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Abstract—This paper aims to present an effective circuit for noisy
spike detection. The circuit detects spikes by the normalized cor-
relators. The operations of the correlators involve filtering, block
energy computation, normalized correlation, and thresholding.
All the computations are carried out in a pipelined fashion. The
circuit has been implemented by the field programmable gate
arrays (FPGAs). The circuit is used as a hardware accelerator in
a network-on-chip (NOC) platform for performance evaluation.
Experimental results reveal that the proposed circuit provide
realtime computation for the noisy spike detection with high true
postive and low false alarm rates.

Keywords–Spike Sorting; Spike Detection; FPGA; Network on
Chip

I. INTRODUCTION

Spike sorting [1] is often desired for the design of brain
machine interface (BMI) [2]. It receives spike trains from
extracellular recording systems. Each spike train is a mixture
of the trains from neurons near the recording electrodes. Spike
sorting is able to segregate the spike trains of individual
neurons from this mixture. It usually involves detection, feature
extraction, and classification operations. Spike detection is the
first step of the spike sorting. The goal of spike detection
is to separate spikes from background noise. Extracellularly
recorded signals are inevitably corrupted by noise from a num-
ber of sources such as the recording hardware and electromag-
netic interference. In the presence of large noise, successful
spike detection is essential for subsequent accurate feature
extraction and classification.

One way to perform the spike detection is based on the
energy of spike trains. An example of energy-based spike
detection is the nonlinear energy operator (NEO) [3], which
computes the energy difference between the signal’s current
power and the power in adjacent time intervals. The energy
of coefficients in wavelet domain may also be useful for
spike detection [4]. The energy-based methods are simple and
efficient. However, when noise becomes large, proper selection
of threshold values for these algorithms may be difficult.
Therefore, their performance may deteriorate rapidly as noise
energy increases. An alternative to the energy-based methods
is to utilize the templates of spikes for detection. A typical
technique using templates is based on matched filters [5]. A
drawback of the matched filters is the high computational
complexities. Realtime spike detection may then be difficult
when matched filters are implemented by software. In addition,
similar to the energy-based methods, it may be difficult to find
an effective threshold levels for matched filters when noise
becomes large.

A number of hardware implementations for spike sorting
have been proposed for reatime spike sorting. Some hardware
implementations [6] are based on NEO because of is simplicity
and low area costs so that the circuits may be implantable at the
front end for online detection. Nevertheless, the circuits may
not be suited for detection with high noise levels. In addition,
hardware designs are also beneficial for offline spike sorting [8]
because of the requirement for processing large amount of data.
With the relaxation of implantation requirement for offline
processing, development and implementation of more efficient
spike detection algorithms in hardware may be desired.

The objective of this paper is to present a novel VLSI archi-
tecture for realtime spike detection for noisy spike trains. The
architecture is based on normalized correlator for enhancing
detection performance. Segments of spike trains are normal-
ized prior to the correlation computation. The normalization
allows the output of the correlators lie inside a range, which is
independent of the input spike trains and noise levels. This is
beneficial for selecting an effective threshold levels for spike
detection as signal-to-noise (SNR) ratios become low.

The proposed architecture can be separated into four units:
the filter unit, the block energy computation unit, the correlator
unit, and the thresholding unit. All the units are operated in a
pipelined fashion to enhance the throughput of the circuit. The
filter unit consists of a bandpass Butterworth filter capable of
removing DC and high frequency components of spike trains.
The filter is helpful for noise removal prior to correlation
computation and detection. The block energy computation unit
is used for calculating block energy of segments of spike trains.
The normalized correlation is then carried out in the correlator
unit. The thresholding unit then detects spikes based on the
results produced by correlator unit.

The proposed architecture can be simplified for the design
of implantable circuit. By retaining only the block energy
computation unit, and thresholding unit, the proposed architec-
ture becomes an incoherent energy detector, which performs
generalized likelihood ratio test (GLRT) [7] for spike detection.
The incoherent energy detector has the advantages of low
area costs and low power consumption, while attaining higher
throughput for spike detection.

The proposed architecture has been implemented by the
field programmable gate arrays (FPGAs). The circuit is em-
ployed as a hardware accelerator in a network-on-chip (NOC)
platform for performance evaluation. Experimental results
show that the proposed architecture is able to attain high
speed detection with high true positive rate and low false
alarm rate even when SNR becomes -3 dB. Its simplified
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version, which performs noncoherent energy detection, has
the additional advantages of lower area costs at the expense
of slightly inferior detection performance. They are effective
alternatives for spike sorting applications requiring real-time
computation with superior spike detection performance.

The remaining parts of this paper are organized as follows.
Section 2 gives a brief review of the normalized correlation
algorithm. Section 3 describes the proposed spike detection
architecture. Experimental results are included in Section 4.
Finally, the concluding remarks are given in Section 5.

II. THE NORMALIZED CORRELATION ALGORITHM FOR
SPIKE DETECTION

We start with the basic matched filter technique for spike
sorting, which can be implemented by convolving the spike
trains with the pre-stored templates. For sake of simplicity,
we assume the matched filter contains only one template. Let
x[n] be the n-th sample of the input spike train. Let xn =
[x[n], x[n− 1], ..., x[n−N + 1]]T be the n-th segment of the
spike train, where N is the length of the segment. The template
for matched filtering contains also N elements, denoted by
t = [t[1], ..., t[N−1]]T . The matched filter output at n, denoted
by, y[n], is computed from the convolution

y[n] =

N−1∑
k=0

x[n− k]t[k] = xT
n t. (1)

Note that the convolution is equivalent to the inner product
of segment xn and template t, which indicates the correlation
between these two vectors. The segment xn is detected as a
spike when y[n] is larger than a pre-specified threshold η.

A drawback of matched filter technique is that the threshold
η alone cannot be used to determine the squared distance for
template matching. To see this fact, we first observe that the
squared distance between xn and t, denoted by d(xn, t), is
given by

d(xn, t) = ||xn||2 + ||t||2 − 2xT
n t. (2)

Therefore, when xT
n t > η,

d(xn, t) ≤ ||xn||2 + ||t||2 − 2η. (3)

Therefore, when xn is detected as a spike (i.e., xT
n t > η), we

see from (3) that the upper bound of d(xn, t) is determined
from ||xn||2, ||t||2 and η, where ||xn||2 is dependent on the
input spike trains. When ||xn||2 is large, it is possible that
d(xn, t) is still large even xT

n t > η. In this case, a false alarm
may occur.

One way to overcome this problem is to normalize xn and
t before computing the correlation. Define x̄n and t̄ as the
normalized version of xn and t, respectively. That is,

x̄n =
xn

||xn||
, t̄ =

t

||t||
. (4)

Therefore,
d(x̄n, t̄) = 2− 2x̄T

n t̄. (5)

Because d(x̄n, t̄) > 0, it can be easily shown that

x̄T
n t̄ ≤ 1. (6)

Our normalized correlator is based on x̄n and t̄. When x̄T
n t̄ >

η, then xn is detected as a spike. From (6), it follows that

η ≤ 1. (7)

In addition, when x̄T
n t̄ > η, from (5) we see that

d(x̄n, t̄) ≤ 2(1− η), (8)

which is dependent only on the threshold value η. Therefore,
the threshold value for correlation computation uniquely de-
termines the upper bound of squared distance for template
matching after a spike is detected. In addition, a larger η
implies a smaller squared distance d(x̄n, t̄). The upper bound
of η is 1, which is independent on the input spike trains.

The normalized correlator has more meaningful interpreta-
tion for the threshold value η because η ≤ 1, and the upper
bound of squared distance for template matching for a detected
spike is 2(1−η). When η = 1.0 is selected for detection, only
the segments having full correlation with the template t are
considered as spikes, and their squared distance with t is 0.
When η = 0.5, all the segments having half correlation (or
above) with t are detected as spikes, and the upper bound of
their squared distances is 1. When η = 0, even the segments
having no correlation with t are detected as the spikes, and the
upper bound of their squared distances increases to 2. In the
presence of noise, it may be impractical to require the detected
spikes as the segments having full correlation (i.e., η = 1.0).
In our experiments, the requirement of 70 % correlation (i.e.,
η = 0.7) may be sufficient for the normalized correlator to
attain high detection hit rate, low miss rate, and low false
alarm rate even for high noise levels. Detalied discussions of
the normalized correlator can be found in our earlier work in
[9].

Although the normalized correlator simply the process for
the selection of threshold values, it has higher computation
complexities for spike detection as compared with the basic
matched filter technique. This is because the block energy of
each segment need to be computed prior to the correlation
computation. Hardware implementation of the normalized cor-
relator may be beneficial for enhancing the throughput of the
normalized correlator for realtime spike sorting.

III. THE PROPOSED ARCHITECTURE

Figure 1 shows the block diagram of the proposed ar-
chitecture, which contains the filter unit, and block energy
computation unit, the correlator unit, and thresholding unit.
The filter unit is the pre-processing unit for the spike detection.
It removes both the DC offset and noises before the detection
operation. The goal of the block energy computation unit is
to compute the block energy ||xn||2. The correlator unit then
calculates x̄T

n t̄. The detection results are then produced by the
thresholding unit.

A. Filter Unit and Block Energy Computation Unit
In the implementation, the bandpass butterworth filter is

used for the preprocessing operations. The filter can be imple-
mented by shift registers, multipliers and adders. For sake of
simplicity, the details of the implementation is not included.
The direct implementation of the block energy computation
involving N multiplications is also straightforward. Although
N multipliers can be employed for the multiplications, the area
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Figure 1. The Block Diagram of the Proposed Architecture for q templates

Figure 2. The Architecture of the Block Energy Computation Unit

costs can be high. An alternative is based on the observation
that

||xn||2 = ||xn−1||2 + x2[n]− x2[n−N ]. (9)

Therefore, when the block energy of the previous block (i.e.,
||xn−1||2) is known, the computtaion of the block energy
of the current block needs only two multiplication for the
computation of the square of the samples x[n] and x[n−N ], as
shown in Figure 2. There are one N -stage shift register, two
multiplier and two adders in the block energy computation
unit. The shift register is used to hold the values of the past
samples (i.e., x[k], k = n−1, ..., n−N ) in the first-in-first-out
(FIFO) fashion. In addition to providing the value x[n−N ] for
the computation of x2[n − N ], the shift register is beneficial
for the correlation computation in the correlator unit.

B. Correlator Unit
In addition to multiplications, the correlator for the com-

putation of ȳ[n] = x̄T
n t̄ requires the normalization operations.

Although the normalized template t̄ can be obtained offline, the
computation of the normalized x̄n should be carried out online.
A direct implementation of the circuit for the computation of
x̄n is to divide each sample of xn by ||xn||. This would require
N dividers, because the dimension of the block xn is N . An
alternative is based on the post-normalization technique, in
which the inner product xT

n t̄ is computed first. Because the
inner product is a scalar, we can then use only one divider to
compute x̄T

n t̄ by dividing xT
n t̄ by ||xn||.

Figure 3 shows the architecture of the correlator unit for
the case of two templates. Correlators for any q > 0 templates
can be carried out in a similar fashion. As shown in the figure,
there are 2N multipliers, two accumulators, one squared root
circuit, and one divider. The samples of xn are obtained from
the shift register in the block energy computation unit. The
normalized templates t̄1 and t̄2 are pre-stored in the registers
of the unit. To accelerate the correlation computation, there are
N multipliers for the computation of each x̄T

n t̄i, i = 1, 2. In
addition, the accumulation of the multication results are carried
out in a pipelined fashion. The output of each accumulator
is then divided by by ||xn||. Observe from Figure 2 that
the output of the block energy computation unit is ||xn||2.
Therefore, the squared root (SQRT) circuit can be used to
compute ||xn||, as shown in Figure 3.

C. Thresholding Unit
Although the thresholding operations can be easily accom-

plished by a simple comparison circuit, the detection accurracy
may be further improved by taking the detection results
of the neighboring blocks into consideration. Because the
neighboring blocks are overlapping, it is then likely that these
blocks have similar normalized correlation values. A number
of neighboring blocks may then have normalized correlation
values larger than a pre-specified threshold. Consequently, it is
possible that multiple hits may be declared for the occurrence
of a single spike.

One way to solve this problem is not to declare a hit
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Figure 3. The Architecture of the Correlator Unit for q = 2 Templates

Figure 4. The Architecture of the Thresholding Unit for q = 2 templates

when the normalized correlartion value of a block is above the
threshold. The normlalized correlation values of the previous
blocks are also ckecked. Among its K preceding blocks, if k of
them are also above the threshold, a hit is then declared. This
may effectively reduce the false alarm rate for the detection.
The architecture of the thresholding unit is revealed in Figure
4. It can be observed from the figure that a K-stage shift
register is used to store the thresholding results of the K
previous blocks. Each stage contains 1-bit information, where
0 and 1 indicate the corresponding block has correlation value
below and above the threshold η, respectively. Consequently,
when the sum of the output of all the K stages is equal or
above k, then k of the K preceding blocks have correlation
value above the threshold. A hit is then issued.

Note that we may be able to further reduce the false alarm
rate at the expense of a slight increase in true positive rate by
imposing the assumption that spikes are at least M samples
apart. The enforcement of the assumption can be carried out
be an additional M -stage shift register recording the location
of the previous hit. Each stage also has values of 0 or 1. If the

previous hit is less than M samples apart, one of the stage in
the shift register contains value of 1, which disables the hit.
A hit is allowed to be issued only when all the stages contain
value of 0.

D. Noncoherent Energy Detector
The proposed circuit can be simplified by removing the

correlator unit. In this case, the output ||xn||2 of the block en-
ergy computation unit is connected directly to the threshodling
unit. The circuit will declare a hit when ||xn||2 is above the
threshold. This is the noncoherent energy detector proposed by
[7]. As compared with the proposed circuit, the noncoherent
energy detector has the advantages of lower area costs and
power consumption at the expense of slightly lower true
positive rates and/or higher false alarm rates. The circuit is
advantageous for the applications where both the speed and
area costs are the important concerns.

IV. EXPERIMENTAL RESULTS

This section presents some experimental results of the
proposed architecture. The simulator developed in [10] is
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TABLE I. THE TPR AND FAR VALUES OF VARIOUS SPIKE DETECTION ALGORITHMS FOR SPIKE TRAINS WITH VARIOUS SNR LEVELS.

SNR (dB) Normalized Noncoherent NEO SWT Matched

Correlator Energy Detector Filter

10 TPR 93.64 % 91.37 % 93.10 % 94.82% 89.65 %
FAR 0.40 % 5.35 % 3.57 % 6.77 % 2.80 %

1 TPR 90.04 % 88.03 % 87.21 % 92.43 % 82.90 %
FAR 0.92 % 6.36 % 22.49 % 79.36 % 3.02 %

-3 TPR 82.71 % 82.60 % 80.53 % 86.66 % 80.31 %
FAR 1.06 % 9.52 % 57.87 % 82.43 % 8.92 %

Figure 5. An example of the proposed normalized correlator for noisy spike detection with SNR=-3 dB for q = 2 templates.

adopted to generate extracellular recordings. The simulation
gives access to ground truth about spiking activity in the
recording. This facilitates the quantitative assessment of the
proposed architecture, since the features of the spike trains are
known a priori. All the spikes are recorded with a sampling rate
of 24,000 samples/s. Each spike has 64 samples (i.e., N = 64),
and the length of each spike is 2.67 ms.

We first consider the true positive rate (TPR) and false
alarm rate (FAR) of the proposed architecture. The TPR is
defined as the number of detected true spikes divided by the
total number of true spikes. The FAR is defined as the number
of silent segments, which are detected as spikes, divided by
the total number of detected segments. Table I shows the
TPR and FAR of the normalized correlator, the noncoherent
energy detector, NEO, stationary wavelet transform (SWT),
and matched filter for various SNR levels. The number of
neurons is 2. The proposed normalized correlator architecture
therefore uses 2 templates (i.e., q = 2).

It can be observed from Table I that the normalized
correlator has higher TPR and lower FAR as compared with
those of the other algorithms. This is because the correlation
is beneficial for identifying real spikes and ignoring silent

segments. This fact can be further observed in Figure 5,
where the noisy spike train with SNR= -3 dB, and the
normalized correlation values ȳi[n], i = 1, 2, are shown. It can
be observed from Figure 5 that it is difficult to locate spikes
due to large noise corruption. Nevertheless, the normalized
correlation values shown in Figures 5 still provide useful
information revealing the location of true spikes. It is also
interesting to note that the noncoherent energy detector has
TPR and FAR values comparable to those of matched filter.
These results show that the energy is also effective for spike
detection.

Next we evaluate the area complexities. Because adders,
multipliers, dividers, comparators and registers are the basic
building blocks of the architecture, the area complexities are
separated into four categories: the number of adders, mul-
tipliers, dividers, comparators and registers. Table II shows
the area complexities of the proposed architecture. It can be
observed from Table I that the number of adders, multipliers,
and dividers are fixed, and independent of the block dimension
N and number of templates q in the filter unit, block energy
computation unit and thresholding unit. Although the number
of adders and the number of multipliers grows with the N and
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TABLE II. THE AREA COMPLEXITIES OF THE PROPOSED ARCHITECTURE

Filter Block Energy Correlator Thresholding
Unit Computation Unit Unit Unit

Adders O(1) O(1) O(qN) O(1)

Multipliers O(1) O(1) O(qN) O(1)

Dividers 0 0 O(1) 0
Comparators 0 0 0 O(1)

Registers O(1) O(N) O(qN) O(1)

TABLE III. HARDWARE UTILIZATION OF THE FPGA IMPLEMENTATION OF
THE PROPOSED NORMALIZED CORRELATOR ARCHITECTURE

Filter Block Energy Correlator Thresholding Total
Unit Computation Unit Unit Unit

ALUTs 750 649 4571 89 6059
Registers 236 866 2788 13 3903
Memory Bits 0 0 0 0 0
DSP Blocks 24 3 528 0 555

q in the block energy computation unit, only a single divider
is used in the unit because of the employment of the post-
normalization technique. This is beneficial for lowering the
area costs of the circuit.

We further consider the hardware utilization of the pro-
posed normalized correlation architecture implemented by
FPGA. In the experiments, we set the dimension of the spikes
to be N = 64. There are q = 2 templates. The target FPGA in
the experiments is Altera Stratix III EP3SE80F780C2, which
contains 64,000 adaptive lookup tables (ALUTs), 64,000 regis-
ters, 6,331,392 memory bits, and 672 DSP blocks. The FPGA
design platform is Altera Quartus II 13.0. Table III shows the
number of ALUTs, the number of registers, the number of
memory bits, and the number of DSP blocks consumed by
each unit of the proposed circuit. It can be observed from
Table III that many of the ALUTs, registers and DSP blocks
provided by the target FPGA are consumed by the correlator
unit because the inner product operations are required in the
unit.

When only the noncoherent energy detection is necessary,
the correlator can be removed. Therefore, the area costs can be
effectively lowered. Table IV shows the hardware utilization
of the proposed normalized correlation architecture and the
proposed noncoherent energy detection architectures. It can be
observed from Table IV that the noncoherent energy detection
architecture has lower hardware utilization. In particular, the
utilization of DSP blocks is 3, which is only 0.54 % (i.e.,
3/555) of that utilized by the normalized correlator architec-
ture.

The proposed architecture is used as a hardware accelerator
in a NOC platform for the speed evaluation. The NOC is
designed by Altera Qsys 13.1. The NOC consists of a NIOS
II softcore processor, an embedded RAM, and the proposed
circuit. The noisy spike sequences are stored in the embedded
RAM. The NIOS II processor activates the delivery of the
spike sequence from the RAM to the proposed circuit for spike
detection. Upon the completion of spike detection operations,
it also collects the results of the spike detection for subsequent
spike sorting operations. When operating at the clock rate
50 MHz, the proposed architecture is able to complete the

TABLE IV. COMPARISONS OF HARDWARE UTILIZATION OF THE
NORMALIZED CORRELATOR AND NONCOHERENT ENERGY DETECTOR

FPGA IMPLEMENTATIONS

ALUTs Registers Memory Bits DSP Blocks

Normalized
Correlator 6059 3903 0 555
Noncoherent
Energy Detector 1488 1115 0 3

detection operation in 52 ms for a spike sequence with length
of 100 seconds. By contrast, the computation time of its
software counterpart running in the 1.7 GHz Intel I-7 processor
for the same spike sequence is 1.58 second. The speedup of
the hardware acceleration therefore in 30.38 (i.e., 1.58 second
vs. 52 ms). All these facts demonstrate the effectiveness of the
proposed architecture.

V. CONCLUSION

The proposed normalized correlator architecture has been
implemented by FPGA for performance evaluation. Experi-
mental results show that the architecture is effective for spike
detection. It has the advantages of high TPR, low FAR, and fast
computation. For spike trains with SNR = -3 dB, the proposed
normalized correlator is able to achieve TPR 82.71 % and FAR
1.06 %. In addition, the speedup of the proposed architecture
in the NOC operating at 50 MHz over its counterpart is
30.38. The proposed architecture can also be simplified to a
noncoherent energy detector when lower hardware costs are
desired at the expense of a slight degradation in detection
performance.
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