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Abstract—Storage performance of a single virtual machine
in a cloud computing environment may be affected by other
machines using the same physical storage. At the same time,
user requirements concerning quality of service continue to
increase, which brings new challenges for virtualized environ-
ments. In this paper we present the results of our research
concerning data storage QoS. We discuss the quality aspects
of storage services and propose a method for ensuring storage
QoS by using monitoring and performance prediction based
on heuristics. We also propose several heuristic policies,which
can be implemented in a data transfer scheduler. Finally, we
discuss test results obtained in a virtualized environment.

Keywords-Quality of Service; Service Level Agreement; Stor-
age Cloud; virtualization.

I. I NTRODUCTION

Virtualization technologies are becoming extremely pop-
ular. One of the reasons behind this evolution is the in-
creased flexibility in creating new computing environments
for research, development or production. Another reason is
that virtualization supports green computing by allowing
for more efficient use of physical resources – this, in turn,
reduces the need for electrical energy.

Since virtual machines share physical resources, the per-
formance of a single machine may be affected by other
machines running on the same host. It should also be noted
that user requirements concerning QoS (Quality of Service)
continue to increase, bringing new challenges for virtualized
environments.

In the case of scientific applications (such as simula-
tions, experiments in high energy physics or out-of-core
computations) where the application needs to access huge
amounts of data, as well as in the scope of backup and
archiving services (for example storage clouds), proper
management of data (or files), supporting QoS with efficient
storage performance utilization, remains essential. Taking
into account the dynamic nature of virtualized environments
and the diversity/heterogeneity of storage systems (such as
Hierarchical Storage Management – HSM and disk arrays),
monitoring is required to cope with the problem of delivering
data with appropriate QoS. Relevant policies for controlling
and distributing data transfer requests are necessary for
achieving QoS.

This paper presents the results of our research concerning
storage QoS delivery. We discuss quality aspects of data
storage services and propose a method of achieving storage
QoS by using monitoring and performance prediction based
on heuristics. We also present several heuristic policies,
which can be implemented in a data transfer scheduler and
discuss test results obtained in a virtualized environment.

The presented research forms part of a more general
project called OntoStor [1], which deals with data access
optimization. As a result of the project, an object-based
mass storage model for HSM systems and disk arrays,
called CMSSM (Common Mass Storage System Model) [2]
has been proposed. A CIM (Common Information Model)
version of CMSSM is also available. Implementation of
monitoring sensors basing on the proposed model allows us
to create data access estimators required to ensure storage
QoS via proper management of storage resources.

This paper is organized as follows. The following section
presents the state of the art. Subsequently, methods for
achieving storage QoS are described. Section 4 describes
test results, while the final section summarizes our research
contributions.

II. STATE OF THE ART

As virtualization technologies are becoming more mature,
a Cloud computing paradigm has evolved [3]. In terms of
data storage, we can distinguish two types of clouds: the
Storage Cloud (providing services for file-based or block-
based access to data) and the Data Cloud (providing services
for database-oriented access).

Examples of storage clouds include the Hadoop dis-
tributed file system [4], Amazon’s S3 storage cloud [5],
Google file system [6], Sector [7], and Chelonia [8].

Some studies on storage clouds involve high-performance
data access, which is correlated with our research. Storage
clouds, as well as data clouds, can be used as a data access
layer for cloud computing. In [7], an implementation of the
Sector data cloud is presented. Sector is a high-performance
data cloud, which can operate on geographically-distributed
data shared between data centers.
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A study concerning data access prediction has been pre-
sented in [9]. The authors define five elements of the I/O
path essential for end-to-end storage performance prediction,
from device I/O scheduling through the cache and network
layers, to client-side buffering. The aim of this research is
to reduce the complexity of prediction. For example, in [10]
and [11], the SAN (Storage Area Network) is addressed. The
former paper [10] shows how performance management can
be approached in IBM TotalStorage products and how it has
evolved. In the latter one [11], SAN configuration middle-
ware is introduced. The middleware aids the management
of heterogeneous SAN deployments to meet customer SLA
Service Level Agreement).

There are some papers concerning storage QoS. In [12],
an I/O scheduling algorithm for managing the performance
of an underlying storage device is presented. Scheduling is
performed in such a way as to enable multiple users (or
applications) to obtain the requested transfer-rate QoS.

In [13], a two-level framework for I/O scheduling, using
monitoring and queuing theories, is presented. The proposed
scheduler maintains QoS in terms of latency and transfer
rates. Monitoring of underlying storage devices is used to
provide feedback to the I/O scheduling algorithm.

In [14], a method for optimizing the workload distribution
in storage area networks in order to meet SLA is presented.
The method is static in the sense that the result of optimiza-
tion is a concrete SAN configuration, not subject to frequent
changes.

In [15], a method for storage performance insulation of
services sharing common storage servers is proposed. The
system automatically configures prefetching, write-back and
cache partitioning to achieve storage performance for a given
service, which is independent from the I/O activity of other
services sharing the same storage.

In [16], the Chameleon framework capable of providing
predictable performance for multiple clients sharing a com-
mon storage infrastructure is introduced. It bases on a black-
box approach for capturing the behavior of the underlying
storage system.

The presented studies show that the problem of achieving
QoS in distributed storage environments is not a trivial
task. Given the changing state of the environment, relevant
monitoring is required. In our previous studies we have
proposed a Common Mass Storage System Model for HSM
systems [17], disk arrays and local disks. The aim of this
paper is to present a unified monitoring layer, which can
be used by estimation services for prediction of data access
to mass storage systems [18][19]. The proposed model has
been used in the NDS (National Data Storage) [18] and
Platon [20] projects as well as in the PL-Grid project [21].

III. PROBLEM SOLUTION DESCRIPTION

We assume that the data needed by applications running
in the Cloud is stored in a distributed storage system where

it can be replicated for performance or availability reasons.
The nodes of the storage system can also be located in
the Cloud as VMs (Virtual Machines), sharing common
resources. Applications may have various requirements con-
cerning QoS. Some applications, such as HEP tools, which
process data in the context of ongoing experiment require
write QoS in order to prevent buffer overflows and data
loss. In contrast, read QoS is needed by applications, which
deliver on-demand multimedia content and by interactive ap-
plications dealing with large data sets, for example medical
visualizations. In the case of write QoS, a decision on which
storage node to use has to be made, while in the case of read
QoS, an existing replica needs to be selected. Our vision
of QoS-aware distributed storage environment is presented
below.

A. QoS-aware distributed storage environment - a vision

The concept of a QoS-aware distributed storage envi-
ronment is shown in Figure 1. The mass storage system
layer may include divergent storage systems (HSM systems,
disk arrays, local hard disks). They can be either complete
systems with appropriate management software (HSM, disk
arrays) or single storage devices such as local disks. The
sensor layer provides a unified interface for monitoring
of storage performance parameters, facilitating the devel-
opment of storage-independent upper layer services. The
estimation layer contains estimation services, which can be
used to predict the performance of a storage node at a given
moment. The estimation services use monitoring data pro-
vided by the sensor layer and can apply various algorithms
(more or less sophisticated) to predict the performance of
a given storage node. The data management layer contains
services needed for efficient access to data. Examples of
such services include the meta-catalog, the replica manager
and the QoS scheduler.

Figure 1. QoS-aware distributed Storage Environment - a vision

The problem that we address in this paper concerns
efficient storage resource allocation. In order to effectively
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use the available storage resources in terms of capacity and
bandwidth, the storage system has to make decisions about
scheduling and allocating storage nodes with QoS in mind.
Storage-related QoS requirements include transfer rate and
latency time. Several types of transfer rate can be specified
in this context: current, average, moving average, etc. The
QoS requirements used in our tests involve average transfer
rates for a given transfer. For each data transfer request, a
storage node is selected from a prepared list. The list only
contains storage nodes suitable for the current request. In
the case of a write request, it can include all nodes with the
required level of availability or storage cost. In the case of
read requests, it is limited to nodes containing replicas of
the requested file. If the storage system is unable to fulfill
the QoS for a given request, the request is postponed.

The proposed method of resource allocation with QoS
uses bandwidth reservation along with storage performance
monitoring. Such monitoring is necessary since the storage
resources can be shared among VMs (for example, high-
capacity disk arrays in a storage area network) and their
performance can not be predicted based on reservations
only. In addition, if an application does not fully exhaust
its requested (or reserved) bandwidth, a wastage of storage
performance may occur. Using proper monitoring we can
detect such wastage and, conditionally, allocate bandwidth
to other ongoing transfers. The proposed heuristic-based
policies are presented below. They can be implemented
in a QoS scheduler and shared by the management and
estimation layers (see Figure 1).

B. Resource allocation policies with storage QoS delivery

The proposed monitoring-based heuristic policies desig-
nated SM-R1, SM-R2, SM-R3 are described below. Their
usefulness has been tested (see next section) and compared
with policies, which do not employ monitoring, i.e., RR
(Round Robin) and StaticQoS.

The following monitoring-based heuristic policies have
been considered:

• SM-R1 - scheduling with monitoring using the fol-
lowing rule to check if a node can meet the QoS
requirements of a given transfer:

max − res ban × k1 > rb, (1)

wheremax is the peak transfer rate for the requested
operation (read or write) concerning the given disk
storage resource,res ban is the amount of reserved
bandwidth,k1 is the overhead coefficient andrb is the
requested bandwidth,

• SM-R2 - for this policy the rule is:

max − ma10 × k2 > rb, (2)

where ma10 is the moving average covering the last
10 transfer rate measurements for the given storage
resource whilek2 is the overhead coefficient,

• SM-R3 - for this policy the checking rule is:
ma10

np + 1
> rb × k3, (3)

where np is the number of scheduled active data
transfers andk3 is the overhead coefficient.

The monitoring-independent resource allocation policies
are as follows:

• RR - round robin. Here, the next available storage node
is selected for the current transfer.

• StaticQoS - the number of allowed concurrent transfers
for the given node is limited and static. The limitλ is
calculated using the following formula:

λ =
BSNmax

rb × k4

, (4)

whereBSNmax is the peak bandwidth for a storage
node andk4 is the concurrent transfer overhead coeffi-
cient.

IV. STORAGE QOS TEST RESULTS

This section presents our test environment and the results
of tests involving the previously-described policies. Tests
have been conducted under idle and loaded conditions.

A. Test environment

Our testing environment consists of three storage nodes,
each of which is a virtual machine with dedicated storage.
All VMs are hosted by the same physical machine, thus
sharing its hardware resources. The physical machine is part
of the Cloud environment. This test environment allows us
to study the manageability of storage QoS given the sharing
of resources due to virtualization and the heterogeneity of
storage systems. We should notice that hosting too many
storage node VMs on a single physical machine may cause
the I/O bus of the physical host to become a bottleneck,
thereby wasting the performance capabilities of the attached
storage systems.

The testing environment is presented in Figure 2. The
first node is a client of the Lustre cluster filesystem, the
second has a disk array volume mounted and the last one
uses a local logical volume. The measured bandwidth of the
attached storage is as follows: 20 MB/s for the Lustre FS,
300 MB/s for the disk array and 60 MB/s for the local disk.
This gives us the peak total throughput of 380 MB/s. The
low bandwidth of Lustre is due to the network link of OST
(Object Storage Target). On every node a monitoring daemon
has been started in order to gather storage performance
statistics (peak, current and moving-average transfer rates).

The testing procedure was as follows:
1) select the most appropriate storage node for a transfer

according to the tested policy (if there is no node capa-
ble of satisfying the QoS requirement then wait until
there is one). The QoS requirement for all transfers
has been set at 10 MB/s,
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Figure 2. Test environment for storage QoS.

2) fork a write data transfer process for the selected node,
3) sleep 1 second (a configurable parameter),
4) repeat previous steps until the defined number of iter-

ations is reached. For the presented results the number
of iterations is set at 100. The number of concurrent
transfers depends on the tested policy, e.g., the RR
policy can potentially launch many more transfers then
other policies since no condition is checked.

B. Results for idle system

The test results are presented in Figure 3 and Figure 4.
We can see that in the case of the RR policy (see

Figure 3(a)) most transfers did not receive the required band-
width. In this case, we are dealing with very inefficient use of
storage resources. Since all three SNs have divergent storage
devices attached, we see three separate lines, which depict
the performance of each device. The throughput is very low
and limited by the device with the worst performance. In
addition, sending more concurrent transfers further degrades
the overall performance.

In the case of a static QoS policy (see Figure 3(b)) we
can see that only several transfers are below the required
bandwidth (though their performance remains quite close to
expectations). Total throughput is much better than in the RR
case. This simple policy may already be deemed satisfactory,
but it might be possible to achieve even higher throughput.

In the case of the SM-R1 policy (see Figure 4(a)), in
which monitoring is used along with resource reservation,
we have high total throughput but more requests fall below
the line compared to static QoS. This is a consequence of the
fact that with concurrent transfers, the throughput of storage
devices is usually lower than given a single transfer. The
number of concurrent transfers for a given storage device is
not monitored and so its influence is not predicted.

The SM-R2 policy (see Figure 4(b)) yields very low
performance because the rule remains true even when many
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Figure 3. Test result for policies with no monitoring

concurrent transfers are ongoing. The average throughput
ma10 (see Subsection III-B) is highly degraded and cannot
approachmax. This degradation is caused by the fact that
data transfer processes need to compete for CPU time
instead of waiting for I/O access.

In the final case, SM-R3 (see Figure 4(c)), we have
obtained the best results, but it should be mentioned that
the rule proves false if there are no ongoing transfers
- ma10 = 0. That is why an additional condition was
introduced: if no transfers are present then start one.

C. Results for loaded conditions

The same tests have been run in an environment where
the disk was subjected to additional, external load.

The result for static QoS and SM-R3 are presented in
Figure 5. These policies have been selected since they give
the best results for idle storage. As can be seen, the extra
load has a heavy impact on the static-policy QoS while in
the case of SM-R3 it does not significantly increase the
number of transfers, which fall bellow the 10MB/s line (the
requested bandwidth). It should be noticed that even if the
transfer rate is below 10MB/s it is still quite close to the
required value. The total throughput for the SM-R3 policy
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Figure 4. Test result for policies using monitoring

is also much better.

V. CONCLUSION AND FUTURE WORK

This paper presented the results of our research concern-
ing storage QoS delivery. A method of achieving storage
QoS by using monitoring and performance prediction based
on heuristics is proposed and several heuristic policies are
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(a) SM-R3 with external load
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Figure 5. Test result for selected policies with external storage load

defined. Test results for a virtualized environment show that
scheduling data transfers with the aid of monitoring policies
can yield better results than without monitoring. Policies
with static resource reservation do not perform well in a
virtualized environment with shared resources, similar toa
storage cloud. In such cases, storage performance monitoring
and prediction is a must, especially when managing storage
resources with QoS (or SLA). The problem is not trivial
given the heterogeneity of storage systems and the lack
of relevant performance parameters in modern information
models like CIM and GLUE (Grid Laboratory for a Uniform
Environment). While methods of performance monitoring
and estimation, as well as their impact on storage sys-
tems have been discussed in our previous work, this paper
presents a vision of how they can be applied for the purpose
of delivering storage QoS.
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