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Abstract—Traditionally, Infrastructure as a Service (IaaS)
providers deliver their services as Reserved or On-Demand
instances. Spot Instances (SIs) is a complementary service that
allows customers to bid on the free capacity in the provider
data centers. Therefore, the decrease in the free capacity may
result in terminating instances abruptly. To ensure fair trading,
the provider does not charge customers for the interrupted
partial hours. However, our experiments show that uncharged
time could rise up to 30% of the instance total run time, which
means a reduction in the provider’s profit. In this paper, we
propose an Elastic Spot Instances (ESIs) approach, where instead
of abruptly terminating the SI, the provider scales down their
capacity proportionally to the increase in the price. Our approach
delegates the task of interrupting the instances into the customers,
but at the same time keeps the control in the provider side
to isolate SIs’ impact on the other services. We validate our
approach along different periods of SIs history traces.

Keywords- IaaS; Spot instances; Dynamic scalability.

I. INTRODUCTION

Amazon is the first cloud provider to come up with SIs
purchasing system to sell the spare capacity after fulfilling the
requests for Reserved and On-Demand instances. The price of
SIs changes dynamically according to free capacity and actual
demand. The requests for new SI with bid price higher than
or equal the current spot price will be served. On the other
hand, if the current prices exceeded the user bid, provider will
terminate out-of-bid instances abruptly. SIs reduce the prices
from 38% to 44% of the On-Demand prices [1]. However, SIs
customers are supposed to modify their applications to manage
the abrupt termination of SIs.

To manage SIs termination, customers can implement fault
tolerant architectures such as MapReduce [2], Grid, Queue-
Based [3], and Checkpointing [4][5][6]. The first three archi-
tectures typically run two types of nodes (master and worker).
One of the master nodes tasks is to manage the failure of
worker nodes. The best practice is to run master nodes on On-
Demand or Reserved instances and run worker nodes on SIs
to benefit from price reduction. However, these architectures
imply major modification to customers’ applications. On the
other hand, checkpointing is a simple traditional fault tolerant
technique. It keeps application execution progress by storing
the current state (i.e., snapshot) of the running instance into a
persistent storage. Nevertheless, bad checkpointing strategies

could impact the performance drastically [7]. For instance,
frequent checkpointing results in a high cumulative overhead
(i.e., computation is paused at checkpointing time). On the
other hand, infrequent checkpointing results in a high overhead
caused by the high recovery time (i.e., much computation
should be repeated again).

The main goal of this paper is to reduce the checkpointing
overhead in SIs environment. This is motivated by the follow-
ing facts: First, checkpointing is a simple fault tolerant tech-
nique that does not require major modifications to customers’
applications. Second, checkpointing could be integrated to the
other fault tolerant architectures to increase their reliability.
Finally, and most importantly, if customers can have check-
points exactly before terminating VMs instances (i.e., Optimal
Checkpointing), then there is no need for the concept of unpaid
partial running hours, which on consequently increases the
provider profit.

In the next section, we study Amazon EC2 SIs implemen-
tation. In Section III, we discuss our proposed ESIs approach:
the algorithm, the advantages, and the potential technical
challenges. In Section IV we compare our proposed approach
performance with current implementation of SIs using price
history traces. In Section VI, we present related work done
to improve the trade-off between price, reliability, and total
run time of applications on SIs. Finally, in Section VII, we
conclude and represent our future work.

II. AMAZON EC2 SIS

In this section, we give an overview to Amazon EC2 SIs
because it is the first provider who offers SIs purchasing
system. The purpose of this section is to determine SIs
characteristics that we should consider in our approach.

A. Infrastructure

Amazon EC2 infrastructure [8] is distributed into regions
(e.g., US East “Northern Virginia”, US West “Northern Cal-
ifornia”, etc.). To prevent failure propagation, each Region
is separated into many availability zones. This infrastructure
mainly delivers Reserved and On-Demand instances. The
spare capacity is sold as SIs. The SI, as well as the Re-
served and On-Demand instance, can be one of many types
depending on resources capacity (e.g., High-CPU Medium
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Instance “c1.medium”, High-Memory Extra Large Instance
“m2.xlarge”, etc.).

SI’s price is determined by the type, the region, and the
operating system. Unlike Zhang et al.’s [9] assumption, in
our approach we assume that a physical machine, at the
provider side, hosts only instances of the same type and
operating system. We support our assumption by observing
CPU specifications of each EC2 instance type.

B. Is it a market-driven auction?

Amazon describes SIs purchasing system as a market-driven
auction [3]. For example, if the provider has N free resources
and it received K bids on the resources, then the provider
accepts only the highest N bids, where K is greater than N .
The price will be the lowest bid value of the winning subset
of the bids. However, by analyzing history traces of SIs’ price,
Javadi et al. [1] showed sharp changes in the inter-price time
(i.e., time between price changes) occurred on specific dates
at different regions. Javadi et al. conclude that it is artificial
(i.e., done by Amazon and not driven by customers demand).
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Fig. 1. (US-East), High-CPU Medium Instance’s inter-price time

Ben-Yehuda et al. [10] went further by showing that the
prices also are determined artificially by a random reserve
price algorithm and do not represent real customers bids
around 98% of the time. They expected that the aim of
this random reserved price is to prevent customers from: 1-
being complacent and force them to bid higher. 2-inferring the
provider’s real capacity. Therefore, in case of low number of
bids on specific instances type (i.e., K is lower than N ), the
provider either accepts the lowest bid as the current price or
generates a higher value (i.e., pretends less resources [9]) to
sell the resources with a higher price. This behavior raises
a question about the efficiency of approaches that model
the SIs prices. However, we attribute the direct control of
the provider on the price to the lack of demand for some
instances’ type. Nevertheless, regardless of the aim of this
random reserved price, our approach does not disclose any
hidden information about provider’s capacity while it proposes
changes to purchasing system rather than to pricing system of
SIs.

III. ELASTIC SPOT INSTANCES (ESIS)

We propose ESIs approach to increase the efficiency of
selling the free capacity of the IaaS provider. It assumes

modifying the SIs purchasing system to increase its reliability
without influencing the other hosted services. Fortunately,
these modifications do not imply major modification to the
current providers’ infrastructure while many IaaS providers
already use virtualization technologies that can easily accom-
modate our approach.

Current SIs implementation reacts with the increase demand
on On-Demand and Reserved instances by increasing the SIs
price. As a result, out-of-bid SIs are evicted to free more
capacity for the complementary services. From the customer
point of view, this reduces the SIs reliability. From the provider
side, the abrupt interruption of the SIs results in partial unpaid
hours (i.e., in some cases, provider will not be paid up to 30%
of an instance total run time). Moreover, if the users managed
to delay the SI termination, as discussed by [11] and [5], this
also increases the probability of unpaid running time.

Implementing our approach requires the following modi-
fications to current SIs purchasing algorithm: First, provider
should determine min and max price for each instance type.
Second, instead of terminating out-of-bid SI the provider
scales down instance’s capacity to a value proportional to the
increase in the price. Third, running instances can be charged
per second because VM instance termination is delegated to
the user. According to these modifications, the capacity of ESI
can be calculated using Algorithm 1.

Algorithm 1 ESIs’s purchasing algorithm
Input: max price, min price, current price, min cap, and
user bid
Output: VM capacity
// Calculate the scaling step size
scale step← 100/(1000∗ (max price−min price)+1)
// Calculate next capacity of VM
if user bid ≥ current price then
VM capacity ← 100

else
if user bid < current price then
VM capacity ← 100 − scale step ∗ 1000 ∗
(current price− user bid)

end if
//To prevent VM from starving
if VM capacity < min cap then
VM capacity ← min cap

end if
end if

According to [1], the price history of most SIs types,
except for some types in US-East data center, could be
modeled as a Mixture of Gaussian distributions with three or
four components with a high fit. This gives the impression
that Amazon already has soft minimum and maximum price
thresholds for each spot instances type. Moreover, to prevent
negative and very low capacities of VM instances, we propose
having a minimum capacity of the VM resources, as seen in
Algorithm’s 1 input. In Section V, we discuss calculating this
value considering the free capacity at the physical host.
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Algorithm 1 shows that the provider will not have the
control to terminate the SIs. At first glance, it seems that
customers will be complacent and can simply use a very
low bid strategy to have a continued run with a low price.
However, if we take the example of “US-West, Linux, High-
CPU Medium” instance, the probability density function
shows that 99.8% of the prices fall between 0.076 and 0.084.
Therefore, scale step value in Algorithm 1 is calculated as
100/(1000 ∗ (0.084− 0.076) + 1) = 11.11, which means that
whenever the Spot Price surpasses user bid with 0.001, the
capacity of the instances scales down to (100−11.11) ≈ 89. If
a user submitted a low bid, for example 0.077, the user will be
charged 0.077 per hour for a full capacity instance (i.e., 100%).
However, when the market price jump to 0.081, the instance
capacity will be scaled down to 100−11.11∗(0.081−0.077) ≈
56%. In spite of the fact that the instance is charged 0.077 per
hour, the price is almost doubled according to the low allocated
capacity. By this concept, at the case of the overloading,
instead of terminating the instances by the provider, the high
ratio of price to capacity will push the customers to mange
terminating SIs for the optimal price. In Section IV-C, we
will discuss the bidding strategies on the light of the proposed
modifications to SIs purchasing system.

A. Technical Challenges

Our approach depends on the virtualization technologies’
ability to scale the virtualized resource dynamically. However,
isolation is a prerequisite for virtualized resources’ scalability.
It is a demanding problem attracts many researchers [12], [13],
[14]. In this section, we discuss isolation and scalability of the
following resources: CPU, I/O, and Memory.

CPU isolation is the scheduler’s responsibility. Each sched-
uler has policy that controls the assigned capacity and CPU’s
time for each virtual CPU (vCPU). Schedulers allow users
to change the vCPU’s configuration dynamically. However,
each scheduler has its characteristics that make it suitable for
some environments more than others. For instance, Xen [15]
has three schedulers: Borrowed Virtual Time (BVT), Simple
Earliest Deadline First (SEDF), and the Credit scheduler [16].
Among these schedulers, only SEDF and Credit scheduler
have a non work-conserving mode, which enable the scheduler
to cap the capacity of the CPU to specific value (e.g., 50% of
the CPU capacity). In spite of the fact that SEDF shows less
CPU allocation errors compared to Credit scheduler [16], the
global fairness of Credit scheduler makes it the best candidate
for our approach.

As in the case of CPU isolation, I/O isolation is also of
schedulers’ responsibility. However, current implementation of
the hypervisors shows that an I/O-intensive VM can influence
the performance of other VMs. For instance, in Xen [15],
I/O device follows a split-driver model. Therefore, only an
Isolated Device Domain (IDD) has access to the hardware
using native device drivers. Cherkasova [16] and Gupta et
al. [17] demonstrated that the I/O model of Xen complicates
CPU allocation and accounting since an IDD processes I/O on
behalf of guest VMs. To enhance the accounting mechanism,

[17] proposed SEDF-DC. It accounts the CPU usage of
an IDD into corresponding guest domains that trigger I/O
operations. However, SEDF-DC is still a prototype and it is
not implemented to the deployed version of Xen. We leave
integrating SEDF-DC to our approach to our extended work.

At initialization time of VMs, the hypervisor allocates
an isolated virtual memory for each VM. Memory isolation
makes the VM unaware of other VMs’ or hypervisor mem-
ory demand. A Ballooning technique is developed to enable
passing memory pages back and forth between hypervisor and
hosted VMs. However, it requires the cooperation of the VM’s
operating system. Therefore, VM’s operating system should
be plugged with balloon driver to enable the communication
between the VM’s operating system and the hypervisor. In case
that the hypervisor decide to reduce the VM’s memory size
(i.e., reclaim pages from VM and inflate the balloon [18]), it
determines the target balloon size. If the VM’s operating sys-
tem has plenty of free physical memory, inflating the balloon
will be done by just pinning free memory pages (i.e., prevent
access to these pages). However, if the VM’s is already under
memory pressure, the operating system should decide about
the memory pages that should be paged out to the virtual swap
device[18]. In spite of the fact that paging impacts the VMs
performance, Ballooning technique shows better performance
compared to Hypervisor Swapping reclamation technique [18].
The lack of the knowledge about the pages contents, in case
of Hypervisor Swapping, may result in paging VM’s kernel,
which has a significant impact on the VM performance. In
this paper, we used the balloon driver implemented by Xen
to scale down the memory of VMs with the price increase.
However, the reality of initiated CPU-intensive workload, in
our experiments, did not examine the memory scalability
performance. Therefore, we leave examining our approach’s
performance against different kinds of workload to our future
work.

IV. EVALUATION

To validate our approach, we carried out two sets of
experiments on the physical hardware and using simulation.
The first set of experiments, carried out on our Xen test
bed, focuses on modeling the virtual machine against CPU-
intensive workload with different values of CPU capacity. The
other set of experiments carried out by feeding our simulator
with the extracted model to simulate running a job of 168
hours (one week). We chose this length of job according to [1]
observation that the Spot Price follow specific patterns during
the weekdays. Moreover, long run jobs gave us consistence
results compared with short jobs. The job run is simulated
on a SI and on ESI using SIs’ price history traces that are
gathered by [19].

A. VM model for CPU-intensive workload

To extract the VM instance model, we ran a VM with
two cores on Xen 4.1 hypervisor. The physical server has
2.8 GHz Intel Quad Core i7 Processor and 8GB of physical
memory. The workload is CPU-intensive workload generated
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by EP Embarrassing Parallel, which is one of NAS Parallel
Benchmarks (NPB) [20]. The benchmark generates indepen-
dent Gaussian random varieties using the Marsaglia polar
method. The throughput is measured by Million Operations
Per second (MOPs).

At the beginning, the VM instance runs with its full capacity
(i.e., 100%). As seen in Fig. 2, the throughput is 37.92 MOPs
and the execution time is 56.6 seconds. The same workload
is run many times but for different capacities of the VM’s
CPU. In our experiment, we use Xen Credit Scheduler as
an actuator for setting the CPU capacity limit of the VM.
The Credit Scheduler has a non work-conserving mode, which
prevents an overloaded VM from consuming the whole CPU
capacity of the host and consequently degrading the other VMs
performance. For each CPU capacity, we recorded both the
MOPs number and the total execution times.
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Fig. 2. VM’s model against CPU-intensive workload

As seen in Fig. 2, the instance’s throughput changes lin-
early with the virtual CPU (vCPU) capacity according to the
following equation:

0.2415 ∗ x1.0958 (1)

where x is the vCPU capacity. However, as the capacity of
the VM’s vCPU decreases, the execution time increases. At
very low capacities (i.e., less than 20%) the execution time
increases rapidly. Therefore, in Section IV-C, we explain the
bidding strategies that avoid inefficient run for VMs instances.

B. SI simulation

In this section, we simulate running a job of 168 hours
on a SI. We chose High-CPU Medium Instance (c1.medium)
type while it is an instance type offered to deliver high CPU
computation power. Moreover, we selected US-East Region
specifically because it shows different values for inter-price
bands. We would like to study the influence of these bands on
the provider profit (i.e., the percentage of unpaid computation
hours), as well as on the SI’s performance.

In our simulation, we use optimal checkpointing strategy
(i.e., checkpointing exactly before the instance termination).
During checkpointing time, the computation in VM is paused
[11]. Moreover, restoring a VM mounts additional overhead
to the checkpointing technique. Sotomayor et al. [21] provide

a model to estimate the suspension and restoration time of
a VM. The model depends on the number of the co-located
VMs and the storage location (i.e., local or remote). However,
we cannot predict the number of co-located VMs at public
cloud providers. Therefore, we depend on measuring the time
required for having a snapshot of c1.medium instance type.
Measurements are done 10 times on different time slots of
the day at US-East Region. The measured value was always
less than a minute. On the other hand, measuring restoration
time was ambiguous. Even with very high bids, the measured
time between submitting a request and running a SI, from a
snapshot, was measured to be 7 to 10 minutes. It is clear that,
the bidding algorithm impacts restoring a SI even for very
high bids. Therefore, in our simulation, we use the suspension
and restoration time which have been estimated by [21] for
two VMs to a remote storage. The values are 120 seconds for
suspension and 150 seconds for resumption.

In the simulator, we describe the workload as the number
of operations that can be done in 168 hours, which could be
calculated by (1) as: 168 ∗ 60 ∗ 60 ∗ 0.2415 ∗ x1.0958 where
x = 100. To cover many pricing patterns we chose different
starting times from us-east-1.linux.c1.medium spot instance’s
price history: 2010-01-02, 2010-09-09, and 2011-05-01. These
days are selected to span different variations of inter-price
Bands. However, we verified that running the job on other
days, within the same epochs, behaves the same with a slight
difference in the price and total run time. The bids range
from 0.057 to 0.063 while probability density function, of
the history prices of us-east-1.linux.c1.medium, shows that
99.64% of the prices fall within this range.
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Fig. 3. Spot Instance running 168 hours job

Fig. 3 shows the following concepts: First, low bids lead
to lower price but longer run time. Second, high bids lead to
higher price but shorter run time. Moreover, the simulation of
SI at 2010-09-09 shows a longer run time for most bid values
compared with the other simulation dates. This is because of
the short inter-price at epoch 2 (i.e., Band 3 is 1 to 2 hours).
To study the influence of the inter-price time on the provider
profit, we sum up the partial hour for each bid value. The result
value is divided by the total run time to get the percentage of
Unpaid running time. Results are illustrated in Fig. 4.

In Fig. 4, for the simulation date 2010-01-12, the provider’s
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Fig. 4. Unpaid running time(%) - A Spot Instance running 168 hours job

loss (i.e., Unpaid running time) at low bids could be 20%
of the total run time. However, the loss decreases with the
higher bids values. The simulation date 2010-09-09 shows the
highest loss for the provider (i.e., from 25% to 30% at low to
medium bids) according to the short inter-price time at this
epoch. Simulation at 2011-05-01 shows a reduction in provider
loss compared with that done at 2010-09-09. However, it is
higher than that at 2010-01-12. By this observation, we could
explain the goal behind the appearance of the Bands 1 to 3
again starting from 2011-02-09. However, we cannot find any
reasonable explanation behind the appearance of the Band 4
again in us-east region.

C. ESI simulation

In this section we simulate running the same described
job but on ESI. The main goals of this experiment are the
following: first, to observe the proposed approach consistency
with the bidding concepts: 1-Low bids lead to lower price but
longer run time. 2-High bids lead to higher price but shorter
run time. Second, to study the proposed approach impact
on the bidding strategies, and to suggest bidding strategies
that boost the checkpointing technique to a level close to the
optimum.

As described in Section III, when the market prices surpass
the user bid, the provider reduces the VM capacity with a value
proportional to the difference between user bid and the current
price. However, a long run at higher price is inefficient, while
it implies purchasing lower capacity with a higher price. It is
user responsibility to find the best time to take a snapshot and
turn off the running instance. To do that, in addition to the
bid value, which is passed to the provider, the client should
keep in mind another limit price value. Whenever the market
price exceeds this limit, the user will take a checkpoint then
terminate the instance.

We chose the same days of “US-East, Linux, c1.medium”
instance price history to cover different pricing patterns as in
the last experiment. The x-axis in Fig. 5(a) to Fig. 5(f) is the
limit of the instance price. It is determined by the user to
avoid long running of the instance at a high price. We assume
that the user will start checkpointing process once the spot
market price exceeded this limit value. In our simulator, it is

implemented as 2 minutes delay for having a checkpoint then
turning off the VM. User will be charged for this running time.
Moreover, we consider that the job execution is paused during
checkpointing time.

As well as the bid value, the limit value significantly affect
the total price and total run time, as seen in Fig. 5. For
example, in Fig. 5(a) and Fig. 5(d), if the user bid is 0.057
and the limit value is 0.058, then the total cost for running the
job is 9.726$, while the total run time is 1988 hours and 12
minutes. For the same bid, if the limit value is raised to 0.059,
the total cost will increase to 9.821$, while the total run time
decreases to 1881 hours and 30 minutes. On the other hand,
the same total price could be achieved by the bid value 0.058
and limit value 0.059 with a significant reduction in the total
run time (i.e., time reduced from 1881 hour and 30 minutes
to 528 hours and 18 minutes). This leads us to conclude that
the optimal bid and limit values are those which satisfy the
following relation: Limit = Bid+0.001. It is consistent with
the bidding concepts shown at the beginning of this section.
Moreover, Fig. 5 shows that biding according to the relation
Limit = Bid+2 ∗ 0.001 could be a good strategy, especially
for average values (e.g., bid: 0.059 and limit: 0.061). However,
this behavior is not consistent with all bid values because it
depends on the prices distribution.

To compare the performance of the ESI with the SI, we
consider Optimal checkpointing strategy as a reference. For the
three simulation dates, we select the lowest bid (i.e., 0.057),
the mean bid value (i.e., 0.060), and the highest bid value
(i.e., 0.063). In our comparison, we consider two metrics, the
total price and the total run time, where the lower normalized
Price× Time is the better.

TABLE I
NORMALIZED Price× T ime FOR EXECUTION ON MIN-BID, MEAN-BID,

AND MAX-BID. THE REFERENCE IS A SI WITH OPTIMAL CHECKPOINTING
STRATEGY SHOWN IN FIG. 3

low-bid (0.057) mean-bid (0.060) max-bid (0.062)
2010-01-12 1.016 × 0.796 1.026 × 0.944 1.054 × 1.000
2010-09-09 1.026 × 0.812 1.050 × 0.797 1.047 × 1.000
2011-05-01 1.016 × 0.737 1.042 × 0.817 1.054 × 1.000

If we compare the results in Table I with what obtained by
[7], the lowest normalized Price× Time of the instance us-
east.c1.medium with low bid (i.e., 0.058) was 1.266. However,
with our approach, even for a lower bid value (i.e., 0.057), the
normalized Price×Time values were 0.809, 0.833, and 0.749
for the simulation dates in consequence, which means 34%
to 40% reduction in normalized Price × Time. Moreover,
for the mean bid value (i.e., 0.060), the lowest normalized
Price×Time of the same instance was 1.332. However, with
our approach it is reduced to 0.969, 0.837, and 0.851 for the
three simulation dates in consequence, which means 27% to
37% reduction in normalized Price× Time.

Finally, we should remind that the Unpaid running time in
case of ESIs is zero, which means that the provider will not
lose any computation power.
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Fig. 5. Running 168 hours job on ESI with different limit prices

V. ESIS’ INFLUENCE ON THE OTHER SERVICES’
PERFORMANCE

In the following section, we study the influence of the ESIs
on the other hosted instances (i.e., On-Demand and Reserved
instances). As shown in Section IV-C, when the provider
is overloaded, ESIs users may pay more money for fewer
resources. It is a strong reason for ESIs users to terminate
their instances, which free more resources at provider side.
However, the provider should be aware of the users who
choose high limit values or never attempt to terminate ESIs
according to misunderstanding of ESIs concept.

In our analysis, we assume that On-Demand instances
are hosted together with ESIs on Xen Hypervisor running
Credit Scheduler. We started by running one On-Demand
instance with n ESIs to understand the influence of ESIs on
the performance of On-Demand instances. All instances are
running two virtual cores. The workload is the CPU-intensive
workload described in Section IV. On-Demand instances run
with full capacity. However, ESIs’ capacity is started with full
capacity (i.e., 100%), then is reduced 10 percent with each
step. The throughput of the On-Demand instance is measured
with each reduction in the capacity.

As shown in Fig. 6, the On-Demand instance throughput
is a function of both the number of ESIs and the capacity
of each instance. By analyzing the curves in Fig. 6, we can
notice three cases of On-Demand instance throughput: First,
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Fig. 6. On-Demand instances utilization with variant number of ESIs

no throughput degradation. Second, throughput as a function
of number of co-located ESIs only. Third, throughput as a
function of number and capacity of co-located ESIs.

To generalize the relation, assume that we are running n
ESIs on the same host with m On-Demand instances. We
would like to determine the capacity of the ESIs that reduce the
influence of the ESI on the other hosted instances (i.e., On-
Demand instance in our example). To formalize the models
shown in Fig. 6, we define the following parameters:

• Free capacity on the host: Ch
free

• Number of On-Demand instances: n
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• Requested capacity by On-Demand instance: Cd
req

• Assigned capacity to On-Demand instance: Cd
assigned

• Number of ESIs: m
• Requested capacity by ESI i: Csi

req

• Total requested capacity by ESIs:
∑m

i=0 C
si
req

• Assigned capacity to ESI i: Csi
assigned

• Total assigned capacity to ESIs:
∑m

i=0 C
si
assigned

In our case, we consider that the On-Demand instance will
consume the full capacity of the CPU, so we will consider
Cd

req = 100. According to our observations, we consider
that a provider hosts VMs instances of the same size on
one physical host. Therefore, the number of virtual cores is
the same for both On-Demand and ESIs. In the following
analysis, to isolate the other On-Demand instances influence,
we consider hosting only one On-Demand instance on the
physical host. However, the ESIs’ impact will be the same
for each On-Demand instance hosted on the same physical
server. To calculate the allocated capacity for the On-Demand
instance, we consider the following cases:

Case 1: The host is able to fulfill On-Demand instance
required capacity while

(Ch
free − Cd

req) >=

m∑
i=0

Csi
req (2)

In this case, the ESIs do not influence the On-Demand instance
performance, and the On-Demand instance throughput is very
close to 100%.

Case 2: The ESIs requested capacity is high to a level
that influences the On-Demand instance’s assigned capacity.
However, the average requested capacity by an ESI is still
lower than the requested capacity by On-Demand instance;
this could be formulated as the following:

((Ch
free−

m∑
i=0

Csi
req) > Cd

req)&&((

m∑
i=0

Csi
req)/m < Cd

req) (3)

In this case the On-Demand instance throughput is calculated
by (1). Where x = Cd

assigned = (Ch
free −

∑m
i=0 C

si
req)

Case 3: The ESIs requested capacity is very high. Moreover,
the average requested capacity by an ESI is higher than or
equal to the requested capacity by an On-Demand instance. In
this case, the Credit Scheduler will employ its fairness to give
the same capacity for each running instance on the hypervisor.
In this case, the On-Demand instance throughput is calculated
by (1), where x = Ch

total/(n+m) and n = 1 in our example.
A region overloading will be reflected as high increase in

the SIs’ price, probably double the price of an On-Demand
instance. In such a case, the ESIs should be scaled down as
described in Algorithm 1 to satisfy the condition at (2). For
example, if one On-Demand instance with two virtual cores
running on the same host with 5 ESIs each with 2 cores,
limiting the ESI’s capacity to 20% will isolate any influence
of the SIs. However, to prevent negative values of capacities
in case of very high increase in the prices, we determine a
static limit that cannot be exceeded. In our experiment, it was
10% of the CPU capacity. This value implies that ESIs will

not influence the other hosted instances until the number of
ESIs exceeds 20 instances on the same physical host.

Finally, we should remind that a very high price and low
allocated capacity at overloaded time is a good reason for
the customers of ESIs to have a checkpoint or/and turn off in-
stances safely, which reduces ESIs’s number and consequently
reduces their influence.

VI. RELATED WORK

In this section, we classify the research towards improving
the trades off between the total price, the reliability, and the
total run time of SIs into two categories: first, work directed
to find the best bid prices by analyzing and modeling prices
history statistically (i.e., modeling price history). Second, work
directed to manage SIs interruption by using fault tolerant
architectures (i.e., managing the interruption). Moreover, some
researches from the second category integrate history analysis
techniques with fault tolerant architectures for a better perfor-
mance.

A. Modeling price history

Javadi et al. [1] analyzed SIs history in terms of Spot price,
inter-price time, but not the user bid. Andrzejak et al. [6]
have proposed probabilistic decision model that considers user
bid, budget, and the job deadline. The proposed model can
suggest a bid value that meets a given budget or a deadline
considering a specified level of confidence. Zhang et al. [9]
adopted an auto-regressive model (AR) that depends on the
historical values of demand to predict the next price of an
instance type.

However, actual demand can neither be disclosed by the
provider nor be inferred from the current price. It has been
shown by Mazzucco et al. [22] that there is no correlation
between SI prices and the time. Moreover, as shown in Fig. 1,
the artifact changes in the SIs price make it difficult to build
consistent models that describe the SIs’ market behavior for
the long run.

B. Managing interruption

Although MapReduce is designed as a fault tolerant ar-
chitecture, it cannot tolerate a potential massive failure of
instances in the SI’s market. Therefore, Liu [23] extended
the Cloud MapReduce (CMR) [24] implementation of map
phase to stream intermediate results to a Cloud storage (i.e.,
SimpleDB). Their MapReduce implementation supports partial
commit to keep track of the map process. In case of failure,
system is able to determine the location at which the next map
task should resume processing. Mattess et al. [25] examined
many polices to run a Grid workload from DAS-2 [26].
Their local cluster is integrated with SI’s market to cope
with workload spikes, which results in reduction in the prices
without degrading the performance.

Taifi et al. [27] studied running high performance computing
(HPC) applications on SIs environment. To this end, they
proposed SpotMPI architecture. One of SpotMPI architecture
component is checkpoint-restart (CPR) calculator. Depending
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on price history and the estimated total processing times, the
CPR component determines the best checkpointing intervals.
Jain et al. [28] developed an algorithm that dynamically adapts
the resource allocation policy, which decides between On-
Demand or SIs allocation. The allocation policy is adapted by
learning from system performance on prior job execution while
incorporating history of Spot prices and workload character-
istics. However, the uncertainty of job time estimation is one
of the problems that could approach [27] and [28] algorithms.

Yi et al. [7] employed checkpointing and migration as
fault tolerance techniques. They examined many checkpointing
strategies on the light of normalized Price × Time for
different bid values and different types of instances. Moreover,
after each instance’s interruption, their approach decides the
new SI’s type, location, and price that reduces the total running
time. However, as seen in Section IV-C, our approach showed
outperforming results compared with their approach.

In addition to checkpointing and migration techniques,
Voorsluys et al. [11] integrated job duplication technique. This
integration increases the probability that jobs finish within
their deadlines. However, as concluded by the authors, job
duplication yields much higher costs.

VII. CONCLUSION AND FUTURE WORK

The proposed ESIs architecture does not require many
modifications to the current Cloud Computing Infrastructure.
However, it has benefits for both of the provider and the
customer. On the provider side, our approach increases the
provider’s revenue where it eliminates the concept of the
partial hours. For the customer, the proposed approach boosts
the checkpointing strategy to the optimal level. However,
clients’ applications should be aware of our proposed bidding
strategies.

We evaluated our approach against CPU-intensive applica-
tions where the CPU is the real player in power consumption.
However, in the future, we will consider other resources and
different combinations of the real workload. We will imple-
ment the techniques that work on I/O isolation like SEDF-DC.
Furthermore, our extended work will include evaluating ESIs
approach with the other SIs types.
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