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Abstract— A workbench for intrinsic evolution of digital 
circuits is presented, based on a Cartesian Genetic 
Programming algorithm running on a personal computer and 
a reconfigurable platform suitable for run-time 
reconfiguration. Two types of Cartesian cell structures are 
proposed, based on a cylindrical interconnection grid. In 
addition to a feed-forward network, the cylindrical grid can 
allow feedback loops as well.  The proposed structures are 
combined with dedicated communication and control logic, 
producing automatically a fitness result for each circuit 
configuration. The proposed system is tested with known 
digital circuits and evaluated in terms of resource usage and 
configuration speed. 

Keywords - Evolvable Hardware; intrinsic evolution; 
reconfigurable hardware; Cartesian structures; 

I.  INTRODUCTION  
A lot of research has been directed in recent years 

towards the study of evolvable hardware (EHW), which is a 
field of evolutionary computation that employs evolutionary 
algorithms for the building of electronic circuits [1]-[3]. 
Evolvable hardware is an offspring of Genetic 
Programming, an evolutionary technique originally 
proposed for the evolution of software. In EHW, the circuits 
are encoded into genotypes, traditionally using tree 
structures, and more recently using Cartesian lattices or 
other forms, like binary strings. From the genotype the 
actual circuit or phenotype is constructed and tested, either 
in a simulator, as in the case of extrinsic evolution [4] [5] or 
in a reconfigurable device, as in intrinsic evolution [6]-[8]. 
Evolvable hardware can have a number of important 
applications, most notably in the automatic design of 
adaptive and fault-tolerant systems [3] and in the design of 
digital circuits, where new unconventional forms of known 
circuits can be found and new design principles can be 
derived [9] [10].  

A variation of Genetic Programming, called Cartesian 
Genetic Programming (CGP), encodes a digital circuit as a 
directed graph, where functional units are represented by a 
rectangular array of nodes connected together to perform a 
computational task on binary input data [9] [11]. The 
genotype is a binary string that represents connections and 
gate functions. Based on this concept evolvable hardware 

platforms have been proposed, both for extrinsic and for 
intrinsic evolution of digital circuits [5] [8] [9]. Also, 
following the notion of a Cartesian node array, a new type 
of reconfigurable platform has been introduced, the Virtual 
Reconfigurable Circuit, or VRC [12] [13]. A VRC is a new 
reconfigurable device realized on top of an ordinary Field 
Programmable Gate Array (FPGA), consisting of an array 
of Programmable Elements, interconnection network and 
configuration memory, all implemented on the available 
resources of a common FPGA device. The VRC concept has 
been utilized for the evolution of combinational circuits 
[14], and the evolution of components for image and signal 
processing [8]. 

The simple merit of such circuits is that while they 
adhere to the basic LUT cell structure of an FPGA chip, 
they are still open to full run-time reconfiguration by the 
user, through well determined configuration rules set by the 
matrix designer. In this way, the VRC reconfiguration 
circumvents the need for low-level configuration. The latter 
requires complicated low-level knowledge of the particular 
FPGA chip and the development of custom compilation 
tools. Both tasks are daunting and are usually hindered by 
undisclosed information or by the advent of new devices 
that revolutionize the field.  

In this paper, a workbench for intrinsic digital evolution 
experiments is designed and implemented in a Field 
Programmable Gate Array. The system includes a host 
computer running a genetic programming application and a 
communication channel that allows the run-time 
reconfiguration of the evolvable platform. The configuration 
string is composed of the genotype encoded according to the 
CGP principles, while the phenotype is implemented and 
evaluated in the reconfigurable device.  

The concept implemented in the proposed workbench is 
based on reconfigurable hyper-structures following the 
general idea of the VRCs. They form two-dimensional 
arrays of cells, which are interconnected with a predefined 
fixed or programmable switching array. The proposed 
structures adhere to specific interconnection properties 
derived from a cylindrical interconnection grid. In addition 
to the feed-forward network, the cylindrical grid can allow 
feedback loops as well. The proposed Configurable 
Cylindrical Structures or CCS are combined with custom 
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communication and control logic, implemented as finite 
state machines. The peripheral logic allows communication 
with a PC host application over a serial port. An embedded 
register file is used in order to store the configuration 
values. Additional logic automatically produces a fitness 
result for each circuit configuration. The controller returns 
this fitness result to the host computer and the host CGP 
application proceeds to reconfigure the CCS.   

In this preliminary phase, the proposed workbench is 
tested using configuration strings corresponding to typical 
test-benches for evolutionary design. The overall time for 
CCS configuration and fitness response is measured as a 
function of CCS dimensions. The required FPGA resources 
for the implementation of the CCS are also measured as a 
function of circuit complexity. In this way, the suitability of 
the proposed workbench for intrinsic evolution experiments 
is evaluated. 

The remaining of the paper is organized as follows. In 
Section II, two alternative CCS circuits are reported and 
their differences are discussed. In Section III, the overall 
architecture, including the dedicated controllers and fitness 
logic, is presented. In Section IV, test configurations are 
conducted and evaluation results are reported, while in 
Section V, the paper is concluded. 

II. THE CONFIGURABLE CARTESIAN STRUCTURES  

A. CCS-1: A feed-forward Cartesian structure  
The proposed configurable structures are developed as 

parameterizable blocks using the hardware description 
language VHDL, where external parameters are the required 
number of rows and columns in the Cartesian structure and 
the number of inputs and outputs in the CCS device. In Fig. 
1, the first hyper-structure (CCS-1) implemented in the 
proposed workbench is presented. It is a two-dimensional 
lattice of two-input one-output cells connected with a fixed 
feed-forward interconnection grid. Each output can feed two 
separate forward inputs. In addition, the interconnection 
grid has a cylindrical structure, meaning that the lower-row 
cells are seamlessly interconnected with the upper-row cells. 
As a result, all cells of the hyper-structure receive inputs 
adhering to the same interconnection rules and the structure 
can automatically expand using a FOR GENERATE 
statement in VHDL. 

The first column in the design of Fig. 1 is a set of 
multiplexers the role of which is to distribute the input 
signals to the front-end cells. There are two p-input 
multiplexers per cell, where p is the number of inputs of the 
target circuit. Depending on the required number of outputs 
q, q N:1 multiplexers in the output stage select one among 
the N possible outputs. 

Each cell is composed by a 2-input LUT implemented 
by a four to one multiplexer, as shown in Fig. 2. The LUT is 
able to implement in total sixteen different two-input functions, 
including the basic digital gates.  

 
 

Figure 1.  A simple 4x4 Cartesian structure (CCS-1) with a fixed grid of 
interconnections.  

An embedded register file is used in order to store the 
configuration scheme. The cell can easily be enhanced, in 
future expansions, to include a flip-flop in each cell, for 
sequential circuit design. A 4-bit register, where the 
configuration bits are stored, corresponds to each cell in the 
hyper-structure. Additionally, configuration registers are 
attributed to the selection bits of the input multiplexers. The 
register file is rewritten during reconfiguration at run-time, 
at all instants when the genetic algorithm updates the 
evolving circuit. Table I presents all possible gates and logic 
functions that a cell can implement, along with their 
corresponding binary configuration patterns. A and B are the 
cell inputs. In order to configure the four-input, four-output 
4x4 lattice of Fig. 1, a total of eighty eight configuration bits 
is required nominally. These bits are distributed between the 
selection bits of the eight 4:1 input multiplexers (2x8=16 
bits), the sixteen lattice cells (4x16=64 bits) and the four 
output multiplexers (2x4=8 bits). 

 
 

Figure 2.  Four–to-one multiplexer implementing the 2-input LUT for 
each cell of the proposed hyper-structure. 
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TABLE I.  THE SIXTEEN LOGIC FUNCTIONS CORRESPONDING TO 4-BIT 
CONFIGURATION PATTERNS  

X3   X2   X1   X0 Implemented logic Boolean 
function 

0     0     0      0 Always outputs zero 0=F  
0     0     0      1 F=A NOR B BAF +=  
0     0     1      0 F=A AND NOT(B) BAF ⋅=  
0     0     1      1 F=NOT(B) BF =  
0     1     0      0 F=NOT(A) AND B BAF ⋅=  
0     1     0      1 F=NOT(A) AF =  
0     1     1      0 F=A XOR B BAF ⊕=  
0     1     1      1 F=A NAND B BAF ⋅=  
1     0     0      0 F=A AND B BAF ⋅=  
1     0     0      1 F=A XNOR B BAF ⊕=  
1     0     1      0 Transfers A AF =  
1     0     1      1 If B then F=A BAF +=  
1     1     0      0 Transfers B BF =  
1     1     0      1 If A then F=B BAF +=  
1     1     1      0 F=A OR B BAF +=  
1     1     1      1 Always outputs 1 1=F  

 
The configuration file increases according to the dimensions 
of the Cartesian structure and the number of inputs and 
outputs. In the present implementation, the register file 
consists of 8-bit registers, since they are compatible with 8-
bit communication over the serial port. The proposed 
register file architecture is shown in Fig. 3. Following this 
scheme, the configuration of the hyper-structure of Fig. 1 
requires four bytes for input routing and sixteen bytes for 
cell configuration.  If the circuit produces two outputs, then 
two additional bytes are needed. In this, way, the 
configuration file includes many redundant bits which 
however can be used in future expansions. For example, 
attributing one byte to each pair of input multiplexers, 
allows for up to four useful selection bits or up to sixteen 
input channels. This is more than the number of inputs 
required in most of our present evolution tests. Also, 
according to Fig. 3, one 8-bit register is attributed per lattice 
cell. Although only the four lower bits are useful in the 
present design, the higher bits can be used in later upgrades 
in order to support function generators with 3-input LUTs. 
The role of input, output and configuration bits in the basic 
2-input LUT cell is shown in Fig. 2. 

B. CCS-2: A more General Cartesian Structure  

An alternative Cartesian Structure (CCS-2) is presented 
in Fig. 4. The configurable cells belong again to an NxM 
lattice; however the interconnection grid is more flexible 
than that of CCS-1, since it is implemented by multiplexers 
allowing sets of predefined connections. The output of each 
cell can be selected to provide input to four different 
neighboring cells, namely to three forward cells in the next 
column and to the adjacent cell on the row below. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.  Architecture of the 8-bit register file used for the configuration 
of the CCS structure of Fig. 1. Indices correspond to the cells of the 2D 
lattice. 

Each cell input can be connected to one of two possible 
outputs. The selection process is achieved by two-to-one 
multiplexers. The interconnection grid has again a 
cylindrical structure as indicated by the arrows in Fig. 4. In 
this case, the cylindrical interconnections allow the creation 
of feedback loops, since an output can be transferred 
through a column and return as input to the same cell. For 
example, the output of cell 3 can go through cells 7, 11, 15 
and return as input to cell 3. 

 
Figure 4.  The hyperstructure CCS-2. Two-input multiplexers are used for 
the routing of interconnections between cells. 
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Figure 5.  Architecture of the 8-bit register file used for the configuration 
of CCS-2. Indices correspond to the cells of the 2D lattice.  

The register file employed for the configuration of CCS-
2 is shown in Fig. 5. In this file, each 8-bit cell register is 
divided in a four-bit nibble for cell configuration (b3 down 
to b0) and a nibble for multiplexer configuration (only bits 
b4 and b6 are used). Input multiplexers have dedicated 
registers at the beginning of each row, while first column 
cells use only the lower nibble of a configuration register. 

Variations of the above Cartesian structures can lead to a 

trade-off between interconnection flexibility and reduced 
complexity. More interconnection options increase the 
possibility to reach a solution. At the same time, the search 
space is expanded and complexity is increased. A fixed 
interconnection grid can reduce complexity for some 
problems but it may also require a larger grid in order to 
implement a solution. 

III. CONTROLLER ARCHITECTURE 
The main setup of the proposed workbench consists of a 

PC running the evolutionary algorithm and an FPGA board. 
The FPGA is configured to implement the CCS design and 
supportive hardware logic for configuration, testing and 
control. A dedicated custom controller and datapath was 
designed for the configuration of the Cartesian structure in 
the FPGA device. The datapath includes logic which 
produces the test patterns for the evaluation of each circuit 
configuration and returns a fitness result to the evolutionary 
algorithm. The overall architecture is based on 8-bit 
registers and is presented in Fig. 6. It includes a UART 
peripheral controller supporting communication with the 
host PC application over the serial port and a streaming 
controller implementing the algorithmic steps of the 
configuration and testing procedure, in the form of a finite 
state machine. Other system blocks are the register file for 
the storage of configuration data, the CCS structure which is 
configured by the evolutionary algorithm and a “ground 
truth” block, where the target logic is implemented. Finally, 
a computational block extracts the Hamming distance 
between the truth tables of the target logic and the CCS 
logic under test.  

The heart of the system is the streaming controller. It 
produces clock and control signals to all other blocks and 
makes data available to other blocks through the system bus. 
It can initiate a UART “receive” or “transmit” operation, it 
clocks successive test inputs to the CCS and returns the 
Hamming distance to the host computer, as a fitness result

 

 
 

Figure 6.  Block diagram of the implemented system architecture.
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for circuit evaluation. Then, the genetic algorithm evaluates 
the result and produces a new genotype in the form of a new 
configuration array. This procedure is repeated until the 
genetic algorithm reaches a predefined number of 
generations. Fig. 7 presents the basic state diagram of the 
streaming controller, between successive configurations. At 
the beginning, the controller is at the “idle” state waiting for 
a protocol character, signaling the beginning of a 
configuration stream. The controller enters the “receive” 
state and counts the number of received data. It repeats the 
reception until all expected data in the configuration array 
have been received. Then, a “test” process begins, where the 
controller employs a finite state machine in order to create 
successive test patterns as input to the CCS and the ground 
truth blocks. At each repetition, a clock pulse is sent to the 
Hamming distance block, where the Hamming distance is 
accumulated. When all test patterns have been tested, the 
total Hamming distance is transmitted back to the computer 
via the serial port. The controller returns to the “idle” state 
waiting for a new configuration array. 

IV. TESTS AND EVALUATION 
At the present stage, the proposed workbench is used to 

configure a number of test circuits in the CCS. The system 
is evaluated in terms of the required hardware resources and 
total response time. The response time is significant in 
evolution experiments, since the configuration cycle is 
repeated for hundreds of thousands times.   

 
Figure 7.  State diagram of the implemented controller. 

 
Figure 8.  Example configuration of the full-adder, implemented with the 
Cartesian structure of Fig. 1 (CCS-1). 

The structures were verified with a number of test 
configurations. The following widely used test circuits were 
implemented: a. the half adder, b. the full adder, c. the 2:4 
binary decoder, d. the 2:1 and 4:1 multiplexer, e. the 2-bit 
multiplier. These circuits can be effectively implemented by 
both hyper-structures employing grids of variable sizes. The 
possibility for feedback loops in CCS-2 can be used to 
implement latches. The list of our test-circuits is therefore 
concluded with f. the S-R latch g. the D-latch.  

An interesting implementation is that of the full adder. 
CCS-1 can implement the full adder using a 4x3 cell grid 
configured as shown in Fig. 8. Several cells are configured 
as “transfer” gates. Eighteen configuration bytes are 
required in this example. Two bytes correspond to the 
output multiplexers. CCS-2 can implement the same circuit 
in a 3x3 grid. An implementation of the S-R latch is shown 
in Fig. 9. 

The resource requirements of the overall system shown 
in Fig. 6 are quite low. As shown in Table II, the supportive 
control-and-test logic requires 220 logic elements (LE) and 
150 registers, while the CCS structures require an increasing 
amount of LE out of a Cyclone II 2C35 FPGA device. 

 
Figure 9.  S-R latch implemented using the CCS-2 structure. 
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TABLE II.  RESOURCE  USAGE (CYII 2C35F672) 

Hardware block Logic Elements Total registers 
Control and test logic 220 150 

CCS-1 (2x2) 19 18 
CCS-1 (4x4) 126 79 
CCS-1 (8x8) 438 293 

CCS-1 (16x16) 1521 1099 
CCS-2 (2x2) 79 40 
CCS-2 (4x4) 208 127 
CCS-2 (8x8) 591 429 

CCS-2 (16x16) 2003 1603 

CCS-1 and CCS-2 refer to the structures of Figures 1 and 
4, respectively. The number of required LEs follows an 
almost linear dependence on the number of cells in the 
structure. The FPGA device used in our experiments 
provides a total of 33216 LE; therefore, very large structures 
can be implemented. The system was clocked at 100 MHz.  
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Figure 10.  Total time for configuration and fitness response, as a function 
of grid size. 

Another test concerns the response time for the full CCS 
configuration and response loop. Fig. 10 shows the total 
response time measured from the beginning of the 
transmission of the configuration string until the reception of 
the Hamming distance, for various sizes of the cell array. 
The implemented baud rate is 115Kbps. Since the total 
response time is within several milliseconds, the system can 
implement and test a large number of phenotypes within a 
reasonable time interval. 

V. CONCLUSIONS 
A workbench for intrinsic evolution of digital circuits is 

proposed. Genotypes are encoded following the principles 
of Cartesian Genetic Programming, while phenotypes are 
implemented in a reconfigurable device, making use of 
expandable 2D arrays of cells. As opposed to previous 
implementations, the proposed hyper-structures are based 
on a cylindrical interconnection grid, which reduces 
complexity and increases interconnection flexibility. Also, 
the proposed grids allow for feed-forward as well as for 
feed-back connections between the matrix cells. 

A custom embedded controller configures the hyper-
structures at run time while additional supportive task logic 
produces the required test patterns for fitness evaluation. 
The system is verified by implementing a series of test 
circuits and is evaluated in terms of the required resources 
and response time, for various matrix dimensions.  
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