
An Active DBMS Style Activity Service for Cloud Environments

Marc Schaaf∗, Arne Koschel∗, Stella Gatziu Grivas†, Irina Astrova‡
∗Department of Computer Science

University of Applied Sciences and Arts, Hannover, Germany
marc@marc-schaaf.de,akoschel@acm.org
†Institute for Information Systems

University of Applied Sciences Northwestern Switzerland, Olten, Switzerland
stella.gatziugrivas@fhnw.ch
‡Institute of Cybernetics

Tallinn University of Technology, Tallinn, Estonia
irina@cs.ioc.ee

Abstract—We propose an activity service as a component
in cloud computing with the particular novelty that we base
this service on the well-defined and proven semantics of Active
Database Management Systems (Active DBMS). In addition, we
utilize well-known principles of service oriented architectures.
Furthermore we aim to provide an integration with a cloud
service mediation component to automatically react to changes
occurring in the cloud environment and in this way to imple-
ment agility and self management of cloud applications. As
contribution of this paper we provide the high-level design of
this activity service. This includes architecture, core interfaces
and a semantically well-defined rule and execution model,
based on extended Active DBMS semantics.

Keywords-Active Database Management System (Active
DBMS); Activity Service; Event Condition Action (ECA) Rules;
Cloud Computing.

I. INTRODUCTION
Cloud computing [1] is a ’trendy new kid on the block’ as

many recent activities in research and industry show. Com-
panies and open source players almost constantly announce
new features for their cloud platforms.

Event-based active mechanisms are an important feature
for the cloud, be it just in form of messaging or in more
elaborated event- or rule-driven behavior [2]. Although the
necessity of supporting active behavior is clear, the open
issue is the lack of a well-defined semantic.

The overcome of this drawback is the contribution of our
work. We propose an activity service for cloud computing
that adopts its semantic from the well-proven and clearly
defined semantic of Active Database Management System
(Active DBMS) style [3], [4] event-condition-action (ECA)
rules and extend them for the cloud. Moreover, the design
of the activity service is going to be based on proven
principles and patterns from service oriented architectures
(SOA, [5], [6]). Eventually, we will deliver an activity
service with a precisely defined Active DBMS style ECA
rule and execution model for the cloud.

The remainder of this article is organized as follows: The
next Section will discuss related work. Afterward, Section

III introduces Active DBMS style ECA rule processing. This
is followed by an introduction of relevant cloud comput-
ing concepts. Section V joins both concepts to eventually
provide an Active DBMS style ECA rule activity service
for the cloud. We contribute the high-level design of this
activity service, including architecture, core interfaces, and
a semantically well-defined Active DBMS style rule and
execution model, that is extended into the cloud.

II. RELATED WORK

Work, which is related to ours, occurs in different areas.
Distributed event monitoring, which is an important part of
our system, is an excellent instrument for (distributed) moni-
toring systems, see [7], [8] for overviews, and can contribute
general monitoring principles to our work. However, these
systems mainly concentrate on primitive event sources. Our
work deals with event sources that are typically found in
quite heterogeneous cloud computing environments. Event
modeling aspects and semantics often lack precision [8]
when compared to systems such as Active DBMS. Never-
theless, general work on the design of monitoring services
for distributed systems is valuable for transfer into a cloud-
based environment. Some event monitoring and propagation
within the cloud in conjunction with complex event pro-
cessing (CEP, [9]) is discussed in [10]. However, ECA rule
processing with precisely defined semantics is not its focus.

The precise semantical foundation of our work is based
on proven research work from the area of Active DBMS
[3], [4]. In particular, we can utilize the Active DBMS
manifesto [11]. This manifesto provides a proven ECA rule
and execution model with a well-defined, clear semantic.
Active DBMS style ECA rule processing will be discussed
further in Section III and utilized in Section V.

One step beyond the work in Active DBMS go approaches
concerning ECA rule processing in distributed environments.
In [12], active functionality was extended into an ECA
rule service for CORBA-based distributed, environments.
Actually, this approach is one initial step in our direction.

80

CLOUD COMPUTING 2010 : The First International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2010               ISBN: 978-1-61208-106-9



A first step into ECA rule processing within cloud com-
puting is done in [13]. At least some combination of event
driven and service-oriented architecture for the cloud is
discussed there. However, the work remains quite high-level
and in particular focuses on policy-driven event processing
for the cloud. It does not really address an activity service
for the cloud at all, in particular not with well-defined Active
DBMS style semantics.

Web services development standards such as the business
process execution language WSBPEL [14], usually operate
on a higher level than our approach. However, they are an
excellent example for Web Services-based systems, that can
generate events such as ’process’ or ’activity’ started/ended
etc. In our approach, we have to deal with events across
the heterogeneous cloud services and we must monitor and
handle events generated by Web Services-based systems.

III. AN ACTIVE DBMS STYLE ACTIVITY
SERVICE

The semantic foundation of our work is based on well-
established earlier work from Active DBMS [3], [4], [11].
An Active DBMS is a standard ’passive’ DBMS that has the
capability to react to events based on event- condition-action
(ECA) rules. The Active DBMS monitors the relevant events
and notifies the component responsible for executing the
corresponding rules (event signaling), which triggers these
rules into execution. Rule execution incorporates condition
evaluation as a first step and, if successful, action execution
as the second step. A variety of execution models exist for
the coupling of the transactions that raise events, evaluate
conditions and execute actions.

An Active DBMS provides a rule definition language as
a mean to specify event types, conditions, actions, and their
assembly into ECA-rules. Execution constraints determine
the coupling of events, condition evaluation and action ex-
ecution within and across transactions. Binding information
determines the granularity of the data items with which
an event is associated. Information on event consumption
determines how component events contribute to composite
events and how event parameters enter into the computation
of the composite event parameters. The rule base of an
Active DBMS contains meta information on defined ECA-
rules.

Our present work, in particular, follows the Active DBMS
manifesto [11], which provides an established ECA rule
and execution model with a well-defined semantic. Certainly
however, this model requires extensions to take a cloud-
based, distributed environment into account. However, the
model already includes parameters such as event granularity
information or event consumption policies, specifies differ-
ent coupling modes etc. Such parameters can be summarized
as ECA semantic parameters.

For traditional Active DBMS the mentioned functionality
is usually closely tied to the DBMS. This is due to the

usually monolithic system architecture of Active DBMS.
Therefore it is quite hard to use their active functionality
standalone in other contexts. For this reason, the active
functionality was unbundled from Active DBMS to be usable
as an activity service in other contexts [15]. It provides
connectors for event detection, condition evaluation, action
execution and an activity service exposes this as an overall
functionality for active ECA rule processing. Now this
unbundled active functionality is going to form a solid
starting point for our present work as well.

IV. CLOUD COMPUTING CONCEPTS

Cloud computing has emerged as a technology becoming
quite popular among companies and business. Computing
resources like infrastructure, middleware or database func-
tionality but also applications are provided over the Internet
rapidly to users according to actual demands. The delivered
resources are governable to ensure requirements like high
availability, security, and quality. The key factor is that they
are rapidly scalable up- and downwards, therefore the right
amount of needed resources can be provided to the users.

Cloud Computing is a new paradigm, a new model based
on known technologies like virtualization. What’s new is
the fast development and deployment of cloud applications.
This is the contribution of the cloud computing to agility
(fast response/reaction to new requirements, changes in the
customer environment). The central element is the predictive
management of the whole life cycle of a cloud environment,
which is also the challenge. This subsumes all tasks like
configuration, scale up/down and charge back.

We consider our work on the activity service as an
important contribution towards the support of the predictive
management of the cloud environment. For this, we propose
a cloud broker or cloud mediator supporting functionality
as reported in [16]. In [17], we discuss the extension of the
functionality of a cloud broker, which has the intelligence
to react to the changes of the business processes or their
environment in order to change the cloud configuration (to
scale up and down or to choose a new provider). The
basis for the implementation of this functionality is the
activity service we present in this paper, which could be, for
example, used to monitor the utilization of the used services
by evaluating corresponding business events. Based on the
monitoring results the activity service could inform the cloud
mediator that a service is at its capacity limits. In turn the
cloud mediator could decide to switch to another service
provider to increase the capacity.

V. AN ACTIVE DBMS STYLE ACTIVITY SERVICE
FOR THE CLOUD

The aim of our work is to adapt the notion of an Active
DBMS like activity service to the cloud. Therefore, we
propose to place the required components for active mecha-
nisms in the cloud and to thereby provide the mechanisms of

81

CLOUD COMPUTING 2010 : The First International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2010               ISBN: 978-1-61208-106-9



Comp-
onent

Comp-
onent

Comp-
onent

Activity
Service

Comp-
onent

Comp-
onent

Comp-
onent

Enterprise Service Bus

Comp-
onent

Inhouse Components
or a Private Cloud

Public CloudApplication Parts in other 
Clouds or from Foreign Providers

Comp-
onent

Comp-
onent

Enterprise Service Bus

Comp-
onent

Comp-
onent

Enterprise Service Bus

Cloud
Mediator

Figure 1. The High Level Architecture

an Active DBMS style activity service in this environment
(Figure 1).

In order to achieve a high flexibility, the active mecha-
nisms follow the unbundling approach mentioned in Section
III. They are thus separated into different components.
Each of the components provides one or more well-defined
interfaces with clear semantics. Thereby the concrete imple-
mentation of the different components is interchangeable.

The communication between the components is realized
based on the concept of a service oriented architecture
(SOA). An Enterprise Service Bus provides means for the
communication between the components in the cloud.

In our approach the event producers and consumers are
not limited to the components in the cloud where the activity
service is located. It can also gather information from other
environments like from components in a private cloud of a
company or from other clouds provided by other vendors.

Possible application areas for the activity service include
the processing of vast amounts of events, which occur, for
example, in logistics or finance applications. As mentioned
the activity service can also be used for cloud monitoring
purposes like for example for the automatic monitoring and
scaling of a cloud application where the monitoring would
be based on the evaluation of events from the different
application parts.

A. The Components of the Activity Service

Figure 2 illustrates the different components of the ac-
tivity service and their interactions. Their functionality is
explained in the following subsections.

Figure 2. The Components of the Activity Service

1) The Event Service: The event service component im-
plements all activities necessary for the cooperation between
event producers and event consumers. It provides a service
with the following interface, which can be used by event
producers to send their events to the event service:

interface EventService{
void sendEvent (Event)

}

For each incoming event, the event service determines if
there are event consumers that are interested in this particular
event and delivers the event to them. In addition, the
incoming events are stored into an event history to support
the monitoring of complex/composite events. A complex
event detector (CED) evaluates the events and derives new
complex events (see below), which are fed back into the
processing mechanism. Consequently they are handled again
as if they where incoming events.

To receive events from the event service an event con-
sumer has to implement an appropriate event handler ser-
vice, which needs to be published to the service registry. The
event service discovers those services through the service
registry. To inform the event service about the events a
handler service is interested in, a filtering criteria has to
be added to the WSDL description, which will be extracted
by the event service.

Detection of Complex Events: Much work has been
done in Active DBMS research regarding the detection of
so called complex events ([8], [18]). Complex events are
expressions of an event algebra, which are formulated over
primitive or complex event types by means of algebraic
operators. Say E1 and E2 are event instances. Complex
events are then for example:

• disjunction (E1 ∨ E2), thus E1 or E2 occurred;
• conjunction (E1 ∧ E2): E1 and E2 occurred, indepen-

dent of their sequence;
• sequence (E1, E2): First came E1 then E2 occurred.

To detect complex events, basically, two techniques can
be distinguished [18]:

• Backward discovery. In this technique upon arrival of
a new primitive every event in the history of currently
available events are checked, whether they together
with the new event form a new complex event.

82

CLOUD COMPUTING 2010 : The First International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2010               ISBN: 978-1-61208-106-9



Figure 3. Complex event detection with a finite state automate

• Forward discovery: For forward discovery of complex
events a sub-detector exists for every admissible com-
plex event. Complex events are – without going back to
the event history – detected in stages. The sub-detectors
each have discovery status of ’their’ complex event. The
arrival of a primitive event leads to another step or a
state change within individual sub-detectors. A complex
event is detected, whenever a sub-detector reaches its
final state.

In Active DBMS, a number of technologies for the
discovery of complex events are used, such as finite state
automates, Petri nets and event trees. As an illustrative
example, Figure 3 shows a finite state automate. It detects a
complex event: sequence E = (e1, e2) with start state S and
final state E.

We currently aim to integrate backward discovery into the
Event Service. A decision on the concrete technology for a
prototypic implementation is yet to be made. However, the
complex event detection process is hidden from the service
consumers and can thus easily be changed to a forward
discovery based approach if required.

2) The Rule Execution Service: The rule execution ser-
vice receives events from the event service to evaluate them
against sophisticated ECA rules. Therefore it acts as an event
consumer of the event service by registering an event handler
service. The rules result in the execution of action handlers.
Such an action handler needs to be implemented by each of
the components that are intended to be called from within
rules. The rule can also provide the action handler with
parameters, which can be derived from the rule execution.

The rules that are evaluated are stored in a rule base,
which can be managed by a special rule management
service. Using the rule base, the rules are implemented by
the rule execution service.

3) Event Monitors: Normally, not all components are
build for active notification by the event service. For
other components a monitor capsule mechanism is possible.
Therefore a small application that acts as a capsule around
the actual event source can be realized that obtains the event
from the source and transfers it to the event service. In
addition, the conversion between different event types can
be realized by the capsule.

To further illustrate the event monitoring, a concrete
example for a particular kind of event source will now be

monitoring-system

Pipe

Oracle

Table 1

Message 1
Event E1:
Insert table1 ....
Attribute 1....
Attribute n ....

Message 2
Event E2:
Insert table1 ....
Attribute 1....
Attribute n ....

Trigger T

Receive 
messages
from pipe

Figure 4. Monitoring using Triggers and Pipes

given. In particular, we utilize earlier work from us [19] to
take a look at the monitoring of an ’active’ event source,
here the Oracle 10 relational DBMS (Figure 4).

The system allows for communication between Oracle
sessions by means of so called Oracle Pipes. A pipe is
a data structure into which messages may be placed and
from where they may be retrieved in FIFO order. If the
pipe is empty, a recipient is blocked until a new message is
available.

Note that a message in a pipe becomes immediately
visible independent of the status of the transaction that
placed it there. Even if the transaction that produced the
event is aborted, the event may is already passed onto further
processing.

A pipe is a communication structure, which naturally fits
into cloud computing. In particular larger cloud providers,
e.g., Amazon’s EC2/S3 or Microsoft’s Azure provide cloud
messaging queues. Our event monitor thus would read
the events from Oracle pipes and place them into Cloud
messaging queues, which are connected to the ESB from
our activity service, for further processing.

Now suppose that an event type is defined for the source,
say insertion of a tuple into some relation. Our monitor
capsule internally declares a corresponding Oracle trigger
which, when fired, places a message with all relevant infor-
mation into the pipe. The capsule thread then acts as the
recipient and hands the event over to the activity service.

The call-back mechanism has the advantage of event
detection without delay and incurs negligible overhead be-
cause no query processing is needed in contrast to several
other mechanisms, which are discussed in [19]. A significant
drawback though, is the lack of standardization for the call-
back mechanism and, hence, its limited availability.

Looking at the Active DBMS style ECA semantic pa-
rameters (see below), the natural coupling mode for this
type of event sources is ’immediate decoupled’ due to the
independence of pipes from transactions.

All other modes require some additional effort. For ex-
ample, to support the ’immediate coupled’ mode, a second
pipe must be installed, which receives the event signaling
completion of the sub-transaction. A trigger is defined as
the recipient and takes the appropriate action for the main

83

CLOUD COMPUTING 2010 : The First International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2010               ISBN: 978-1-61208-106-9



transaction. In order to support the ’deferred decoupled’
mode, a wrapper thread must observe a second structure
in which the DBMS must make note of the completion
of the transaction. Unfortunately, this solution entails some
overhead due to the need for polling.

B. The Rule and Execution Model

Since our work follows the Active DBMS style rule and
execution model from the Active DBMS manifesto we plan
to investigate the semantic parameters for their suitability for
cloud environments. It is expected that some modifications
need to be made. For example, we can only provide certain
transaction coupling modes, since we can’t assume all cloud
event sources to be able, to participate in 2-phase-commit
transactions. Similarly, some event sources might only be
able to send events as a whole rather than individually, so the
event (sending) granularity might be event source dependent.

Beside evaluating, which ECA semantic parameters still
fit for the cloud, we are going to investigate extensions
of those parameters, to fit even better into cloud comput-
ing. Additional parameters include for example: Options to
execute ECA rules across different rule processors within
the cloud, configurable reactions to deferred events due to
network issues, options to deal with not responding event or
data sources and several more like cost parameters, which
allow to choose for example an especially cheap activity
service or an especially good one, etc.

VI. CONCLUSION

With this work, we aim to create a complete and ver-
satile concept, which reaches from the event monitoring
over the preprocessing to the evaluation of sophisticated
rules and as a reaction the execution of actions on cloud
components. Furthermore our whole concept is based on
the well-defined and proven semantics of Active DBMS
style ECA rule processing, which other event processing
approaches lack (cf. Section II). To provide a maximum of
flexibility we utilize the well-known principles of service
oriented architectures and provide the different function-
alities in different interchangeable components with well-
defined interfaces and clear semantics and aim to support
heterogeneous event sources by the concept of monitoring
capsules. Furthermore we intent to provide an integration
of the activity service with a cloud mediator so that the
mediator can utilize event information to react immediately
to changes in an applications environment.

Our next steps will be the detailed specification of the
components, their interactions and interfaces and especially
the adoption of the proven, semantically rich Active DBMS
style rule and execution model to the new world of cloud
computing. Moreover we will work on the specification of
an appropriate rule and event definition language. Finally we
will provide implementations of the different components of

the activity service and evaluate their potential in real world
application scenarios.

ACKNOWLEDGEMENT

Irina Astrova’s work was supported by the Estonian
Centre of Excellence in Computer Science (EXCS) funded
mainly by the European Regional Development Fund
(ERDF).

REFERENCES

[1] M. Armbrust et al., “Above the Clouds: A Berkeley View of
Cloud Computing,” EECS Department, University of Califor-
nia, Berkeley, Tech. Rep., 2009.

[2] S. Rozsnayi et al., “Event Cloud - Searching for Correlated
Business Events,” 9th IEEE International Conference on E-
Commerce Technology, 2007.

[3] J. Widom and S. Ceri, Eds., Active Database Systems: Trig-
gers and Rules for Advanced Database Processing. San
Francisco, CA, U.S.A: Morgan Kaufmann Publishers, 1996.

[4] N. W. Paton, Ed., Active Rules for Databases. New York:
Springer, 1999.

[5] D. Krafzig, K. Banke, and D. Slama, Enterprise SOA:
Service-Oriented Architecture Best Practices. Upper Saddle
River, NJ: Prentice Hall, 2004.

[6] T. Erl, SOA Design Patterns. USA: Prentice Hall, 2009.

[7] B. Schroeder, “On-Line Monitoring: A Tutorial,” IEEE Com-
puter, vol. 28, no. 6, pp. 72–80, Jun. 1995.

[8] S. Schwiderski, “Monitoring the Behaviour of Distributed
Systems,” Ph.D. dissertation, Selwyn College, University of
Cambridge, United Kingdom, 1996.

[9] D. C. Luckham, The Power of Events: An Introduction to
Complex Event Processing in Distributed Enterprise Systems.
Boston, MA, USA: Addison-Wesley Longman Publishing
Co., Inc., 2001.

[10] G. Wishnie and H. Saiedian, “A complex event routing
infrastructure for distributed systems,” vol. 2. Los Alamitos,
CA, USA: IEEE Computer Society, 2009, pp. 92–95.

[11] The ACT-NET Consortium, “The Active Database Manage-
ment System Manifesto: A Rulebase of ADBMS Features,”
ACM SIGMOD Rec., vol. 25, no. 3, pp. 414–471, Sep. 1996.

[12] A. Koschel and P. C. Lockemann, “Distributed events in active
database systems: letting the genie out of the bottle,” Data
Knowl. Eng., vol. 25, no. 1-2, pp. 11–28, 1998.

[13] P. Goyal and R. Mikkilineni, “Policy-based event-driven
services-oriented architecture for cloud services operation &
management.” Los Alamitos, CA, USA: IEEE Computer
Society, 2009, pp. 135–138.

[14] WSBPEL TC, “Web Services Business Process Execution
Language Version 2.0,” OASIS, OASIS Standard, 2007.

84

CLOUD COMPUTING 2010 : The First International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2010               ISBN: 978-1-61208-106-9



[15] S. Gatziu, A. Koschel et al., “Unbundling active functional-
ity,” ACM SIGMOD Rec., vol. 27, no. 1, pp. 35–40, 1998.

[16] L. Leung, “Cloud computing brokers: A resource
guide,” 2010, url: http://www.datacenterknowledge.com/
archives/2010/01/22/cloud-computing-brokers-a-resource-
guide/ Visited: 10.06.2010.

[17] S. Gatziu, T. U. Kumar, and W. Holger, “Cloud Broker: Bring-
ing Intelligence into the Cloud An Event-Based Approach,”
in Proc. of the 3rd IEEE Intl. Conf. on Cloud Computing,
Miami, Florida, July 2010.

[18] K. Dittrich and S. Gatziu, Aktive Datenbanksysteme, Konzepte
und Mechanismen. Int. Thomson Publishing GmbH, Bonn,
Albany, Attkirchen, 1996.

[19] A. Koschel and I. Astrova, “Event monitoring web ser-
vices for heterogeneous information systems,” Proc. World
Academy Of Science, Engineering And Technology, vol. 43,
pp. 50–52, 2008.

85

CLOUD COMPUTING 2010 : The First International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2010               ISBN: 978-1-61208-106-9


