
Cloud Objects: Programming the Cloud with
Object-Oriented Map/Reduce

Julian Friedman
Dept. of Computer Science IBM Cloud Labs

University of York IBM United Kingdom Ltd.
York, UK Hursley Park, UK

julz@cs.york.ac.uk julz.friedman@uk.ibm.com

Manuel Oriol
Dept. of Computer Science ABB Corporate Research

University of York Industrial Software Systems
York, UK Baden-Dättwil, Switzerland

manuel@cs.york.ac.uk manuel.oriol@ch.abb.com

Abstract—Cloud Objects parallelizes Object-Oriented pro-
grams written in Java using Map/Reduce by adding simple,
declarative annotations to the code. The system automatically
persists objects to a partitioned filesystem and efficiently executes
methods across the partitioned object data. Using Cloud Objects,
data-intensive programs can be written in a simple, readable,
object-oriented manner, while maintaining the performance and
scalability of the Map/Reduce platform. Cloud Objects shows
that it is possible to combine the benefits of an object-oriented
model and the power of Map/Reduce.

Keywords-Map/Reduce, Hadoop, JPA, Cloud Computing

I. INTRODUCTION

Data-parallel frameworks such as Map/Reduce [1] have
become increasingly popular. The developers of Internet ap-
plications have turned to these technologies to harness the
power of large numbers of distributed machines to address
the challenges of processing huge amounts of data.

Map/Reduce was designed for a specific domain — data-
dependent batch computations — it was not designed to be
a general approach to designing whole applications. Program-
mers must fit their code into the structure of a Map/Reduce
algorithm. Programming a Map/Reduce application involves
splitting the algorithm into separate Mappers, Reducers, In-
putFormats and Drivers (to name a few) and encourages a
tight coupling of these components.

Splitting the application logic between many tightly cou-
pled classes compromises many of the advantages of object-
oriented design, such as composability, modularity and encap-
sulation. The lack of proper object orientation makes it difficult
to evolve and compose Map/Reduce programs in to larger
systems, to maintain Map/Reduce programs, and to quickly
develop new applications using Map/Reduce.

This paper describes Cloud Objects, a new system which
allows Map/Reduce applications to be written in an object-
oriented style. Cloud Objects uses simple declarative anno-
tations to describe how object data should be persisted to
the distributed filesystem. As well as automatically generating
the code to persist the objects to a partitioned datastore (in a
manner similar to existing systems such as DataNucleus [2]),
the system generates the Map/Reduce code to run methods
across the partitioned object data. A program can be structured

and composed in an object-oriented style and deployed to
existing Map/Reduce clusters.

The paper is structured as follows. The following section,
Section II, introduces the programming model with a simple
example. Section III describes the programming model in
detail. Section IV describes our prototype implementation.
Section V discusses Cloud Objects in the context of related
work. SectionVI concludes the paper.

II. AN INTRODUCTORY EXAMPLE

Cloud Objects’ persistence annotations are based on JPA
(Java Persistence Annotations, JSR 317 [3] and 220 [4]).
This allows maximum compatibility with existing code and
minimizes the need for developers to learn a new syntax.
Persisting an object to a distributed store is as simple as using
standard JPA annotations. Once persisted, methods can be run
in parallel across an object’s partitioned data.

In Listing 1, we illustrate the programming model with a
simple example. The Wiki class contains a map of page names
to WikiPage objects which the framework will persist to the
distributed filesystem. Assuming the map is large, the data will
be partitioned across many machines.

While persistence annotations alone allow persisting and
querying object data in the distributed file system, they do not
allow efficient processing of the object data. The scalability
and efficiency of the Map/Reduce model is based on the
ability to distribute code to data. Map/Reduce is a computation
framework as well as a data storage and querying framework.
While a simple approach based on JPA alone would suffice to
persist the object data, it would not be able to efficiently run
object methods with data-locality; it would gain the benefits
of the distributed file system to persist and retrieve the object
data, but not the advantages of the Map/Reduce model to
execute fault-tolerant, resilient methods across the data.

Cloud Objects adds the ability to add @Multicast methods
to a class which can be distributed automatically, with data-
locality, by the framework. A multicast method across the
’pages’ member variable is shown in Listing 1. The multicast
method is automatically run across each shard of the parti-
tioned ’pages’ variable using Map/Reduce, and the results are
combined to a single array using a standard UNION reduction.

224Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

@Entity public class Wiki {
@OneToMany @KeyField("url") private Map<String, WikiPage> pages;

public Collection<String> search(String phrase) { this.search(pages, phrase); }

@Multicast(reduce=UNION)
protected Collection<String> search(Map<String, WikiPage> pages, String phrase) {

Collection<String> matches = new ArrayList<String>();
for(Map.Entry<String, WikiPage> page : pages) {

if(page.getContents().indexOf(phrase) > -1) { matches.add(url); }
}
return matches;

}
}

Listing 1: A Distributed Wiki

The results of the search(..) method are themselves written
to the distributed filesystem and can be processed with data-
locality by another @Multicast method. This allows seamless,
efficient composition of multicast methods in to full applica-
tions.

III. PROGRAMMING MODEL

The aim of Cloud Objects is to allow the business logic of an
application to be expressed in a simple, object-oriented style
while efficiently running methods across partitioned object
data using Map/Reduce.

Cloud Objects can be split into annotations which relate to
persisting and retrieving objects from the datastore (which are
based on JPA), and annotations related to running methods
across the partitioned data. As the persistence-related annota-
tions are based directly on a subset of the JPA standard, in this
section, we focus only on the additional annotations we have
introduced to run methods across the persisted object data.

A. Multicast Methods

Multicast methods interact with partitioned instance data
by running appropriate Map/Reduce jobs over their input data
(which is stored in the distributed filesystem).

The programmer uses an EntityManager instance to retrieve
a Cloud Object from the datastore. When the EntityManager
retrieves an object, it creates proxy collections to wrap dis-
tributed member data. These proxy collections are initialized
with the location of their data in the distributed file system,
and contain methods to configure a Map/Reduce job to run
against their contents.

On the client machine, the EntityManager replaces any
methods of a returned instance which have been annotated
with the @Multicast annotation using byte-code rewriting.

1) Inputs to Multicast Methods: For simplicity, multicast
methods only allow one partitioned input collection to be
passed as an argument. The programmer is free to run methods
over multiple partitioned inputs by using a multicast method
to create a collection containing a cross product or join of two

other lists. This resulting list will be stored on the distributed
filesystem and can be passed as an input to another multicast
method. Alternatively one of the lists (usually the smaller)
can be passed as class data and retrieved from the distributed
filesystem on demand.

To maximize encapsulation, the programmer is encouraged
to provide an external client method (not annotated with
@Multicast) which calls a protected or private @Multicast
method with the needed arguments. This is shown in the 1-
arg and 2-arg versions of the search (..) method in Listing 1.

2) Outputs from Multicast Methods: Safely running a Mul-
ticast method across a number of machines requires a number
of constraints on multicast methods. If the method replicas
were allowed to write directly to the member variables of the
class the individual jobs would no longer be independent. In-
stead, multicast methods may only write to member variables
in the following (safe) ways:

a) Shared: The framework sends instance variables
marked with the @Shared annotation to every node using
Hadoop’s distributed cache. On worker machines, any up-
dates made to @Shared variables other than Counters and
Joinables (see next) are ignored and may throw exceptions.
Updates made to member variables that are not annotated with
@Shared are limited to a particular object on a particular node.
This can be useful for caches and other data structures which
do not need to be maintained across machines.

b) Counters: Counters allow methods to safely update
member variables which increase monotonically. Counters
are implemented using the underlying Hadoop framework’s
Counter functionality. Hadoop’s Counters are global, which
breaks encapsulation. Counters in Cloud Objects are automat-
ically given generated, private IDs based on the object class
and the unique identity of the object instance.

c) Joinables: Joinables allow for a more general method
of updating an instance variable from multiple methods. Join-
ables are inspired by the Concurrent Revisions programming
model [5]. Joinables may be declared either by deriving
from the Joinable marker interface or by the addition of

225Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

a specific @JoinedWith(..) annotation. Classes which inherit
from the Joinable marker interface are expected to have either
a static join(..) method or to be themselves annotated with
@JoinedWith(..) to refer to a class with a no-arg constructor
and a join(..) method.

B. Reductions

The final result from a multicast method is reduced to a
single value using a Reducer class. A set of default reducers is
provided for Unions, Sums and Averages, and the programmer
is free to name their own reduction class in the @Multi-
cast(reduce = ..) annotation.

IV. IMPLEMENTATION

We have implemented a prototype of Cloud Objects based
on OpenJPA [2] and Hadoop [6]. We briefly describe the key
elements of the implementation in this section.

A. Collections Proxies

Instance variables of Cloud Objects which are specified as
Lists or Maps are automatically proxied with a HadoopList
or a HadoopMap class which reads and writes from the
Distributed Filesystem when the object needs to be persisted.
This is done by the EntityManager when retrieving the object,
and by the generated Mapper classes when they create an
object instance to process partitions of a Multicast Method’s
input data.

The distributed collection classes support two modes of
operation. When used as input to a Multicast Method (on
the master machine), the collection classes provide a con-
figureInput(Job job) method which configures a Hadoop Job
with the input directory containing the collection’s data and
an appropriate InputFormat which can parse the data. Each
Map job is then provided with a single shard of the par-
titioned data. The shard for the Map job is created using
the createShard(Class<T>, Mapper.Context) method of the
HadoopMap and HadoopList classes, which converts the input
key/value pairs for the current map task in to the type of
collection required by the mapper method.

When accessed as an instance variable rather than as a
parameter to a MultiCast method, a distributed collection reads
and writes its object data from the distributed filesystem. This
is potentially inefficient as the object data is unlikely to be
local, but is useful for tasks such as printing out the final
results of a computation.

B. Multicast Methods

Proxied objects are obtained using a custom JPA EntityMan-
ager. We use the open-source OpenJPA [2] implementation of
the JPA standard which uses byte-code rewriting to extend
plain java objects with persistence information. When the
custom EntityManager returns a persistent object or collection,
it is scanned for methods annotated with @Multicast and
if these are present they are overriden to be dispatched via
Hadoop.

The MulticastInvoker class is responsible for dispatching
Multicast methods to run on the Map/Reduce cluster using

Hadoop. A single Mapper and Reducer (DefaultMapper
and DefaultReducer) are used for every job. These classes
are configured using job configuration variables set by
MulticastInvoker. For example, the DefaultMapper consults
the ‘com.ibm.cloudlabs.cloudobjects.multicast.target.class’
variable; this variable records the class which will be used
on each node to run the ‘meat’ of the job. MulticastInvoker
delegates to the input collection to set the job input path
based on the location of the passed object on the distributed
filesystem.

Each Map job creates a new copy of the delegate object
using the no-arg constructor, which must be present in the
class. Any @Shared or Joinable variables in the class are
initialized from the distributed cache, and HadoopCollec-
tion.createShard(..) is used to create a shard of the multicast
variable to be passed to the method from the input pairs. Out-
put is saved to a directory configured by a HadoopCollection
or HadoopMap and the client automatically creates and returns
a proxy collection wrapping the output directory.

C. Joinables

Joinable variables are initialised before a method is run
using the distributed cache, so that each node has the same
initial value. During the multicast method, the joinable variable
maintains any values set during the method. This preserves the
independence of the map jobs. The Mapper implementation
writes both updated joinable values and the results of the
multicast method to the map output, prefixing a 0 or 1 to the
stream to differentiate each case. These outputs are sorted by
the framework and passed to the reducer. The Reducer merges
Joinable variables using the appropriate Joiner class for the
variable and delegates to the configured Reduction class to
create the final result of the method.

V. RELATED WORK

The Hadoop [6] implementation of the Map/Reduce al-
gorithm [1] provides a Java API to Map/Reduce. This API
is, however, a low-level API which requires the programmer
to express computations as collections of Map jobs, Reduce
jobs and Driver classes. All of these interact to perform a
computation and collect results over a distributed, partitioned
datastore. Map/Reduce is typically not object-oriented because
it requires programmers to express jobs in a functional way.
Cloud Objects allows applications to use an object oriented
style while taking advantage of the scale and power of Map/
Reduce. While Cloud Objects does not have the full generality
of Map/Reduce - in particular, many Map/Reduce algorithms
are in practice tuned using techniques such as In-Mapper
Combiners, Pairs and Stripes (see e.g., [7]), which rely on
a tight coupling between Mapper and Reducer - we believe
it is a promising method for creating large scale applications.
While Map/Reduce programs tend to rely on tight coupling
between Mapper and Reducer, Cloud Objects favours the use
of standard, reusable reducers - though custom reducers are
supported - and higher-level concepts such as Joinable types
and Counters.

226Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

Cloud Objects follows a trend of higher-level and domain-
specific languages such as Pig [8], Hive [9] and JAQL [10]
built on top of Map/Reduce. The aim of these languages is
to retain the performance, reliability and scalability benefits
of Map/Reduce, while presenting a more familiar, simpler or
high-level style to programmers.

Sawzall [11] runs on top of Map/Reduce and, similarly to
our approach, uses a set of standard reducers to aggregate
outputs from custom map methods. Sawzall uses a custom
scripting language which processes a single input and emits
values to output types such as sum tables and maximum tables
which retain the total of their input and the largest of all of
their inputs, respectively. Sawzall is however different from the
programming language in which the rest of the application is
coded. Cloud Objects solves this issue.

Pig [8] is an imperative language with a number of group-
based built-in functions such as co-joins, projections and
restrictions. The aim of Pig is to provide an easy way for
programmers familiar with imperative programming to query
distributed data using Map/Reduce. It does not provide any
way of writing scripts in an object oriented style and focuses
on ad-hoc querying of existing data.

JAQL [10] is closer in spirit to Cloud Objects, providing
a pure functional language for querying Javascript Object
Notation (JSON) objects using Map/Reduce. JAQL is designed
for ad-hoc queries of large data rather than writing main-
tainable programs, and while it allows querying serialised
objects, it does not provide features to allow its own programs
themselves to be written in an object oriented style.

Hive [9] presents an SQL-like declarative interface for
querying large-scale data using Map/Reduce. This lacks the
generality of the Cloud Objects approach.

Collection-style interfaces such as FlumeJava [12] and
Crunch [13] have advantages over domain-specific languages
such as Pig and JAQL in that they allow the program to be
expressed in a single language and are perhaps closest to
our approach. These interfaces allow complicated pipelines of
operations on collections of objects to be efficiently optimised
in to a set of Map/Reduce jobs. These systems focus on
manipulating object collections rather than on adding data-
parallel methods to existing object-oriented programs.

Other tools exist which provide JPA bindings from Java
objects to partitioned data stores such as HDFS. DataNu-
cleus [2] is an open-source JPA provider with support for
a variety of backends including Hive. Users of Google’s
AppEngine [13] environment can use JPA to persist objects
to the AppEngine data store, and can separately use the Map/
Reduce functionality of AppEngine to run map jobs over
entities in the data store.

Alternatives to Map/Reduce also exist. For example, in the
.Net ecosystem, Dryad [14] and DryadLINQ [15] have become
popular frameworks for expressing data-parallel computations.
Dryad provides a more generic model than Map/Reduce,
allowing arbitrary directed acyclic graph computations, and
DryadLINQ provides a language-integrated query language
which can compiles to Dryad jobs. Another example is Sky-

writing [16] which provides a functional coordination lan-
guage to describe computations to be run on CIEL [17], a Map/
Reduce-like system for cluster computation. Cloud Objects are
at a higher level of abstraction and could be applied on top of
these as well.

VI. CONCLUSION

This paper introduced Cloud Objects, an object-oriented
programming model which exposes the power of Map/Reduce
in a simple, encapsulated, modular way. To use Cloud Objects,
programmers only need to add a couple of annotations to a
regular Java program.

Our prototype implementation of Cloud Objects uses
Hadoop [6] to distribute the actual code and data and extends
OpenJPA [2] to store and retrieve persistent objects to a dis-
tributed filesystem. We have benchmarked the prototype using
EC2. Initial experiments show that the overhead induced is
negligible compared to the cost of computation and network.

REFERENCES

[1] J. Dean and S. Ghemawat, “Mapreduce: Simplified data processing on
large clusters,” Communications of the ACM, vol. 51, no. 1, pp. 107–
113, 2008. [Online] Available: http://labs.google.com/papers/mapreduce-
osdi04.pdf [Accessed: 14 May 2012].

[2] “Datanucleus,” http://www.datanucleus.org/ [Accessed: 14 May 2012].
[3] L. DeMichiel, “Jsr 317: Java persistence 2.0,” 2009.
[4] L. DeMichiel and M. Keith, “Jsr 220: Enterprise javabeans,” 2006.
[5] S. Burckhardt, A. Baldassin, and D. Leijen, “Concurrent programming

with revisions and isolation types,” in Proceedings of the ACM interna-
tional conference on Object oriented programming systems languages
and applications, ser. OOPSLA ’10. New York, NY, USA: ACM, 2010,
pp. 691–707.

[6] “Apache hadoop,” http://hadoop.apache.org [Accessed: 14 May 2012].
[7] J. Lin and C. Dyer, Data-Intensive Text Processing with MapReduce.

Morgan & Claypool Publishers, 2010.
[8] C. Olston, B. Reed, U. Srivastava, R. Kumar, and A. Tomkins, “Pig

latin: a not-so-foreign language for data processing,” in Proceedings of
the 2008 ACM SIGMOD international conference on Management of
data, ser. SIGMOD ’08. New York, NY, USA: ACM, 2008, pp. 1099–
1110.

[9] A. Thusoo, J. S. Sarma, N. Jain, Z. Shao, P. Chakka, S. Anthony, H. Liu,
P. Wyckoff, and R. Murthy, “Hive: a warehousing solution over a map-
reduce framework,” Proc. VLDB Endow., vol. 2, pp. 1626–1629, August
2009.

[10] “Jaql: Query language for javascript object notation,”
http://code.google.com/p/jaql/ [Accessed: 14 May 2012].

[11] R. Pike, S. Dorward, R. Griesemer, and S. Quinlan, “Interpreting the
data: Parallel analysis with Sawzall,” Sci. Program., vol. 13, pp. 277–
298, October 2005.

[12] C. Chambers, A. Raniwala, F. Perry, S. Adams, R. R. Henry, R. Brad-
shaw, and N. Weizenbaum, “FlumeJava: easy, efficient data-parallel
pipelines,” in Proceedings of the 2010 ACM SIGPLAN conference on
Programming language design and implementation, ser. PLDI ’10. New
York, NY, USA: ACM, 2010, pp. 363–375.

[13] “Google app engine,” http://code.google.com/appengine/ [Accessed: 14
May 2012].

[14] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly, “Dryad:
distributed data-parallel programs from sequential building blocks,” in
Proceedings of the 2nd ACM SIGOPS/EuroSys European Conference on
Computer Systems 2007. ACM, 2007, pp. 59–72.

[15] Y. Yu, M. Isard, D. Fetterly, M. Budiu, U. Erlingsson, P. K. Gunda, and
J. Currey, “DryadLINQ: a system for general-purpose distributed data-
parallel computing using a high-level language,” in Proceedings of the
8th USENIX conference on Operating systems design and implementa-
tion, ser. OSDI’08. Berkeley, CA, USA: USENIX Association, 2008,
pp. 1–14.

227Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

[16] D. Murray and S. Hand, “Scripting the cloud with skywriting,” in
Proceedings of the 2nd USENIX conference on Hot topics in cloud
computing. USENIX Association, 2010, pp. 12–12.

[17] D. Murray, M. Schwarzkopf, C. Smowton, S. Smith, A. Madhavapeddy,
and S. Hand, “Ciel: a universal execution engine for distributed data-
flow computing,” in Proceedings of NSDI, 2011.

228Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

