
Cloud Computing for Online Visualization of GIS Applications in Ubiquitous City

Jong Won Park, Yong Woo LEE, Chang Ho Yun, Hyun Kyu Park, Seo Il Chang, Im Pyoung LEE, Hae Sun Jung*

The Ubiquitous (Smart) City Consortium,
The University of Seoul, *Korea University

{comics77, ywlee, touch011, ajnick31, schng, iplee}@uos.ac.kr, holylife7@hotmail.com

Abstract— Cloud computing can be used to generate the 3D
noise maps in ubiquitous cities. Here in this paper, we present
our cloud computing approach, its performance and a
performance comparison for it. The 3D image processing with
GIS data requires great amount of computational resource
because of complex and large amount of spatial information.
The cloud computing can solve the problem with an easy and
transparent way. We use Hadoop which is a framework that
includes the HDFS (Hadoop Distributed File System) and
MapReduce as cloud computing methodology to do massively
parallel processing of 3D GIS data. We found the computing
time is vastly reduced with a cluster of computing nodes. We
also present the performance comparison when we use MPI
instead of MapReduce and Hadoop.

Keywords- cloud computing; the noise map; GIS; Hadoop;
MapReduce; MPI.

I. INTRODUCTION
In the 1990s, the noise map was presented to develop the

environmental policy to reduce the noise in cities. Afterward,
in 2002, Directive 2002/49 relating to the assessment and
management of environmental noise was adopted by the
European Parliament and Council for the developments of
the long-term noise policy. The European Environmental
Noise Directive (2002/49/EC) is one of the European
Community's policies which have the goal to avoid, prevent,
and decrease their displeasure and harmful effect caused by
environmental noise exposure [1].

We find that immediately after the standard about the
noise map was adopted by the EC, European Initiatives on
the research of the noise map have been activated. The noise
map combines noise information with GIS map. It requires a
large amount of computing power and cannot be timely done
with personal computers. In the reason, the noise map is
usually made offline mode for long time and not in three-
dimension but in two-dimension. However, current cities
have high-rising buildings and we need to show the noise
difference on each floor. In consequence, it is important to
generate the 3D noise map [2][3]. The 3D image processing
with GIS data should deal with complex and large amount of
spatial information and requires great amount of
computational resource.

In this paper, we present our approach to solve the
problem in two ways and compare the performance. One
way is to use MapReduce [4] with Hadoop system [5] and
the other way is to use MPI.

The structure of this paper is as follows. In Section 2, we
introduce, compare and analyze the state-of-the art works
related to our research. In Section 3, we explain the steps of
noise map. In Section 4, we describe our cloud computing
approach to do it. In Section 5, we give performance
evaluation. Finally, we conclude and explain the future work
in Section 6.

II. RELATED WORK
EU has been actively researched noise map. Table 1

shows EU countries and their participating cities in the
research [6]. Figure 1 and Figure 2 show some of their
research results, that is, two noise maps in two-dimension.
They do not produce online noise maps but makes the noise
maps in offline mode and do not use cloud computing. The
research on the 3D-noise map is an arising topic and not
found except our work.

TABLE I. EUROPEAN UNION (EU) COUNTRIES AND THEIR CITIES
MAKING THE NOISE MAP

Country City

United Kingdom London, Birmingham

Germany Berlin

France Paris

Netherlands Amsterdam

Czech Prague

Italy Bologna

Switzerland Geneva

Austria Vienna

Sweden Stockholm

Finland Helsinki

Belgium Brussels

170

CLOUD COMPUTING 2010 : The First International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-106-9

Figure 1. A noise map of Birmingham, U.K.

Figure 2. A noise map of Amsterdam, Netherlands

III. HOW TO GENERATE THE NOISE MAP?
The noise map is currently made in two dimensions.

However, in this research, we are interested in the three
dimension noise map. In this paper, we explain our way to
generate the three dimension noise map, not the two
dimension noise map. In order to make a 3D noise map, the
following three-step-process is needed: 1) Making a noise
database. 2) Generating the 3D city model. 3) Integrating the
noise values with the 3D city model.

A. Making a Noise Database
In our ubiquitous cities, the noise data are collected

through ubiquitous sensor network from remote sensors and
sent to the database. We can also use an interpolation
approach to make the database. That is, we measure the
noise at important areas and use a noise prediction model to
predict noise values at unmeasured areas using the measured
data at the area nearby the unmeasured area [7].

B. Generatinga 3D City Model
The generation of 3D city model includes the terrain

modeling as shown in Figure 3 and the building modeling [8]
as shown in Figure 4. It needs big computing power because
generation of the 3D building model is very complicated. To
solve the problem, we use the cloud computing [9].

Figure 3. A digital elevation model

Figure 4. Building models

C. Integrating the Noise Values with the 3D City Model
Now, we integrate the noise values with the 3D city

model. Because the data of 3D city model is very large,
converting each noise value into RGB value and mapping the
RGB value onto the texture file of the 3D city model requires
a large amount of computing power. To solve the problem,
again, we use the cloud computing. Thus we can reduce the
running time to the level of online processing. Figure 5
shows a sample digital map of an experimental area.

171

CLOUD COMPUTING 2010 : The First International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-106-9

Figure 6. The cloud computing process to make the 3D noise map

Figure 5. The digital map of Yeongdeungpogu Disrict, Seoul, Korea

IV. THE CLOUD COMPUTING
The cloud computing process to make the 3D noise map

is shown in Figure 6. To process 3D data, we employ the
ways that the data of the digital map are divided into grid cell
units. The data of the digital map make a huge file so we use
the MapReduce with Hadoop that is one of cloud computing
technologies to do massively distributed and parallel
processing. Distributed and parallel programming greets the
new trends due to the cloud technologies such as Hadoop, an
open source Java framework. It consists of Hadoop
Distributed File System (HDFS) and MapReduce. HDFS
uses a scheme of replication to ensure that the stored files are
always kept intact in separate places of a Hadoop cluster. It
enables us to solve a large scale of data intensive problems.

Figure 7. The MapReduce execution

A. Cloud Computing to Make a 3D City Model
Here, we explain how we do cloud computing with

MapReduce to make the 3D city model. We use two kinds of
map functions: map_1 and map_2. Map_1 plays a role of
making a Digital Elevation Model (DEM), also called as a
Digital Terrain Model (DTM), which has the topology
information and height information of ground surface for the
3D city model. Map_2 plays a role of making a building
model which has the object topology information and the
height information as shown in Figure 4. Reduce integrates
the DEM and the building model: this process is called as
reduce_1. The output of the reduce_1 is a 3D city model.
Table 2 explains the three functions: map_1, map_2 and
reduce_1.

We divide the data of the 3D GIS images into the unit of
grid cell for the MapReduce processing and later integrate
the result since the MapReduce uses Single-Program
Multiple-Data (SPMD) methodology [10]. As shown in
Figure 7, we used MapReduce to make the 3D city model
and the 3D noise map and the generated 3D city model is
reused as an input to the 3D noise map.

172

CLOUD COMPUTING 2010 : The First International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-106-9

Figure 8. The process of MapReduce function in visualization of the 3D noise map

TABLE II. THE TASKS TO MAKE A 3D CITY MODEL

Function Task Key-Value Pair

Map_1 To make a DEM.
<<Sub-area ID, x, y
coordinates>,<z coordinates,
topography ID >>

Map_2 To make a
building model.

<<Sub-area ID, x, y
coordinates>,<z coordinates,
building ID >>

Reduce_1
To integrate the
DEM and the
building model.

<<Sub-area ID, x, y coordinates>,
<z coordinates, value of 3d city
model>>

To make the building model, the getBld() of the map_2

extracts the coordinates of 2D building boundary from the
digital map and extracts the z value of the building from the
draft map by establishing the correspondence between the
building in the digital map and it in the draft map.

We divided the test area into a number of sub-areas and
assigned an ID to each of them. When the test area is
processed in the map function, the coordinates of the specific
area is assigned with a sub-area ID. Therefore, the key value
becomes <sub-area-ID, x, y-coordinate>.

 The outputs of “map_1” and “map_2” are sorted and
grouped according to the ID by the partitioner. The outputs
of the partitioner become the input of “reduce_1”. It means
that the key-value pairs of the DEM and the building model
that are sorted and grouped become the inputs of “reduce_1”.
“Reduce_1” calls and process the generate3DCity() function
to generate the 3D city model. Each “reduce_1” task is
matched to each sub-area and therefore the number of the
“reduce_1” task is same as the number of the sub-areas. The

output of “reduce_1” will be used as the input of “map_4” in
the next step.

B. Cloud Computing to Making a Noise Map
Here, we explain how we combine the 3D city model

with the noise information to generate the 3D noise map. We
use two kinds of map functions: map_3 and map_4. Map_3
takes the noise information of buildings as the inputs of
reduce_2. As the output, we take the key-value pair of
<<building ID, x, y coordinates> and <z coordinates, value
of noise level>>. Map_4 transfers the result of reduce_1 to
make the 3D noise map. Table 3 explains the three functions:
map_3, map_4 and reduce_2.

TABLE III. THE TASKS TO MAKE A NOISE MAP

Function Task Key-Value Pair

Map_3

To take the noise
information of
buildings as the
inputs of reduce_2.

<<building ID, x, y coordinates>,
<z coordinates, value of noise
level>>

Map_4

To transfer
the result of
reduce_1
to reduce_2.

<<Sub-area ID, x, y coordinates>,
<z coordinates, value of 3d city
model >>

Reduce_2
To integrate the
3D city model and
noise information.

A noise map.

The input of map_3 has coordinates, building ID and

noise value to make a noise map. Because it has a
coordinates, the noise value can be matched to 3D City

173

CLOUD COMPUTING 2010 : The First International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-106-9

model. As a key of map_3, we use a building_ID to
distinguish each building.

The outputs of “map_1” and “map_2” are sorted and
grouped according to the ID by the partitioner. The outputs
of the partitioner become the input of “reduce_2”. Reduce_2
plays a role of visualizing the RGB by combining the inputs
with 3D city model. We divide noise level distribution of the
test area into sub areas and find RGB color index using
getRGB() function. When we convert it into color index, we
use the equation as shown in Eq. (1) [3]:

 (1)

In Eq. (1), NC is color index, Nmax is the maximum

value of the noise pollution level, Nmin is its minimum value,
C is the total number of colors and N is the noise level on
each grid.

After noise level is converted into RGB values, the
following steps are performed to generate the noise map.
First, the group of the points corresponding to each wall
facet is classified according to the proximity of each point to
the facet. Second, the RGB of the classified points are then
interpolated into a grid using the same encoding scheme
presented as Eq. (1). Now, we can get facet image files and
merge the files into one file so as to generate a 3D noise map.
The final result of the merged file is the 3D noise map as
shown in Figure 9.

Figure 9. A snapshot of a 3D noise map

V. PERFORMANCE EVALUATION
Here, we show the performance of our approach and

compare it to the performance of the approach with MPI to
generate 3D noise map. The reason why we do this
comparison is that we want to be sure of the advantage and

disadvantage of our approach. We have been seeking the
currently best cloud computing solution to process the large
amount of 3D GIS data for ubiquitous city applications. To
find out the answer, we did this performance comparison.

 For the performance comparison, we used a ten nodes
cluster, where 8 nodes had Dual Core Intel processor and 2
nodes had Quad Core Intel Processor and each node had 4
GB memory. Each node of the cluster was connected
through a giga-bit Ethernet switch, runs a Ubuntu Linux 9.04
Server edition and used our own private Cloud based on
OpenNebula. The JVM version 1.6.0_20 was used for
Hadoop and the gcc version 4.4.1 compiler and MPICH2
were used for the MPI. For the noise map area, we selected
Yeongdeungpogu District, Seoul, Korea, as shown in Figure
5, where the area size is about 24.5km2 and the volume of the
processed data was 250 GB. We processed both MapReduce
and MPI experiments and measured the performance. We ran
them 10 times and averaged the results. Figure 10 shows the
performance and we know that the MPI case is faster than
the MapReduce case.

Figure 10. Performance comparison between MapReduce and MPI

Distributed and parallel processing based on message
passing infrastructures such as PVM [11] and MPI [12]
supports fine-grained parallelism, while workflow
frameworks such as Kepler [13] and Taverna [14] supports
coarse-grained parallelism. MapReduce also supports fine
grained parallelism but it is different from MPI or PVM
since it does not support any shared files but supports local
files only. That is, by restricting the programming model, the
MapReduce framework enables us to partition the given
tasks into a large number of fine-grained sub-tasks, but it
does not communicate each node since it only supports local
files.

While MPI supports a wide variety of communication
topologies for various kinds of distributed and parallel
models. MapReduce only allows a communication topology
from map to reduce. However, MapReduce allows us to use

174

CLOUD COMPUTING 2010 : The First International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-106-9

a simple but convenient cloud computing environment,
which eventually allows us to implement parallelism to run
our applications. Also, MapReduce gives better support to
quality of services such as fault tolerance and monitoring in
data intensive parallel applications.

REFERENCES
[1] DIRECTIVE 2002/49/EC OF THE EUROPEAN PARLIAMENT

AND OF THE COUNCIL of 25 June 2002 relating to the assessment
and management of environmental noise, “Official Journal of the
European Communities”, 2002.

[2] Kurakula, V., “A GIS-Based Approach for 3D Noise Modelling
Using 3D City Models”, MSc proposal, University of Southampton,
UK, 2007.

VI. CONCLUSION
[3] S. Oh, I. LEE, S. Tanathong, J. Ko, S. Chang, and T. Kim,

“Generation of 3D Noise Map using a City Model”, 3D Geoinfo, pp.
155-160, 2008.

In this paper, we have presented our cloud computing
approach to process a large amount of 3D GIS data to make
the 3D noise map. We find that MapReduce with Hadoop is
useful to reduce the turnaround time vastly. We also present
the performance comparison when we use MPI instead of
MapReduce and Hadoop. We find that the MPI case is faster
than the case of MapReduce with Hadoop. However, we also
find that MapReduce case has better fault-tolerance and more
stable than MPI case in our experiment. We find that the
MapReduce with Hadoop is not suitable for real-time
interactive processing and thus have been studying real-time
interactive processing of our work with MapReduce and any
other useful cloud computing technology.

[4] J. Dean and S. Ghemaway, “MapReduce: Simplified Data processing
on Large Clusters”, Communications of the ACM, vol. 51, January,
2008, pp. 107-113, doi:10.1145/1327452.1327492.

[5] Apache Hadoop Homepage [online], October 2010, Available from:
http://hadoop.apache.org/common/.

[6] The noise map in Europe [online], October 2010, Available from:
http://www.xs4all.nl/~rigolett/ENGELS/maps/.

[7] Cho, D. S., J. H. Kim, and D. Manvell. “Noise mapping using
measured noise and GPS data”. Applied acoustics, vol.68 no.9, pp.
1054-1061, 2007, doi:10.1016/j.apacoust.2006.04.015.

[8] Oh, S., I. LEE, S. Kim, and K. Choi. “Generation of a Spatial city
model using a Digital Map and Draft Maps for a 3D Noise Map”.
Korean journal of remote sensing, vol.24 no.2, 2008, pp. 3-14.

[9] N. Golpayegani and M. Halem, “Cloud Computing for Satellite Data
Processing on High End Compute Clusters”, Proceedings of the 2009
IEEE International Conference on Cloud Computing, 2009, pp. 88-92,
doi: 10.1109/CLOUD.2009.71.

ACKNOWLEDGMENT
This study was supported by the Seoul Research and

Business Development Program (10561), Smart (Ubiquitous)
City Consortium and Seoul Grid Center. We would like to
give thanks to Mr. Cheol Sang Yoon, Mr, Seung Woo Rho,
Mr. Chang Won LEE, Mr. Kyoung Kyu LEE, Mr. Eui Dong
Hwang, Mr. Sung Min Kim and the staffs of Seoul Grid
Center and the members of Smart (Ubiquitous) City
Consortium for their contribution to this research.

[10] F. Darema, “The SPMD model: past, present and future” Recent
Advances in Parallel Virtual Machine and Message Passing Interface,
8th European PVM/MPI Users' Group Meeting, Santorini/Thera,
Greece, 2001, Proceedings. Lecture Notes in Computer Science, 2001,
Volume 2131/2001, pp. 1, doi: 10.1007/3-540-45417-9_1.

[11] Jack J. Dongarra, G. A. Geist, Robert Manchek, and V. S. Sunderam,
“Integrated PVM Framework Supports Heterogeneous Network
Computing” Computers in Physics, 1993, pp. 166-175.

 [12] MPI (Message Passing Interface) [online], October 2010, Avaulable
from: http://www-unix.mcs.anl.gov/mpi/.

 [13] Bertram Ludäscher, Ilkay Altintas, Chad Berkley, Dan Higgins, Efrat
Jaeger, Matthew Jones, Edward A. Lee, Jing Tao, and Yang Zhao,
Scientific workflow management and the Kepler system: Research
Articles. Concurr. Comput. : Pract. Exper. 18(10), pp. 1039-1065,
2006.

[14] Hull, D., K. Wolstencroft, et al. “Taverna: a tool for building and
running workflows of services” Nucleic Acids Res 34(Web Server
issue): W729-32, 2006.

175

CLOUD COMPUTING 2010 : The First International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-106-9

http://dx.doi.org/10.1016/j.apacoust.2006.04.015

	I. Introduction
	II. Related Work
	III. How to Generate the Noise Map?
	A. Making a Noise Database
	B. Generatinga 3D City Model
	C. Integrating the Noise Values with the 3D City Model

	IV. The Cloud Computing
	A. Cloud Computing to Make a 3D City Model
	B. Cloud Computing to Making a Noise Map

	V. Performance Evaluation
	VI. Conclusion
	Acknowledgment
	References

