
Towards a Scalable Cloud-based RDF Storage
Offering a Pub/Sub Query Service

Laurent Pellegrino, Françoise Baude, Iyad Alshabani
INRIA-I3S-CNRS, University of Nice-Sophia Antipolis

2004 route des lucioles, Sophia Antipolis, France
lpellegr@inria.fr, fbaude@inria.fr, ialshaba@inria.fr

Abstract—Recently, Complex Event Processing engines have
gained more and more interest. Their purpose consists in com-
bining realtime and historical data in addition to knowledge
bases to deduce new information. Also, RDF is now commonly
used to make information machine-processable. In this short
paper we propose to leverage existing research about distributed
storage and realtime filtering of RDF data with the intention of
helping Complex Event Processing engines to reach their goal at
large scale. Towards this objective, we identify and discuss the
challenges that have to be addressed for providing a solution that
supports RDF data storage and a pub/sub retrieval service on
a cloud-based architecture. Then, we explain how to meet these
challenges through a solution based on structured Peer-to-Peer
networks. Finally, we discuss the status of our ongoing work
whose implementation is realized thanks to ProActive, a mid-
dleware for programming cloud-based distributed applications.

Index Terms—RDF (Resource Description Framework); Pub-
lish/Subscribe; RDF data management; Cloud Computing.

I. INTRODUCTION

In the past years, Cloud Computing gained a great interest in
academic and industrial solutions. Its goal is to provide users
with more flexible services in a transparent way. All services
and applications are allocated in the cloud which is an internet-
scale collection of connected devices. Aside, the exponential
growing of information exchanged over the internet leads to
the emergence of the Semantic Web [1] whose realization is
brougth into existence thanks to RDF (Resource Description
Framework) [2]. RDF is a W3C standard aiming to improve
the World Wide Web with machine processable semantic data.
It provides a powerful data model for structured knowledge
representation and is used to describe semantic relationship
among data. Statements about resources are in the form of
(subject, predicate, object) expressions which are known as
triples in the RDF terminology (each element of a triple is
dubbed RDF term). The subject of a triple denotes the resource
that the statement is about, the predicate denotes a property
or a characteristic of the subject, and the object presents the
value of the property. RDF is increasingly used due to its
interoperability [3], its good properties in data exchange and
its potential use of inferencing to contextually broaden search,
retrieval and analysis.

The traditional way of querying RDF data is a blocking
get operation. However, applications need an asynchronous
query mode to be more responsive on arrival of RDF data.
Publish/subscribe (pub/sub) is a messaging pattern where

publishers and subscribers communicate in a loosely coupled
fashion. Subscribers can express their interests in certain kinds
of data by registering a subscription (continuous query) and
be notified asynchronously of any information (called an
event) generated by the publishers that matches those interests.
Notifications are made possible thanks to a matching algorithm
that puts in relation publications and subscriptions.

Our goal is to provide a system, deployed in a cloud
environment, that stores RDF events persistently, filter and
notify them as soon as they arrive. For example, Complex
Event Processing (CEP) [4] systems have a need to mix real-
time, past events and existing knowledge bases to deduce new
patterns [5]. However, the system we envisage is not limited to
the integration with CEP engines. More generally, it could be
used to take advantage of its distributed storage and pub/sub
layer.

This short paper identifies some challenges that have to be
addressed in order to build a distributed system that combines
RDF data storage and pub/sub. In Section II, we highlight
some of the challenges to take up when this type of system
has to be built. Section III motivates and defines our retrieval
model. Section IV explains how we expect our system to meet
the challenges in line with our model, and how it differs from
existing systems. Section V presents our conclusions.

II. CHALLENGES

Proposing solutions for or against the following require-
ments or difficulties constitutes the challenges:

1) Scalability: In our context, a scalable system must be
able to support a large number of data, publications and
subscriptions. This is the key property to fulfill when a
distributed system is built. Also, in pub/sub systems, expres-
sivity and scalability are closely related [6], [7]. Expressivity
implies that events with different formats and semantics are
supported in addition to a powerful subscription language (i.e.
a subscription language that offers the possibility to consumers
to subscribe precisely to the information they are interested in).
But the more expressive a pub/sub system is, the more complex
the matching algorithm becomes. Thus, the efficiency of the
matching algorithm significantly affects both performance and
scalability.

2) Fault-tolerance: Depending on the type of the appli-
cation, there might be the need to ensure different level of
reliability. For instance, in a financial system such as the

243Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

New York Stock Exchange (NYSE) or the French Air Traffic
Control System, reliability is critical [8]. Ensuring a correct
dissemination of events despite failures requires a particular
form of resiliency. Pub/sub systems which consider event
routing based on reliability requirements are rare schemes [9],
which proves this challenge has not been sufficiently tackled.

3) Skewed distribution of RDF data: The frequency dis-
tribution of terms in RDF data is highly skewed [10], [11]:
many triples may share the same predicate (e.g., rdf:type). This
distribution prevents scalability from algorithms that base their
partitioning on these values.

In addition to the challenges which have been previously
introduced, some orthogonal properties related to QoS (Quality
of Service), such as data delivery semantics, notifications
ordering, security aspects, etc. constitute also major open
research challenges that are naturally present in RDF-based
pub/sub systems [12].

III. RETRIEVAL MODEL

Nowadays, datasets grow so large that they become awk-
ward to work with. This idea is really well captured by the
notion of big data from which knowledge acquisition has
to be extracted. To make it feasible, information have to
be analyzed and correlated. A solution is CEP engines that
recently proposed to leverage information which stem from
realtime data, contextual and past information. At high scale,
a step towards this direction consists in helping CEP engines
to reach their goal by providing both storage and realtime
filtering of data of interest in order to minimize the amount
of information they have to work with. For that, we propose
a retrieval model of the stored data based on both pull and
push mechanisms. The pull mode refers to one-time queries;
an application formulates a query to retrieve data which have
been already stored. In contrast, the push mode refers to
pub/sub and is used to notify applications which register long
standing queries and push back a notification each time an
event that matches them occurs. Contrary to RACED [13],
that also proposes a push mode, the result is not the output
of a previous subscription matching but it is aimed for getting
past and perennial information.

A. Data model

The data model we introduce hereafter is valid for both the
pull and push retrieval modes. It is built on top of quadruples.
A quadruple extends the concept of RDF triple by adding
a fourth element (usually named context or graph value) to
indicate or to identify the data source and the event itself.
Indeed, the notion of provenance is essential when integrating
data from several sources and more generally to classify data
on the web. Finally, each quadruple represents a potential event
that may be delivered to a subscriber but also a data that is
stored.

However, the number of elements contained by an event
(quadruple) is limited. To overcome this drawback, we have
introduced the notion of compound event: an event that is
made of a non-limited number of quadruples. Supposing that

a quadruple is modeled by a 4-tuple q = (c, s, p, o) and a
compound event by a set C = {q0, q1, ..., qn} then each q of
C shares the same context value c in order to allow to identify
the quadruples that form this compound event. Moreover,
thanks to this abstraction, our content-based pub/sub system
can support multi-attribute values, still in compliance with
RDF data model.

B. Filter model

Both retrieval modes have their filter model based on
SPARQL (SPARQL Protocol and RDF Query Language) [14],
another W3C specification that is usually used to retrieve and
manipulate data stored in RDF format with one time queries.
This language is suitable to build a very expressive filter
model. Even if it could be used as a pull retrieval model, for
the push retrieval model some restrictions are required (e.g.
we only allow SELECT query form, a pattern applies to one
graph value at a time, see below).

SPARQL provides the possibility to formulate a subscription
by associating several filter constraints to a quadruple (event),
but also to a set of quadruples that belong to the same com-
pound event. This means that several events that are published
at different times and that belong to a same compound event
may participate to the matching of a subscription by using
their common constraints.

1 PREFIX foaf: <http://xmlns.com/foaf/0.1/>
2 SELECT ?user ?name ?age WHERE {
3 GRAPH ?g {
4 ?user foaf:name ?name .
5 ?user foaf:age ?age
6 } FILTER (?age >= 18 && ?age <= 25)
7 }

Listing 1. Legal SPARQL subscription indicating that only events
about users whose age is between 18 and 25 have to be notified.

Listing 1 shows an example of a subscription that is used
to deliver a notification each time two events that belong to
the same compound event (represented by the graph pattern
and its associated variable ?g) match the constraints. This
subscription depicts two types of constraints that may be
uttered. The first one is a join constraint. It consists in
computing an equi-join condition on the variable ?user with
the events of the same graph that match the triple patterns
(a triple that may contain variables for querying unknown
values), see lines 3, 4 and 5. The second type of constraints
that may be formulated are filter constraints. Filter constraints
are shown in the example by using the FILTER keyword on
line 6. This second type of constraint may contain several
logically related predicates.

Here, we introduced joins because unlike in traditional pub-
lish/subscribe systems [15] (where the constraints are matched
for each event which is asynchronously published) we want to
apply the matching on a set of events (compound event), where
each event has been published independently. This condition is
fundamental because our push retrieval mode is not supposed
to act as a CEP engine correlating several compound events.
However, our system has to handle two constraints. First, the

244Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

quadruples that form a compound event are not stored at the
exact same time, due to the fact that the system is distributed,
i.e. each quadruple can be indexed on any distributed node of
the system in an asynchronous way. Second, a join constraint
is limited to a set of quadruples that belong to the same
compound event.

IV. ADDRESSING THESE CHALLENGES

Our aim is to provide an Internet wide system that fulfill
challenges introduced in section II while respecting the model
presented in section III. There are already some approaches
experimenting how to store and query RDF data using popular
cloud technology, but along the pull model mainly. Recently,
CumulusRDF [16] proposed to rely upon the Cassandra [17]
key-value store, by leveraging its two levels indexing model in
order to store RDF triples. The choices they make in Cumu-
lusRDF are driven by the need to retrieve RDF data by triple
patterns only and not the full expressivity of SPARQL. Their
solution requires to build more than one index for each triple
to be stored. Even if the lookup performances seem reasonably
good, they do not support conjunctive queries (joins), nor
simple or complex queries that contain some filter conditions.
Also, some solutions combining Map-Reduce and distributed
data storage systems (e.g., HDFS, BigTable) [18] have been
proposed but they require a configuration phase, and then
involve several large data sets movements. Moreover, none
of the introduced solutions are well adapted when extreme
scalability is expected. Indeed, Peer-to-Peer (P2P) systems
have been recognized as a key communication model to build
platforms for distributed applications at very large scale [19].
For that reason, our system model is based on the original idea
of Content Adressable Network (CAN) [20].

A CAN is a structured P2P network (structured in op-
position to unstructured, another category of P2P networks
better suited to high churn, which is thus less necessary for
private/public cloud environments) based on a d-dimensional
Cartesian coordinate space labeled D. This space is dynami-
cally partitioned among all peers in the system such that each
node is responsible for indexing and storing data in a zone
of D thanks to a standard RDF datastore such as Jena [21].
According to our data model, we use a 4-dimensional CAN
in order to associate each RDF term of a quadruple to a
dimension of the CAN network. A quadruple to index is a
point in a 4-dimensional space.

Distributed pub/sub systems have been extensively stud-
ied [6], [15], [22] over the last two decades. Recently, some
works such as BlueDove [23] revives this field in a cloud con-
text. However, among these works only a few are concerning
pub/sub with RDF data and none are combining storage and
pub/sub [24].

Most of the proposed solutions use consistent hashing to
map data onto nodes for RDF pub/sub systems or RDF data
storage. This means that data have to be indexed several
times in order to be retrieved and be handled by the pub/sub
matching algorithm. For example, CSBV [25] is a matching
algorithm for RDF triples that would imply to index each

quadruple 15 times in our case: one indexation for each
possible combination without repetition of the RDF terms
contained by a quadruple. Our approach which relies on CAN,
replaces consistent-hashing by lexicographic ordering in order
to use only one index and to support range queries efficiently.
In return, subscriptions have to be indexed several times.
However, we prefer to trade data duplicates with subscriptions
duplicates due to the huge foreseen volume of data.

As for systems which use consistent-hashing, we also have
to confront the challenge II-3. But in addition, due to lexico-
graphic order, RDF terms which are lexicographically close
may be handled by the same peer and unbalance the load
between peers. We propose three solutions based on static and
dynamic adaptation to overcome this load balancing issue. The
first one simply consists in removing prefixes. Suppose that
we have to index two quadruples which differs only by one
RDF term. On one hand we have http://example.org/animal
and on the other hand http://example.org/jacket. Also, in the
network there are two peers: one managing the range [a, e)
and one [e, j). In such a case, if we remove the prefix
http://example.org the former data will be indexed on the
first peer and the latter by the second peer. An additional
solution is to have an approach similar to the one proposed
in BlueDove. Event sources are aware of the type of data and
the range values they will publish. Hence, it is possible to
take advantage of this information to preconfigure our P2P
network. For example, if we know that RDF data published
are about weather in Europe and the value of the key event
of the published compound events is between [−20; 40], we
can leverage this knowledge to increase the number of peers
managing this range of values. Finally, the third solution
related to elasticity and thus also tackling challenge II-1 will
be to balance the load of peers by using the standard join and
leave 1 operations of our P2P system. Indeed, by considering
the unpredictable and fluctuating amount of information that
may be produced (or removed) by any entity, the system has
to be elastic. In contrary to an always-on infrastructure for
which the institutions refrain to pay for, the idea is to rely on
the notion of Cloud Computing to scale horizontally by adding
more nodes (peers) on-demand and to release them whenever
possible. But also to scale vertically by offering the possibility
to deploy several peers on the machines that are underloaded.

To meet challenge II-1 we expect to develop a matching
algorithm that parallelizes and balances as much as possible
the matching of compound events. A few algorithms have been
proposed to balance the matching but the execution to perform
a join between several conjunctions is done sequentially by
creating a chain [25]. To improve scalability and performances
we also intend to manage burst of new subscriptions and the
placement of peers according to geographic information. The
former case implies to adapt the number of computing agents
in charge of the matching process in each peer. The later, such
as proposed in [26], consists in improving latency perceived
by Internet wide-users (specially subscribers) as CEP(s) by a

1In the future, we wish to offer an RDF data garbage collection operation.

245Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

geographical mapping of P2P nodes and proxies2 on cloud
hosts.

Finally, challenge II-2 implies to take into account the
replication of RDF data but also the states of the matching
algorithm. In the former case, we can replicate the data by
using the neighbors of a peer. However, in the latter case, it
is less obvious because subscriptions do not have to be lost
and duplicate notifications have to be avoided. In our system
indexing a subscription (set of related patterns) ends up in
duplicating it on several peers. We think about leveraging this
behavior to come back into a consistent state for the pub/sub
layer in case of failure. In addition we are interested to build
our system such that user requested QoS properties may be
easily addressed. To make it feasible we introduce configurable
proxies lying out of the P2P network which will only store
and compute the matching between subscriptions and publica-
tions. All messages (requests, responses, notifications, etc.) go
through these proxies where they can be handled according to
requested QoS properties.

V. CONCLUSION

In this short paper, we have identified and discussed the
challenges which need to be addressed in order to build a
scalable cloud based RDF storage offering a pub/sub query
service. We currently have a first prototype of our extended
version of CAN [27], implemented by using ProActive/GCM
technology. ProActive is an asynchronous active-object based
middleware offering the notion of asynchronous calls with
futures (a promise to get back a response) among distributed
objects, extended with the possibility to transparently handle
groups of objects and security (e.g., authentication, encryption)
for inter-object communications [28]. In addition it provides
the notion of multi activity to handle requests concurrently.
Also, thanks to ProActive abstraction, any peer or proxy
needed to access the CAN network can easily be deployed
on any host, be it on a private/public cloud, grid or cluster,
desktop machines offering elaborated support to address fire-
wall issues, and more generally issues that may be encountered
in such a distributed infrastructure.

ACKNOWLEDGMENT

This work was in part supported by the EU FP7 STREP
project PLAY and French ANR project SocEDA.

REFERENCES

[1] T. Berners-Lee, J. Hendler, and O. Lassila, “The semantic web,” Scien-
tific American, vol. 284, no. 5, pp. 28–37, 2001.

[2] O. Lassila and R. Swick, “Resource description framework (rdf) model
and syntax,” World Wide Web Consortium, http://www. w3. org/TR/WD-
rdf-syntax, 1999.

[3] S. Decker, S. Melnik, F. Van Harmelen, D. Fensel, M. Klein, J. Broek-
stra, M. Erdmann, and I. Horrocks, “The semantic web: The roles of
xml and rdf,” Internet Computing, IEEE, vol. 4, no. 5, pp. 63–73, 2000.

[4] D. Luckham, The power of events: an introduction to complex event
processing in distributed enterprise systems. Addison-Wesley Longman
Publishing Co., Inc., 2001.

2Proxies are representing publishers, subscribers and users of the pull mode.

[5] D. Anicic, P. Fodor, S. Rudolph, and N. Stojanovic, “Ep-sparql: a unified
language for event processing and stream reasoning,” in Proceedings of
the 20th international conference on World wide web. ACM, 2011, pp.
635–644.

[6] A. Carzaniga, D. Rosenblum, and A. Wolf, “Achieving scalability
and expressiveness in an internet-scale event notification service,” in
Proceedings of the nineteenth annual ACM symposium on Principles of
distributed computing. ACM, 2000, pp. 219–227.

[7] J. Wang, B. Jin, and J. Li, “An ontology-based publish/subscribe system,”
Middleware 2004, pp. 232–253, 2004.

[8] K. Birman, “A review of experiences with reliable multicast,” Software:
Practice and Experience, vol. 29, no. 9, pp. 741–774, 1999.

[9] S. Mahambre and U. Bellur, “Reliable routing of event notifications
over p2p overlay routing substrate in event based middleware,” in
Parallel and Distributed Processing Symposium, 2007. IPDPS 2007.
IEEE International. IEEE, 2007, pp. 1–8.

[10] S. Kotoulas, E. Oren, and F. Van Harmelen, “Mind the data skew:
distributed inferencing by speeddating in elastic regions,” in Proceedings
of the 19th international conference on World wide web. ACM, 2010,
pp. 531–540.

[11] A. Harth, J. Umbrich, A. Hogan, and S. Decker, “Yars2: A federated
repository for querying graph structured data from the web,” The
Semantic Web, pp. 211–224, 2007.

[12] S. Mahambre, M. Kumar, and U. Bellur, “A taxonomy of qos-aware,
adaptive event-dissemination middleware,” Internet Computing, IEEE,
vol. 11, no. 4, pp. 35–44, 2007.

[13] G. Cugola and A. Margara, “Raced: an adaptive middleware for complex
event detection,” in Proceedings of the 8th International Workshop on
Adaptive and Reflective Middleware. ACM, 2009, p. 5.

[14] E. Prud’Hommeaux and A. Seaborne, “Sparql query language for rdf,”
W3C working draft, vol. 4, no. January, 2008.

[15] P. Pietzuch and J. Bacon, “Hermes: A distributed event-based middle-
ware architecture,” in Distributed Computing Systems Workshops. IEEE,
2002, pp. 611–618.

[16] G. Ladwig and A. Harth, “Cumulusrdf: Linked data management on
nested key-value stores,” in The 7th International Workshop on Scalable
Semantic Web Knowledge Base Systems (SSWS 2011), 2011, p. 30.

[17] A. Lakshman and P. Malik, “Cassandra: A structured storage system on
a p2p network,” in Proceedings of the twenty-first annual symposium on
Parallelism in algorithms and architectures. ACM, 2009, pp. 47–47.

[18] J. Sun and Q. Jin, “Scalable rdf store based on hbase and mapreduce,”
in Advanced Computer Theory and Engineering (ICACTE), 2010 3rd
International Conference on, vol. 1. IEEE, 2010, pp. V1–633.

[19] M. Jelasity and A. Kermarrec, “Ordered slicing of very large-scale
overlay networks,” in Peer-to-Peer Computing, 2006. P2P 2006. Sixth
IEEE International Conference on. IEEE, 2006, pp. 117–124.

[20] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker,
“A scalable content-addressable network,” ACM SIGCOMM Computer
Communication Review, vol. 31, no. 4, pp. 161–172, 2001.

[21] J. Carroll, I. Dickinson, C. Dollin, D. Reynolds, A. Seaborne, and
K. Wilkinson, “Jena: implementing the semantic web recommendations,”
in World Wide Web conference. ACM, 2004, pp. 74–83.

[22] P. Eugster, P. Felber, R. Guerraoui, and A. Kermarrec, “The many faces
of publish/subscribe,” ACM Computing Surveys (CSUR), vol. 35, no. 2,
pp. 114–131, 2003.

[23] M. Li, F. Ye, M. Kim, H. Chen, and H. Lei, “A scalable and elastic pub-
lish/subscribe service,” in Parallel & Distributed Processing Symposium
(IPDPS), IEEE International. IEEE, 2011, pp. 1254–1265.

[24] I. Filali, F. Bongiovanni, F. Huet, and F. Baude, “A survey of structured
p2p systems for rdf data storage and retrieval,” Transactions on Large-
Scale Data-and Knowledge-Centered Systems III, pp. 20–55, 2011.

[25] E. Liarou, S. Idreos, and M. Koubarakis, “Continuous rdf query pro-
cessing over dhts,” in Proceedings of the 6th international semantic
web conference. Springer-Verlag, 2007, pp. 324–339.

[26] S. Agarwal, J. Dunagan, N. Jain, S. Saroiu, A. Wolman, and H. Bhogan,
“Volley: Automated data placement for geo-distributed cloud services,”
in Proceedings of the 7th USENIX conference on Networked systems
design and implementation. USENIX Association, 2010, pp. 2–2.

[27] F. Baude, F. Bongiovanni, L. Pellegrino, and V. Quema. (2011)
D2.1 requirements eventcloud. Project Deliverable PLAY. [Online].
Available: http://play-project.eu/documents/viewdownload/3/20

[28] L. Baduel, F. Baude, D. Caromel, A. Contes, F. Huet, M. Morel, and
R. Quilici, “Programming, composing, deploying for the grid,” GRID
COMPUTING: Software Environments and Tools, pp. 205–229, 2006.

246Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

