect observation and
sorting. While the focus was on a different egg-related task,
all models still conducted pure egg detection. Among these,
RTMDet-x demonstrated the highest accuracy, outperforming
the other versions.

Subedi et al. [13] tested various YOLO (You Only Look
Once) model versions for detecting floor eggs, while Luo et
al. [16] enhanced a YOLOv5 model for detecting leaky eggs
on a production line, achieving superior performance over
YOLOv4 and F-RCNN models. Similarly, Vinod et al. [11]
utilized a YOLO model for implementing an egg counting
system.

B. Tracking

Tracking is a fundamental prerequisite for effective object
counting. Tracking algorithms range from simple geometric
approaches to more advanced deep learning-based methods,
though the latter often come with increased computational
demands.

Ulaszewski et al. [12] and Vinod et al. [11] used simple, yet
effective, center-based tracking to pair with their detections.
Shen et al. [17] also used a similar center location tracking
approach to count people in elevators. Other algorithms like
SORT [18] and DeepSort [19] are also used for object tracking
(e.g Dinh et al. [20] used it for traffic counting). While
algorithms such as SORT and DeepSORT are optimized for
more robust tracking, it is crucial to account for their increased
computational cost, particularly when designing edge applica-
tions where processing resources are limited.

C. Edge Applications

Maximizing efficiency and performance in real-time object
detection and counting remains an open challenge. Chen
et al. [21] reviewed the use of Deep Learning with edge
computing, highlighting key issues such as latency, scalability,
and privacy. They also focused on the challenges of deploying
deep learning models on resource-constrained devices, such as
the Raspberry Pi.

Tsu-Chuan et al. [17] have worked on a similar task of
edge-based people counting in elevators using a MobileNet-
SSD object detector and a line of interest counting strategy.
They deployed their system on NVIDIA Jetson nano boards.
Deployment of counting systems on the edge also has relevant
applications in traffic management and monitoring. Duc-Liem
Dinh et al. [20] have introduced a low-cost edge-based system
utilising object detection for vehicle detecting, tracking and
counting.

IV. METHODOLOGY

Our methodology involves four steps: (a) acquire real-time
time images from a camera observing the egg feeding lane
of the egg grading machine, (b) perform object detection
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inference using a single-shot model, (c) compare detected
objects with those of the previous image to track the objects,
(d) use a set of predefined zones to count eggs of different
grades, that are either defined interactively or automatically
via a calibration step.

A. Image Acquisition

A simple camera module is used to obtain images in real-
time. A standard resolution of 640 x 480 pixels is chosen to
provide sufficient image quality for processing.

B. Object detection

Single-shot detection models [22]–[24] are regarded as
state-of-the-art solutions for real-time object detection. How-
ever, achieving real-time performance on edge devices is
challenging due to processing power limitations, which ren-
der many otherwise effective algorithms impractical for such
environments.

The YOLO architecture, depending on the model size
chosen, contains a number of parameters in the range of 3.2
to 68.2 million and require 8.7 to 257.8 billion floating point
operations (GFLOPs) for a single network forward pass to
detect objects in a single image. For reference, the Raspberry
Pi 5 can reach around 34 GFLOPS [25], while the Raspberry
Pi 4 is rated around 10 GFLOPS. An NVIDIA RTX 3070
Ti discreet GPU can reach 21.75 TFLOPS. It is therefore
reasonable to expect that while object detection models can
be run on all three hardware configurations, the lower-end
Raspberry Pi 4 may have difficulties keeping up with real-time
processing. On the other hand, a modern discrete GPU can
easily handle larger detection models. This allows for verifying
the performance of egg counting algorithms without the risk
of reaching a processing power limit.

Since we are only interested in egg detection and counting,
it is also necessary to consider the ability of these general
purpose detectors to reliably detect eggs. In our tests, we
noticed that these models either do not recognize eggs, or they
need to be specifically trained with egg samples to be able to
perform well.

These limitations highlighted the need for an object de-
tection model with a lighter architecture. Such a model
should deliver satisfactory results when trained with an ap-
propriate dataset, without being as computationally intensive
as the YOLO models. Lightweight object detection models
designed for on-mobile or edge device inference are well-
supported within the open-source community. Examples of
these models include MobileNet-SSD [23], TinyYOLO, and
EfficientDet [22]. Google’s autoML provides a family of
object detection models which include some light, mobile-
sized versions. Probably the smallest model is EfficientDet-
Lite0, which offers a good balance between performance and
computational efficiency.

Although it has the lowest performance among all the
EfficientDet models on the COCO dataset [26], EfficientDet-
Lite0 is likely the best fit for our needs due to its lightweight
and efficient design. Its documented Mean Average Precision

(mAP) 26.41% [27] reflects its ability to generalize across
a dataset with various object classes, many of which are
irrelevant to our goal of recognizing just one class of objects
(i.e., eggs). Therefore, the model was further trained and fine-
tuned using a curated, custom egg dataset, as described in
Section V.

C. Object tracking and counting

Efficient object tracking is essential for accurate counting
across frames, requiring an algorithm with minimal compu-
tational demand and reliable results. Distance-based centroid
trackers meet these needs by matching detected objects be-
tween frames using simple Euclidean distance calculations.
The accuracy of the counting relies on correct tracking, as
each detected object is assigned a unique ID to ensure it is
only counted once.

Distance-based object tracking methods, such as the cen-
troid tracker, have notable limitations, with their performance
heavily influenced by factors like inference frequency (i.e.,
the number of frames processed per second by the detection
model).

Low inference frequency poses a major challenge when run-
ning deep learning models on edge devices in real-time. This
limitation can negatively affect centroid tracking algorithms,
which rely on comparing an object’s position between consec-
utive frames. Processing only a few frames per second while
skipping others can degrade the algorithm’s performance, as
objects may be too far apart in time, leading to unmatched or
mismatched objects.

D. Counting using Region Of Interest (ROI)

Detection and counting is performed at the feeding lane
of the machine. This compartment of the egg grader is
responsible for weighing each incoming egg (using weight
springs placed along a mechanical conveyor belt at predefined
different positions).

First, the feeding lane is divided into four zones, corre-
sponding to extra large (XL), large (L), medium (M) and
small (S). Zones are defined as polygonal areas by four points
on the image plane, as shown in Figure 2. To count eggs in
these zones we adopted a binning approach. We utilise the
centroid tracker’s results (which include the ID and the centre
coordinates of each detected object for each frame) to execute
the counting logic. A detected egg is added or removed from
the count in any of the bins (zones) based on the location of its
center. We use a simple point-in-polygon test to determine if
an egg’s centroid falls within the region of any given zone. As
the eggs move along the feeding lane, eggs are reassigned to
zones. As eggs drop from the feeding lane into the collection
area of the machine they remain assigned to the last bin they
have been detected in.

The pseudocode for the ROI egg counting process is pro-
vided in the algorithm shown in Figure 3.

E. Calibration: Automatic Zone Computation

The ROI-based counting algorithm relies on the definition
of several detection zones. Although this process is a one-off
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Figure 2: Schematic of the bin counting process using zones. Both eggs with
IDs 1 and 2 are assigned to green zone (XL). As they move on the feeding
lane (left to right), the eggs are reassigned from the previous bin to the current
bin. Therefore, the egg with ID=1 is finally assigned to red bin (S), while the
egg with ID=2 is assigned to purple bin (L).

Figure 3: Pseudocode of the ROI-based egg counting algorithm.

procedure once the equipment has been deployed in the field,
it is still necessary to provide the system with at least four
points per zone. In our system the operator can connect to
the edge device with a smartphone or tablet and configure the
zones via a web interface interactively. However, this can be
time consuming and tedious to perform in an animal farm and
therefore we devised an effective automatic identification of
the counting zones.

The calibration procedure shown in Figure 4 is as follows:
• At least 12 small eggs are passed through the egg grading
machine. The choice of “small” eggs allows eggs to travel
across the entire feeding lane.
• For each image, the centroid of each detected egg is ex-
tracted using the trained object detector.
• Locations of all centroids on the image plane are accumu-
lated over the entire duration of the calibration procedure, as
shown in Figure 4(a).
• During calibration, the grading machine sequentially moves
each egg along the top horizontal feeding lane on the weighing
springs. Based on the egg’s weight, the springs may release
it into the appropriate collection area. Eggs spend more time
stationary on the weighing springs than in other positions or
while rolling into the gathering area, leading to the formation

of dense point clusters at these locations. To identify potential
counting zones, we apply DBSCAN [28], [29], a density-based
clustering algorithm, to group these closely packed points (see
Figure 4(b)). The center of each cluster is then calculated by
averaging the positions of the points and stored for further use.
• The computed centers of the clustered points are fitted to
straight lines to identify the actual weighing locations of the
egg sorting machines. First, a grayscale filter (Figure 4(c)) is
applied to the image plotting all raw object centers, followed
by a thresholding operation (Figure 4(d)) that converts the
image to binary. This process removes areas with few or no
detections. Subsequently, the Hough transform is used on the
remaining centroids to extract a set of straight lines.
• These straight lines are then used in conjunction with the
previously extracted cluster centers. The centers are fitted to
each line. Lines with cluster centers matching the number of
weighting positions of the machine are preserved, while the
rest are discarded (see Figure 4(f)).
• For the specific egg grader used in this work, there are two
weight springs for large and medium eggs each, and one spring
for extra large and small eggs. A bounding box for each of the
weight spring locations is computed and then the ones which
are responsible for the same egg size are merged. The result
of this is visualised in Figure 5.
• Masking Optimization: Once the counting zones are com-
puted, a region that encompasses all zones is estimated. That
region is a convex hull computed using the corners of all
counting zones. Any pixel outside that region act as a mask
(i.e., set to 0). This masking is a significant optimization for
the egg detector, because no masked pixels are used when
egg detecting, significantly improving accuracy and reducing
processing.

V. SYSTEM EVALUATION & RESULTS

A. Experimental Setup

Experiments were conducted to assess the performance of
the counting system on three different hardware configura-
tions: (i) a Desktop PC (OS: Windows 10 Pro, CPU: Intel
Core i7-4790K, RAM: 32GB, GPU: NVIDIA GeForce RTX
3070 Ti), (ii) a Raspberry Pi 4 (OS: Raspbian, Model: 4B Rev
1.5, SoC: Broadcom BCM2711, Quad core Cortex-A72 (ARM
v8) @ 1.8GHz, RAM: 8GB), and (iii) a Raspberry Pi 5 (OS:
Raspbian, Model: 5, SoC: Broadcom BCM2712, Quad core
Cortex-A76 @ 2.4GHz, RAM: 8GB).

All devices were tested over two different object detection
model architectures: (i) the EfficientDet-Lite0 [22], and (ii)
the YOLOv8n [24]. Both models were trained with a custom
dataset of 2,226 egg image samples (2065 training and 161
validation images). The dataset contains a variety of egg
images covering different lighting conditions and angles, as
well as different heights between the camera and the eggs. No
augmentation was carried out. While the EfficientDet-Lite0
architecture is lightweight enough to run on all three devices,
the YOLOv8n model was converted to the NCNN [30] high-
performance neural network inference framework optimized
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(a) (b) (c)

(d) (e) (f)

Figure 4: (a) Detection centroids plotted on the XY plane, (b) post application of DBSCAN to the centroid data, with dense locations plotted in red, (c)
result after applying grayscale to the plot image, (d, e) result after applying thresholding (add params) and thinning (add params) operations to the image, (f)
the final extracted line matching the cluster centers.

Figure 5: (a) Left: After step 7 of the calibration algorithm. The locations
(red points) of the weighting springs along the conveyor belt are acquired.
(b) Middle: During step 8 of the calibration algorithm where each point is
enclosed into a polygon. (c) Right: Towards the end of step 8, where the
polygons of weight springs that are responsible for the same egg size are
merged and the zones are finally formed.

for mobile and embedded platforms.
The methodology was tested over 3 video recordings of the

single-lane egg sorting machine in operation, each capturing a
counting session of a mixture of 30 to 110 eggs of 4 different
egg grades: small (S), medium (M), large (L), and extra large
(XL).

B. Evaluation Results

For each test case, the system was evaluated for its counting
accuracy. Figure 6 presents the results from our experiments.
Each row in the figure corresponds to a different video
feed, while each plot in a column corresponds to the counts
produced by a different device. The blue bar corresponds to
the ground truth (i.e., a count obtained by manually counting
the eggs), while the orange and green bars correspond to
the counts achieved using the EfficientDet-Lite0, and YOLO
algorithms respectively.

The results justify our initial hypotheses: the Desktop

Personal Computer (PC) managed to count flawlessly in all
scenarios. In particular, on the workstation, arguably the most
powerful device in terms of computation capability among
all others, the system manages to produce perfectly accurate
counts for all videos with the EfficientDet-Lite0 model. On
the same device, inference with the YOLO model manages to
achieve similar results, only missing the count of a couple of
extra large (XL) eggs in Video 1.

The Raspberry Pi 4 counting accuracy suffered from its low
compute power, producing the worst results across all devices.
The slow processing and thus long inference times, prevented
RPi 4 to catch up with the speed of the counting machine and
resulted in under-counts in almost all scenarios. In particular,
EfficientDet-Lite0 performed inference in ≈ 0.159 seconds per
frame on RPi 4, while YOLO inference took ≈ 0.515 seconds
per frame. Worth noting is the fact that our methodology seems
to have a positive impact on the egg-counting, since in almost
all scenarios the device appears to under- and not over-count
the eggs.

Last but not least, the Raspberry Pi 5 appears to draw
the processing boundary at least for the performance of
EfficientDet-Lite0. Using the EfficientDet-Lite0 model, we
managed to achieve perfect counting accuracy for all egg
sizes across all three test recordings (see table I) with an
inference time of ≈ 0.046 seconds per frame. On the other
hand, Raspberry Pi 5 with YOLO produces sub-optimal results
by missing the count of a considerable amount of eggs,
especially those in large (L) and medium (M) groups. With
YOLO on Raspberry Pi 5, inference time per frame reached
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Figure 6: Produced results for all three devices and models over three different test videos. Each row represents processing of a different video. The first
column displays the results achieved on the Desktop PC, the second column the counting performance of the Raspberry Pi 4 and the last column that of
Raspberry Pi 5.

≈ 0.256 seconds, 5.6 times greater than the time required by
EfficientDet-Lite0 for the processing of an individual frame. In
light of the preceding observations and analysis, it is apparent
that egg-counting accuracy of our system is influenced by
variations in inference frames per second. Additionally, the
adaptability of the system to diverse egg grading machines
poses a challenge, as modifications to certain components
would be required for compatibility across other machine
layouts. Future work could focus on transforming the system
into a more generalized solution capable of operating on a
wider range of equipment configurations. Moreover, extend-
ing the evaluation to environments with diverse conditions,
such as varied lighting, would provide valuable insights into

the system’s robustness. Expanding testing to a larger, more
comprehensive dataset would also help assess the system’s
accuracy on a broader scale, thus enhancing its reliability in
practical applications.

TABLE I: ACCURACY OF THE RASPBERRY PI 5 BASED SYSTEM
UTILIZING THE EFFICIENTDET-LITE0 MODEL.

Pi5 / EfficientDet-lite0
Counted Eggs Ground truth Accuracy(%)

Video 1 60 60 100
Video 2 117 117 100
Video 3 30 30 100
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VI. CONCLUSION

In this work, we have demonstrated the usage of low-cost,
resource-strapped, edge device capable of detection, tracking
and counting of eggs. In an attempt to apply the idea of smart
retrofitting, we have enhanced existing egg sorting equipment
with a small footprint device, a Raspberry Pi 5. Following our
methodology, we managed to count a set of graded eggs using
visual inspection, in real time, and with very high accuracy.
In fact, in the experiments we conducted, the accuracy of our
counting was identical of that of a GPU equipped Desktop PC,
and matched the ground truth in all cases. This showcases the
advantage of our system compared to the rest in the relevant
literature, which is the full capability of our system to operate
on edge devices without the availability of computing intensive
hardware like GPUs, something that other works in the area
relied on.
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