
Reducing the Human Cost of Grid Computing
With glideinWMS

Igor Sfiligoi, Frank Würthwein,
Jeffrey Michael Dost, Ian MacNeill

University of California San Diego
La Jolla, CA 92093, USA

email: isfiligoi@ucsd.edu, fkw@ucsd.edu,
jdost@ucsd.edu, imacneill@ucsd.edu

Burt Holzman, Parag Mhashilkar
Fermi National Accelerator Laboratory

Batavia, IL 60510, USA
email: burt@fnal.gov, parag@fnal.gov

Abstract—The switch from dedicated, tightly controlled
compute clusters to a widely distributed, shared Grid
infrastructure has introduced significant operational
overheads. If not properly managed, this human cost could
grow to a point where it would undermine the benefits of
increased resource availability of Grid computing. The
glideinWMS system addresses the human cost problem by
drastically reducing the number of people directly exposed to
the Grid infrastructure. This paper provides an analysis of
what steps have been taken to reduce the human cost problem,
alongside the experience of glideinWMS use within the Open
Science Grid.

Keywords-Grid; glideinWMS; human cost

I. INTRODUCTION

Over the past decade, the science community has been
moving from dedicated, tightly controlled compute clusters
to a widely distributed, shared Grid infrastructure in an effort
to both increase the average equipment utilization and gather
additional compute resources in times of need. One such
Grid infrastructure is the US-based Open Science Grid
(OSG) [1,2], an umbrella organization gluing together
groups of scientists from many scientific domains. These
groups are normally referred to as Virtual Organizations
(VOs), since they have an internal structure. Each VO brings
to the community both people and compute resources, with
the understanding that their compute resources can be used
by other VOs when not needed by the owning VO, and
conversely that their users can access resources they don't
own, when available.

This system has greatly benefited several VOs, but the
early adopters have noticed that using the Grid can have a
very high human cost. While the Grid is quite easy to use as
long as everything works fine, when something goes wrong,
it can take a significant amount of human time to debug and
fix the problem. Given that the OSG currently encompasses
O(100k) CPU cores distributed over O(100) geographic
locations, having at least a few misbehaving nodes at any
given time is pretty much a given. And with a community of
O(10k) users, each broken node is likely to affect hundreds
of users before being fixed. If each user were to spend even

half an hour debugging the problem, the total human cost can
easily exceed a week worth of time for each such event.

The glideinWMS system [3,4] attempts to reduce the
human cost in two ways. It creates a dynamic overlay on top
of Grid resources, thus insulating the final users from Grid
problems, and it cleanly separates the VO policy handling
from the actual Grid interfaces, allowing for a generic Grid-
facing service, called a glidein factory, that further limits the
exposure to the complexities of the Grid. To the best of our
knowledge, this is the only system that supports that.

The glideinWMS has been in use on OSG with a shared
glidein factory for over 2 years, and has proven to be a major
success, drastically reducing the human cost of several VOs.

Section II provides an overview of the pilot paradigm,
and the cost savings associated with it. Section III describes
the cost savings due to the glideinWMS approach of
separating VO policy from Grid submission. Finally, Section
IV provides the analysis of the cost savings that OSG
achieved in using the glideinWMS with a shared glidein
factory.

II. COST ADVANTAGE OF PILOT INFRASTRUCTURES

A pilot system [3] creates a dynamic overlay pool of
compute resources on top of the Grid, as shown in Fig. 1.
From the end user point of view, this overlay pool looks and
feels exactly like a dedicated, tightly controlled compute
cluster of the past, it is just a dynamic one, growing and
shrinking depending on workloads and Grid resource
availability.

Pilot infrastructures use two mechanisms to shield the
users from Grid errors. The first and most important
protection is provided by the pilots themselves; if a
malfunctioning node kills the pilot before it is able to join the
overlay pool, the users will never be aware of the existence
of such node, preventing any error condition at its root.
Starting the pilot is however not a sufficient condition to
assure job success, since user jobs may need access to
resources not needed by the pilot itself, e.g., scientific
libraries, or they may need them in larger quantities, e.g.,
disk space. To account for that, most pilot system
implementations, and in particular glideinWMS, allow for
additional validation procedure to be run before joining the
overlay pool; if even one test fails, the pilot aborts and never

217

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-153-3

joins the pool. This allows for the overlay pool to be well
behaved, at least within the limits of the tested properties.

Figure 1. Schematic view of a pilot system

For the final user, the human cost of using this pool is
thus comparable to using a truly dedicated compute pool.
However, someone still has to create this overlay pool by
submitting pilot jobs to the Grid. This pilot administrator will
thus be exposed to the Grid-related errors affecting the pilot
jobs themselves, and will be responsible for debugging them.
While the human cost of this individual will obviously be
much higher compared to the human cost of any individual
user in the direct Grid submission paradigm, its cost is
arguably still much smaller than the aggregate human cost of
all the individuals.

There are two reasons for the cost savings. The first one
is due to the difference in the type of jobs failing. Each user
job is precious, so users have to spend some time recovering
each and every one of them. Pilots are instead disposable,
since they by themselves don't carry any useful payload, and
any failure before an actual user job is started does not
represent any loss of data, just reduced efficiency on the
failing node. The human cost thus scales only with the
number of failing nodes, not failing jobs. As shown in
Table I, for a sizable OSG VO of O(1k) users running
O(10M) compute jobs per month on O(1k) nodes, if even 1%
of those jobs were to fail due to Grid problems, the use of a
pilot infrastructure would reduce the effort from debugging
O(100k) user jobs to debugging O(10) Grid nodes, thus
decreasing the human cost by several orders of magnitude.

TABLE I. COMPARISON OF DEBUGGING COSTS FOR A SIZABLE OSG VO

Direct submission Pilot system

Metric (/month) O(10M) jobs O(1k) nodes

Error rate O(1%) O(1%)

Entities to debug O(100k) O(10)

The second reason is due to the difference in expertise.
End users are typically not interested in computing, being

scientists and viewing computing just as a tool, so they will
likely spend a large amount of time trying to understand the
occasional set of Grid-related problems. Pilot administrators
can instead be IT professionals, who are well versed in
debugging and fixing these kind of problems. Moreover,
they will see similar errors with a much higher frequency,
making the time-to-resolution dramatically shorter.

III. IMPORTANCE OF PARTIAL SHARING IN PILOT
INFRASTRUCTURES

The typical way of using pilot infrastructures is for each
Virtual Organization to install a completely independent
instance. This has been the approach of the early adopters of
pilot infrastructures, such as the LHCb [5], CDF [6] and
ATLAS [7] VOs.

The net result of this approach, however, is the
proliferation of pilot administrators. Given that many Grid
sites provide resources to many VOs, it also likely results in
duplicate effort of debugging errors for pilots that happen to
land on the same malfunctioning compute nodes. Offloading
the operational load of many VOs to a single operations
group would thus result in significant human cost savings,
for the same reasons described in the previous section.

One of the reasons why early adopters did not go for a
shared solution is that while sharing of a pilot instance is in
theory possible, e.g., by simply allowing users from different
communities to submit to the same overlay pool, in practice
VOs cherish their autonomy, and will not delegate all control
to a third party. As long as pilot submission is tightly
integrated with the overlay pool operations, as it was the case
for the solutions referenced above, partial sharing is not an
option.

The glideinWMS addresses the above problem by clearly
splitting the pilot infrastructure in two logical pieces, and
thus separating the pilot submission from the operation of the
overlay pool itself. The pilot submission is handled by one or
more glidein factories, while the overlay pool is handled by
the Condor batch system [8,9], with an additional process,
called the VO frontend, providing the logic for requesting
pilot submission from a glidein factory. Each glidein factory,
in turn, can serve multiple VO frontends. The complete
architecture is summarized in Fig. 2; please note that Condor
pilots are labeled as glideins.

Using the glideinWMS, each VO operates its own
Condor batch system instance and the associated VO
frontend. Since almost all the policies are implemented in
this layer, the VO maintains the full control of the overlay
pool, thus retaining the look-and-feel of a dedicated, tightly
controlled compute cluster.

A VO could also run a glidein factory, but it can instead
delegate this activity to a third party without relinquishing
any control of the system. The glidein factory is effectively a
slave to the VO frontends, submitting pilots on their request.
The added value of a glidein factory is mostly in the
insulation of a VO frontend, and through it the associated
Condor batch system, from the Grid world, providing Grid
site specific configuration and validation, and handling all
the Grid-related monitoring and error debugging. All of these
activities are completely generic, and can be shared among
any number of VOs.

218

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-153-3

Figure 2. A glideinWMS glidein factory serving two VO frontends

One obvious concern in concentrating all operations to a
single entity is that it may become the single point of failure.
However, the glideinWMS architecture addresses this
concern by allowing each VO frontend to be interfaced with
multiple glidein factories, if so desired. While having more
than one glidein factory will likely raise the overall cost of
the system, it allows to hedge the risk of badly run services,
scalability limits as well as complete service shutdowns.

As stated above, the cost savings of using a common
glidein factory stem from the fact that many Grid sites
provide resources to many VOs; pilots from many VOs will
thus land on any malfunctioning or misconfigured worker
node. Since the human cost scales with the number of failing
nodes being debugged by a pilot administrator, having
multiple pilot administrators debug the same node is
obviously more expensive compared to a single team doing
this task. A quantitative comparison is available in the next
section.

IV. GLIDEINWMS IN OSG

The Open Science Grid has been financing the operation
of a glidein factory located at University of California San
Diego (UCSD) since 2009, with additional contribution
coming from the CMS experiment [10]. This instance is
operated by three people on part-time basis, with an average
effort of little less than one FTE. This glidein factory is open
to all OSG VOs, and is currently used by 12 of them, varying
in size from small campus-Grid groups to large world-wide
communities.

The UCSD glidein factory submits pilot jobs to about
100 Grid sites; out of these, about 30% are used by multiple
VOs, as shown in Fig. 3. Grid sites are selected mostly based
on which VOs they support. The glidein factory operators
obtain this information from multiple sources, including Grid
information systems, VO-specific information systems and
community knowledge. As far as possible, all information is
cross-checked and all new Grid sites validated before being
advertised to the served VO frontends. This effort invested in
the early validation is usually orders of magnitude smaller
than the effort that would be needed to debug misconfigured
or malfunctioning sites after the fact, saving precious human
time.

Figure 3. Fraction of OSG glidein factory Grid sites by number of VOs

As shown in Table II, in a typical week, this glidein
factory submits about 200k pilot jobs, with about 130k or
65% running on shared Grid sites. Of all the submitted pilot
jobs, about 25k or 12% fail the basic node validation, out of
which about 22k running on shared Grid sites, yielding a
slightly higher 16% error rate. About 25% of all human time
is being spent on monitoring these kind of errors, identifying
the root cause and collaborate with the affected Grid site
administrators in resolving them. Given that significantly
more than half of all failing pilots run on shared Grid sites, if
each VO had to perform these functions by itself, it would
have to spend at least 15% of a person's effort on this, which
would result in at least 1.5FTE effort OSG-wide being
dedicated to just Grid monitoring and debugging. Using a
common glidein factory instance thus saves the OSG
community well over a full time person time equivalent.

TABLE II. WEEKLY STATISTICS OF THE OSG GLIDEIN FACTORY

All sites Shared sites

Total glideins 200k 130k

Failing glideins 25k 22k

As can be seen, the major effort is currently not dedicated
to day-to-day operations. Of the remaining time, about 40%
is spent in helping the debugging of problems arising directly
between Grid sites and the VO Condor batch system, another
20% writing tools to reduce the needed human effort in the
long term, and the final 40% to help VOs to effectively use
the glideinWMS. These numbers are also shown in Fig. 4.

Figure 4. Allocation of effort at the OSG glidein factory

219

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-153-3

While problems arising from the use of Grid resources by
the VO's Condor batch system is technically beyond the
glidein factory control, the relevant error logs may not get
propagated back to the VO, since the VO communication
mechanisms are based on Condor itself. The glidein factory
will instead always get them, since it is using the regular
Grid mechanisms. The glidein factory operators are thus
expected to monitor for these kind of errors as well.

The operators of the OSG-sponsored glidein factory
instance also often take a leading role in solving such
problems. These problems are often very similar in nature
between different VOs; a typical example of such problems
are firewall issues. As such, the glidein factory operators
have extensive experience in debugging such errors,
reducing the total human effort needed. This is especially
important since these events, while relatively rare, often
don't result in any obvious error messages in the logs, but
require speculative thinking in order to be solved. Some of
these speculative actions may be scriptable, so time is being
invested into the R&D of such tools.

Finally, some of the OSG factory operators also help
managing a CMS VO frontend and the related Condor batch
system, so together with the experience of supporting several
additional VOs from the glidein factory side, they are experts
in troubleshooting every component of the glideinWMS
system. As such, it is cost-effective to use these people to
help all the OSG VOs in the configuration of their
glideinWMS components. This does not mean they are
involved in day-to-day operations, but they do advise on
major configuration decisions.

The number of VOs supported by the OSG glidein
factory has been gradually increasing with time. In this
period, we noticed that new VOs typically require significant
hand-holding, both in terms of configuration help as well as
Condor problems on Grid resources during the initial setup
period and during major changes in their operation mode, but
require relatively little effort most of the remaining time. The
human time required by the glidein factory operations team
has thus been pretty much constant for all but the initial few
months of the glidein factory lifetime, and is expected to
significantly decrease once the influx of new VOs slows
down.

TABLE III. FTE COST ESTIMATES FOR GLIDEINWMS USE IN OSG

Shared
factory

VO provided factory

Per VO OSG-wide
(12 VOs)

Grid debugging 25% 15% 180%

Pilot Debugging 28% 15% 180%

Automation R&D 14% 10% 120%

Total 67% 40% 480%

The actual cost savings of using a shared OSG glidein
factory are difficult to measure, since most VOs using it
switched directly from direct submission to the shared-
factory pilot paradigm. We thus made an educated guess

about the operational costs a typical OSG VO would incur
by running its own glidein factory, and presented them in
Table III. Given that more than half of all pilots run on
shared Grid sites, we estimated that the per-VO cost of both
Grid and pilot debugging would scale approximately at the
same rate; the automation R&D would instead likely be
almost the same as in the shared glidein factory scenario,
although the shared glidein factory does need to produce
more complex tools. As can be seen, we estimate that the
OSG VOs would each use about 40% of an FTE, for an
OSG-wide total of about 5 FTEs. This is significantly higher
than the 2/3 FTE currently being used by the shared glidein
factory.

V. CONCLUSION AND FUTURE WORK

Using Grid resources directly can have a high human
cost. While the Grid is quite easy to use as long as
everything works well, when something does go wrong, it
can take a significant amount of human time to debug and fix
the problem. Several OSG Virtual Organizations have thus
switched to the use of glideinWMS, which allows for
significant cost savings.

The major cost savings come from glideinWMS being a
pilot system, i.e. creating a dynamic overlay pool of compute
resources on top of the Grid. This shields the end users from
Grid errors, and delegates their debugging to a dedicated
team of professionals. Furthermore, to achieve savings
across different VOs, the glideinWMS architecture separates
the pilot submission services from the VO logic, shielding
even the VO administrators themselves from the Grid, and
allowing for the outsourcing of the Grid error handling to an
experienced operations team.

 The Open Science Grid has thus invested into a common
glidein factory instance, creating an expert operations team
that handles the Grid-related monitoring and debugging tasks
for all the interested VOs. This allows these VOs to
drastically reduce the human effort needed, resulting in
global savings of several full time persons time compared to
running the complete pilot infrastructure themselves. The
cost savings compared to direct Grid submission can instead
be counted in tens of FTE, given the thousands of scientists
using the Grid resources.

Moreover, the outsourcing of Grid-related activities also
contributes to a much better user experience, since most
Grid-related problems are caught before the users are
exposed to them, and the remaining ones get solved quickly
thanks to the experience of the dedicated glidein factory
operations team. This contributes to a greater usage of Grid
resources by scientists who would otherwise avoid them, due
to the high human cost involved.

The system has served OSG well, both in terms of
effectiveness and human cost, and is expected to continue to
operate in the foreseeable future, with most OSG VOs
eventually using it. The only major operational change
currently planned is the creation of a second glidein factory
instance at a different location, for high availability reasons.
While this is expected to slightly increase the operations
costs, it is a highly desirable step now that a large
community depends on it.

220

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-153-3

ACKNOWLEDGMENT

This work is partially sponsored by the US Department
of Energy under Grant No. DE-FC02-06ER41436
subcontract No. 647F290 (OSG), and the US National
Science Foundation under Grants No. PHY-0612805 (CMS
Maintenance & Operations), and OCI-0943725 (STCI).

REFERENCES

[1] R. Pordes et al., “The open science grid,“ J. Phys.: Conf. Ser., vol. 78,
012057, pp. 1-5, 2007, doi: 10.1088/1742-6596/78/1/012057.

[2] “Open Science Grid home page,” http://www.
opensciencegrid.org/, Accessed June 2011.

[3] I. Sfiligoi et al., "The pilot way to grid resources using
glideinWMS," CSIE, WRI World Cong. on, vol. 2, pp. 428-432,
2009, doi: 10.1109/CSIE.2009.950.

[4] “glideinWMS,” http://tinyurl.com/glideinWMS, Accessed June
2011.

[5] A. C. Smith and A. Tsaregorodtsev, “DIRAC: reliable data
management for LHCb,” J. Phys.: Conf. Ser., vol. 119, 062045, pp. 1-
6, 2008, doi: 10.1088/1742-6596/119/6/062045.

[6] S. Belforte et al. “GlideCAF: A late binding approach to the grid,”
Proc. Comp. in High Ener. and Nucl. Phys. (CHEP2006), 2006, id
147, http://indico.cern.ch/materialDisplay.py?contribId=147&
sessionId=8&materialId=paper&confId=048, Accessed June 2011.

[7] T Maeno, “PanDA: distributed production and distributed analysis
system for ATLAS,” J. Phys.: Conf. Ser., vol. 119, 062036, pp. 1-4,
2008, doi: 10.1088/1742-6596/119/6/062036.

[8] D. Thain, T. Tannenbaum, and M. Livny, “Distributed computing in
practice: the Condor experience,” Conc. and Comp.: Practice and
Experience, vol. 17, issue 2-4, pp. 323–356, 2005, doi:
10.1002/cpe.938.

[9] “Condor project homepage,” http://www.cs.wisc.edu/condor/,
Accessed June 2011.

[10] The CMS Collaboration et al. “The CMS experiment at the CERN
LHC,” J. Inst, vol. 3, S08004, pp. 1-334, 2008, doi: 10.1088/1748-
0221/3/08/S08004.

221

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-153-3

