
Infrastructure-as-Code for Scientific Computing Environments

Daniel Adorno Gomes

University of Trás-os-Montes and Alto Douro
Vila Real, Portugal

www.utad.pt
Email: adornogomes@gmail.com

Pedro Mestre
and Carlos Serôdio

Centro Algoritmi
University of Minho, Guimarães, Portugal

CITAB - Centre for the Research and Technology of
Agro-Environmental and Biological Sciences
University of Trás-os-Montes e Alto Douro

www.utad.pt
Email: pmestre@utad.pt, cserodio@utad.pt

Abstract—Infrastructure as Code (IaC) is receiving a lot of
attention because of the positive results demonstrated in envi-
ronment provisioning that supports both corporate and scientific
applications. One of the biggest challenges related to the software
development that supports scientific research projects is to obtain
similar results to those that were published when that research
is reproduced. Obtaining the same results involves recreating the
same computational environment as the one used by the original
researchers, and IaC is a paradigm that can help on this issue. In
this paper, the authors provide a state-of-the-art and a literature
review on IaC. Some work done on infrastructure provisioning
based on IaC is presented and analyzed. A section shows how
IaC can solve some typical issues on scientific computational
environments. In other words, it is described how IaC practices
were applied in a real case. Based on what is presented in this
paper, and considering the scientific context, the use of IaC can
help in many aspects like the quality of the developed software
and the improvement of the results obtained in reproducible
research.

Keywords–IaC; devops; infrastructure-as-code; configuration
script; continuous deployment; continuous delivery; continuous
integration; reproducible research.

I. INTRODUCTION

The provision of the computational environment that sup-
ports scientific research has always been one of the main
problems faced by researchers. In 2009, Jon Claerbout, a re-
searcher at Stanford University who worked with data analysis
and development of algorithms for geophysical exploration,
reported that he had great difficulty reproducing algorithms
and results reported by other researchers [1]. He reported
also, that the same situation was occurring in his laboratory.
Quite frequently his students and researchers faced problems
to reproduce the results generated by their own research [2].

Even when we have similar setups, but on different servers,
if for example the operating system is not the same, the
software that will run on those servers can have different
behaviors. It is therefore essential to have the same depen-
dencies between the software components of the environment,
to get similar results to those that have been disclosed. The
computational environment used in the context of a particular
scientific research has to be exactly the same in all aspects re-
lated to software, especially with respect to operating systems,
compilers, libraries and their respective versions [3].

Enterprise and web applications differ in many aspects
from scientific software, but when the subject is the infras-
tructure, they have faced the same issues. To guarantee the
behavior of the applications will be the same on develop-
ment, test and production environments, many companies like
Github, Mozilla, Facebook, Google and Netflix have adopted
an approach called Infrastructure-as-Code (IaC). The idea
behind IaC is to provide the entire computer and network
infrastructure through scripts. That is, no task that is related
to the provisioning of the computational environment must
be done manually, but in a programmatic way, both to avoid
mistakes and to make the environment reproducible as many
times as needed [4][5].

As we can see in Figure 1, there was a growing interest
on IaC, mainly, in the last 6 years. The chart, obtained from
Google Trends, shows the numbers of search results for the
term ”Infrastructure as Code” over the last 10 years.

Figure 1. Search results for the term ”Infrastructure as Code”. Based on [4].

This paper presents a state-of-the-art and a literature re-
view on IaC, that supports the section that highlights which
IaC methods and techniques fit best for scientific computing
environments.

The rest of the article is organized as follows: Section
2 presents the state-of-the-art on IaC. Section 3 makes a
review of the literature on IaC. Section 4 presents a series of
suggestions on how IaC can be applied on scientific computing
environments. Section 5 describes a real case of applying IaC

7Copyright (c) IARIA, 2019. ISBN: 978-1-61208-754-2

CENTRIC 2019 : The Twelfth International Conference on Advances in Human-oriented and Personalized Mechanisms, Technologies, and Services

practices. Finally, in Section 6 it is presented the discussion
and the conclusion.

II. INFRASTRUCTURE-AS-CODE

In the last decade, due the growing of cloud computing
demands, a new practice has been adopted to provide comput-
ing and network infrastructure through the use of source code.
This approach, called Infrastructure-as-Code (IaC), permits to
manage infrastructure the same way as if it was a software
systems [6].

With IaC we have a dynamic infrastructure where the
servers are created with all the configuration and software
needed, just by using commands in executable files such as
shell-scripts. All the operations like to create a new server,
change its configuration, install or uninstall software depends
on just running a script.

Using scripts to define our infrastructure means that our
environments will have more consistency and it will be more
reliable. Manual provisioning can have different interpretations
of the same instructions, resulting in different configurations
and faults that are not easy to identify, mainly, when these
environments are not monitored. Scriptable infrastructure can
guarantee a consistent monitoring, as well [7].

This approach is based on some practices as follows [8]:

• Definition Files: all configurations are defined in shell-
script files called definition files. This means that all
the updates that we need to apply in the infrastructure
are executed from these files for example install a
database, increase the memory of a Virtual Machine
and create a new server. There is no manual inter-
vention. As all the updates are defined by source
code in scripts, the changes can be applied in test
environments as much as necessary to certify the
production environments will be modified correctly.

• Self-documented systems and processes: Instead of
creating documents with instructions to be executed by
humans, scripts can contain the documentation of the
systems and processes and the commands that need to
be applied in the infrastructure. Besides, they are more
precise and consistently than humans when executing
these instructions.

• Version control: all the code need to be kept in a
version control system like Git or Github. This way the
infrastructure can be versioned. Every configuration
and every change is kept to help diagnose problems
that might happen.

• Continuous test: like we have seen recently on modern
software system, tests are essential to rapidly find
errors, even in infrastructure source code. Like any
other kind of software, we can set up continuous
integration pipelines to test and guarantee the quality
of our code. The continuous integration will support
the continuous deployment and delivery practices.

• Continuous deployment: an update with many simulta-
neous changes on the infrastructure can present a high
number of issues. Continuous deployment pipelines
can help to mitigate this problem, once making small
updates it is faster to find errors and fix them.

• Continuous delivery: with this practice it is possible to
decrease the downtime of the systems on upgrades or
fixes, using techniques like Blue-Green Deployment
and Parallel Change to apply small updates.

Figure 2. Infrastructure-as-Code workflow.

Adopting these practices, we can follow a well-defined
workflow to provide infrastructure using IaC, as shown in
Figure 2.

III. RELATED WORKS

In this section authors present a literature review and
related works, made by other authors done in the field of
infrastructure-as-code. These authors applied it to different
areas of the software industry and scientific applications.

Garcia and Castillo [9] made a presentation about the
main characteristics of the Cloud computing and virtualization
techniques, discussing how benefit these features could be
when used in scientific applications. In this paper, these authors
highlight that neither virtualization nor cloud resources are
commonly used in scientific computing environments due an
idea that virtualization techniques have a negative impact
on this kind of environments. They discuss the viability of
the Infrastructure-as-a-Software cloud paradigm to attend the
requirements of the computational science and the main issues
that need to be addressed by the cloud players to provide the
needed conditions to obtain the maximum benefit from this
type of infrastructure.

Cole and Moore present in [10] a guide for creating
biomedical workflows based on cloud computing environ-
ments. They show some cloud computing tools and charac-
teristics that can help to increase reproducibility, scalability,
resilience, fault-tolerance, security of software applications.
Also they highlight how this paradigm can be cost and time ef-
ficient. They provide also an overview on how researchers can
make the transition of their traditional biomedical informatics
workflows to cloud environments.

In [11], Parnin et al. present a research work about the
use of IaC in continuous deployment. Professionals from 10
different companies were interviewed by the authors. They
reported the practice of IaC have changed the way how
IT companies are managing their infrastructure. They also
reported that the most frequent automation is related with unit
testing, staging, and branching. When development focuses on
delivery speed is essential to adopt continuous deployment, but
some aspects like architecture and safety can have a decrease
in quality, and they need a special attention.

In [12] members of the UC Berkeley D-Lab, Statistical
Computing Facility (SCF), and Berkeley Research Comput-
ing (BRC) present strategies to reduce the complexity on
creating scientific computing environments based on DevOps
concepts. They start by showing some training, research use-
cases and tools that support their strategies and help to create
environments with more accessibility, productivity, reuse, and
reproducibility. After, they present a DevOps framework that

8Copyright (c) IARIA, 2019. ISBN: 978-1-61208-754-2

CENTRIC 2019 : The Twelfth International Conference on Advances in Human-oriented and Personalized Mechanisms, Technologies, and Services

supported the creation of the Berkeley Common Environment
(BCE). The BCE provides a standard reference that explains
how to run a variety of projects on different platforms. This
environment is available to be deployed on VirtualBox and
Amazon EC2 environments, but it can be also provisioned
for other platforms. It is expected to achieve identical results
across any platform.

Howe [13] makes a presentation about the main charac-
teristics of the virtualization on cloud computing platforms,
focusing the use of virtual machines to provide computational
environments for scientific research projects. He refers that a
virtual machine can contain the entire working environment
of the research project, including its data, all software, notes,
logs and scripts, facilitating the reproducibility of the research.
He presents a discussion about the consequences and benefits
of the use of such a model, and shows the adaptations that
are needed to use this approach in scenarios where of the
reproducibility is more complex.

Boettiger presents in [14] the issues related with the
reproducibility of the source code developed for a specific
research project. He points the reasons why the code cannot be
executed or extended by other researchers with success. Also,
he provides a review on different approaches like virtual ma-
chines and workflow systems, showing their limitations. The
Docker technology is analyzed by the author, that shows the
advantages of the containerization like portability, reusability,
versioning and cross-platform, and how it can address those
challenges that are related to the provisioning of computational
environments for scientific research.

IV. IAC FOR SCIENTIFIC COMPUTING ENVIRONMENTS

Based on the state-of-the-art and the review of the literature
presented in the above section, in this topic it will be high-
lighted the advantages of the adoption of the IaC practices
and techniques, on scientific environment provisioning. Some
typical issues faced by researchers will be shown and it will
be discussed how IaC can help to solve them.

As mentioned in the above Introduction section, one of the
most common issues reported by researchers on reproducing
results is related with the computational environment. Less
than 50% of software can be built or installed successfully. It is
necessary for a huge effort to recreate the original environment
and get similar results [15]. IaC fits perfectly in this scenario.
Once the environment is defined in shell-script files and these
files are stored in version control repositories, researchers can
reproduce exactly the original environment anytime. Besides,
the environment can be versioned and the results of the
research can be related to each version.

Another issue reported is related to the documentation, and
on how to install and run the code associated with a published
work. This problem is related not just with the software
environment but with the code produced by the researchers
as well. Gilbert et al. [16] published a study where just 30%
of the analyzed researches had their results reproduced due
imprecise documentation. This kind of problem can be easily
addressed using IaC practices once all the documentation is
embedded in the definition files combining instructions and
code in the same place.

A problem known as “code rot” is a kind of issue that
affects the results of the reproducible research due updates

of the computational environments. Before to start creating
a new system, developers have to decide which will be the
Operating System, the development language, the libraries
and the database technology that will be used in the project.
Practically, the new software will have many dependencies of
this environment that are not static [14]. A simple update to fix
bugs on the operating system or replace deprecated features in
the libraries can change the results produced by the code. To
mitigate this kind of concern, there are some practices used
in IaC like containerization and virtualization that permit to
create and store an image of the entire environment. In this
way, the results can be reproduced by other researchers using
the same infrastructure created by the original researchers [17].

V. A CASE STUDY

In this section will be described, in a brief way, all the
steps and resources needed to provisioning an environment to
support a real scientific experiment on computer vision. This
environment was used for the development of a software appli-
cation capable of identifying canine dysplasia cases, from the
analysis of x-ray images. This research involved researchers
from the Agrarian and Veterinary Sciences School and the
Science and Technology School of the University of Trás-os-
Montes and Alto Douro, Portugal.

Initially, it was defined that the environment should be
provisioned as a virtual machine. In this way, it could be
recreated at any time, by any of the researchers, in any
available platform, more specifically, stand-alone, on-premise
or cloud platform. For this project it was decided empirically
that the VM should have 4 GB of RAM and 50 GB of disk
space. In Table I are shown which software applications were
defined to compose the environment.

TABLE I. LIST OF SOFTWARE APPLICATIONS DEFINED TO COMPOSE THE
ENVIRONMENT.

Type Software Version
Operating system Linux Ubuntu Server Xenial v16.04 (LTS)
Programming language Python v2.7.12
Container platform Docker v18.09.0
Deep learning framework Tensorflow v1.7

The flow to provide this environment started with a tool
called Vagrant v2.2.5. All the software and hardware needed
to create the environment were described on Vagrant that
generated a script with all these definition, and executed it
creating a VM. The Figure 3 shows part of the script source
code.

The first version of the script was uploaded to Github
repository. The VM were used to execute tests on the installed
software and their respective versions. After the test, the
Vagrant script was updated with new commands to remove
all versions of Python different of the version chosen by the
researchers to avoid conflicts. After more tests, a new version
of the script was uploaded to Github.

The last step was to validate if the code produced by
the researchers could be compiled and ran properly on this
environment, generating consistent results. Having a tested
version of the script on Github, all the researchers could
download it and create the same environment on their own
equipment to reproduce the experiment, getting the same
results.

9Copyright (c) IARIA, 2019. ISBN: 978-1-61208-754-2

CENTRIC 2019 : The Twelfth International Conference on Advances in Human-oriented and Personalized Mechanisms, Technologies, and Services

Figure 3. Script with the definitions of the environment.

This is a very simple example case study, but that can be
used to show that the use of Infrastructure-as-Code can be very
helpful to obtain reproducible research.

VI. CONCLUSION AND FUTURE WORK
In this paper the authors made a presentation of the state-

of-the-art and a literature review on Infrastructure-as-Code and
how it can be used to obtain reproducible research. Some
aspects related to practices and techniques that are used by
other researchers were discussed, and a workflow based on
these items was proposed.

In the section about the work done by in this field, we could
follow how IaC can have a very positive impact in software
development development, both for enterprise and scientific
applications. Also, this work discussed some typical issues
related to scientific computational environments and showed
how IaC can help to address them.

As future work, we propose to implement a scientific
computational environment applying the practices of IaC, and
compare it with traditional methods of computer infrastructure
provision, in terms of costs and time.

The above presented methods will also be very helpful
in other Data Center applications, in Virtual Machine provi-
sioning, by defining the base infrastructure for other scientific
projects under development in the authors Research Centres
and University, or even to define the basic infrastructure to be
used by students in their projects.

ACKNOWLEDGMENT

This work is supported by National Funds by FCT
- Portuguese Foundation for Science and Technology,
under the project scopes UID/CEC/00319/2019 and
UID/AGR/04033/2010.

REFERENCES
[1] D. L. Donoho, A. Maleki, I. U. Rahman, M. Shahram, and V. Stodden,

“Reproducible Research in Computational Harmonic Analysis,” Com-
puting in Science Engineering, vol. 11, no. 1, Jan 2009, pp. 8–18.

[2] M. Schwab, N. Karrenbach, and J. Claerbout, “Making scientific
computations reproducible,” Computing in Science Engineering, vol. 2,
no. 6, Nov 2000, pp. 61–67.

[3] L. A. Barba and G. K. Thiruvathukal, “Reproducible Research for Com-
puting in Science Engineering,” Computing in Science Engineering,
vol. 19, no. 6, November 2017, pp. 85–87.

[4] A. Rahman, R. Mahdavi-Hezaveh, and L. Williams, “Where Are
The Gaps? A Systematic Mapping Study of Infrastructure as Code
Research,” Information and Software Technology, vol. 18, April 2018,
pp. 65–77.

[5] M. de Bayser, L. G. Azevedo, and R. Cerqueira, “ResearchOps:
The case for DevOps in scientific applications,” in 2015 IFIP/IEEE
International Symposium on Integrated Network Management (IM),
May 2015, pp. 1398–1404.

[6] D. Chapman. Introduction to DevOps on AWS. [Online].
Available: https://d1.awsstatic.com/whitepapers/AWS DevOps.pdf [re-
trieved: September, 2019]

[7] Introduction to DevOps on AWS. [Online]. Avail-
able: https://d1.awsstatic.com/whitepapers/AWS DevOps.pdf [re-
trieved: September, 20179]

[8] K. Morris, Infrastructure as Code: Managing Servers in the Cloud,
1st ed. O’Reilly Media, Inc., 2016.

[9] Á. L. Garcı́a and E. Fernández-del-Castillo, “Analysis of Scientific
Cloud Computing requirement,” in Proceedings of the 7th Iberian Grid
Infrastructure Conference, Madrid, Spain, September 2013, pp. 147–
158.

[10] B. S. Cole and J. H. Moore, “Eleven quick tips for architecting biomedi-
cal informatics workflows with cloud computing,” PLOS Computational
Biology, vol. 14, no. 3, March 2018, pp. 1–11.

[11] C. Parnin, E. Helms, C. Atlee, H. Boughton, M. Ghattas, A. Glover,
J. Holman, J. Micco, B. Murphy, T. Savor, M. Stumm, S. Whitaker, and
L. Williams, “The Top 10 Adages in Continuous Deployment,” IEEE
Software, vol. 34, no. 3, May-June 2017, pp. 86–95.

[12] D. Clark, A. Culich, B. Hamlin, and R. Lovett, “BCE: Berkeley’s
Common Scientific Compute Environment for Research and Education,”
in Proceedings of the 13th Python in Science Conference, Austin, USA,
July 2014, pp. 5–12.

[13] B. Howe, “Virtual Appliances, Cloud Computing, and Reproducible
Research,” Computing in Science Engineering, vol. 14, no. 4, July-
August 2012, pp. 36–41.

[14] C. Boettiger, “An Introduction to Docker for Reproducible Research,”
ACM SIGOPS Operating Systems Review - Special Issue on Repeata-
bility and Sharing of Experimental Artifacts., vol. 49, no. 1, Jan. 2015,
pp. 71–79.

[15] C. Collberg, T. Proebsting, G. Moraila, A. Shankaran,
Z. Shi, and A. M. Warren. Measuring Reproducibility in
Computer Systems Research, Technical Report. [Online]. Available:
http://reproducibility.cs.arizona.edu/tr.pdf [retrieved: Septeber, 2014]

[16] K. J. Gilbert, R. L. Andrew, D. G. Bock, M. T. Franklin, N. C. Kane, J.-
S. Moore, B. T. Moyers, S. Renaut, D. J. Rennison, T. Veen, and T. H.
Vines, “Recommendations for utilizing and reporting population genetic
analyses: the reproducibility of genetic clustering using the program
STRUCTURE,” Molecular Ecology, vol. 21, 2012, pp. 4925–4930.

[17] J. Ooms, “Possible Directions for Improving Dependency Versioning in
R,” The R Journal, vol. 5, 2013, pp. 197–206.

10Copyright (c) IARIA, 2019. ISBN: 978-1-61208-754-2

CENTRIC 2019 : The Twelfth International Conference on Advances in Human-oriented and Personalized Mechanisms, Technologies, and Services

