
Intercloud Object Storage Service: Colony

Shigetoshi Yokoyama, Nobukazu Yoshioka

GRACE Center, National Institute of Informatics, Tokyo, Japan

{yoko, nobukazu} @nii.ac.jp

Motonobu Ichimura

NTT DATA Intellilink, Tokyo, Japan

ichimuram@intellilink.co.jp

Abstract— Intercloud object storage services are crucial

for inter-organization research collaborations that need

huge amounts of remotely stored data and machine image.

This study introduces a prototype implementation of wide-

area distributed object storage services, called colony, and

describes a trial of its cloud storage architecture and

intercloud storage services for academic clouds.

Keywords-Cloud computing; Object storage service;

OpenStack; Intercloud; Cloud federation.

I. INTRODUCTION

Cloud computing has the potential to dramatically change

software engineering. It allows us to manage and use large-

scale computing resources efficiently and easily. Moreover, it

makes it possible to develop new software by using these

resources for scalability and lowering costs.

For example, users can prepare machine images of standard

education environments on Infrastructure as a Service to

manage the environments efficiently. We have developed

edubase Cloud [1], a cloud platform based on open-source

software and using a multi-cloud architecture.

We are now developing a research cloud based in part on

our experience in managing the edubase Cloud service during

the disaster recovery efforts after the Tohoku earthquake and

tsunami in March, 2011. Intercloud object storage services

that can store machine images and research data remotely are

crucial for such a development. Furthermore, if academic

clouds are independently deployed and managed, there would

be no way for users to continue working within clouds

affected by disasters or other outages. By using intercloud

object storage services, users can utilize machine images in

other clouds operating normally.

We have developed an intercloud storage service

architecture and a working prototype called colony [2]. This

paper describes this development. Section 2 describes user

scenarios on how to use intercloud object storage services.

Section 3 presents a comparison with other storage services.

We discuss the design and prototype of the intercloud object

storage architecture in section 4 and 5, and conclude in

Section 6.

II. USER SCENARIOS

The following are academic–cloud-user scenarios for

intercloud storage services. In the scene depicted in Figure 1,

there are two academic clouds, A and B, providing the

intercloud storage service. The users of these clouds can store

objects in local storage, i.e., storage-A or storage-B, or in the

remote object storage, storage-I. Users just have to change the

container attribute from local to remote or vice versa.

Storage-I should be geographically distributed for the sake

of availability.

Figure 1. Intercloud object storage service.

A. Access one’s own objects from remote clouds

Academic cloud users can access their own containers and

objects from clouds that are remote from the one they usually

use. The machine images stored as objects in storage-I can be

used to launch virtual machines in these remote clouds.

Machine image conversion might be needed before the launch,

depending on the heterogeneity of the source and destination

clouds.

B. Access objects of other users

Academic cloud users can share containers and objects with

other users who may access them from remote clouds. The

objects could be, for example, machine images or research

data.

C. Single sign-on to object storage services

Each object storage service manages its own users but if

each manages its users independently, users would have to

login to a service every time they want to receive it. To deal

with this problem, we support single sign-on among services

by using a standardized identity management service such as

shibboleth [2].

Storage-I

Cloud-A

Storage-A

Container A1

Container A2

Container A3

Inter-cloud Container I1

Inter-cloud Container I4

Object A1-1

Object A1-2

Object A1-3

Object I4-1

Object I4-2

Object I4-3

Cloud-B

Container B1

Container B2

Container B3

Inter-cloud Container I1

Inter-cloud Container I8

Object B1-1

Object B1-2

Object B1-3

Object I1-1

Object I1-2

Object I1-3

Inter-cloud object storage service

Cloud Services

Inter-cloud Container I1

Inter-cloud Container I2

Inter-cloud Container I3

Inter-cloud Container I13

Inter-cloud Container I10

Inter-cloud Container I4

Storage-B

Geographically

Distributed
Object I4-1

Object I4-2

Object I4-3

Object I1-1

Object I1-2

Object I1-3

95Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

III. RELATED WORK

We thought that we should not start developing our

intercloud storage service from scratch and that it would be

better to utilize existing open source object storage service

software. Figure 2 compares the various candidates that we

examined in focusing on AWS S3 type Web API base object

storage open source projects. S3 is a de-facto standard among

object storage services, and there is a software eco system

around it.

.

Figure 2. Object storage service projects comparison.

 Baltic-avenue [3], boardwalk [4], fs3 [5], sinatra-s3 [6] are

effectively development test beds for S3, because they are not

designed to have redundancy mechanisms. Because of this

limitation, they cannot support huge intercloud object storage

services.

Radosgw [7] is a web API front-end of the ceph distributed

file system [8]. Walrus is a component of Eucalyptus [9], and

although it is compatible with S3, it does not have a

redundancy mechanism either.

Swift [10] supports large object storage services in

commercial public clouds.

The above considerations led us to study OpenStack swift

and modify it for our intercloud object storage service.

IV. DESIGN

A. OpenStack swift

OpenStack Object Storage (code-named Swift) is open

source software for creating redundant, scalable data storage

using clusters of standardized servers to store peta-bytes of

accessible data. It is not a file system or real-time data system,

but rather a long-term storage system for large amounts of

static data that can be retrieved, leveraged, and updated.

Object Storage uses a distributed architecture with no central

point of control, providing greater scalability, redundancy and

permanence.

Objects are written to multiple hardware devices, with the

OpenStack software responsible for ensuring data replication

and integrity across the cluster. Storage clusters scale

horizontally by adding new nodes. Should a node fail,

OpenStack works to replicate its content from other active

nodes. Because OpenStack uses software logic to ensure data

replication and distribution across different devices,

inexpensive commodity hard drives and servers can be used in

lieu of more expensive equipment.

Swift has proxy nodes and auth nodes acting as the front-

end and storage nodes acting as the back-end for accounts,

containers, and object storage.

Figure 3. OpenStack swift.

B. Intercloud object storage architecture

Let us begin by discussing the intercloud object storage

service architecture by categorizing how to allocate swift

components such as proxy nodes, auth nodes, and storage

nodes. The proxy nodes and auth nodes categorized as front-

end. The storage nodes are categorized as back-end. We

examined the suitability of the following architectures.

1. All-in-one architecture

The front-end and back-end nodes are all on one site.

2. Fan architecture

One front-end node is on the central site, and the back-

end nodes are on each site.

3. Peer-to-peer architecture

Each site has its own front-end nodes and back-end

nodes. The front-end nodes communicate to synchronize

the swift rings.

4. Zone architecture

The front-end nodes have a hierarchical structure similar

to the DNS hierarchy and use it to locate storage nodes.

5. Dispatcher add-on architecture

Dispatchers that can recognize the destination front-end

nodes are deployed as an add-on to the front-end.

 All-in one, fan, and zone architectures have a single point of

failure. The dispatcher add-on architecture is better than a peer

–to-peer one because it require fewer servers at each site.

Some sites only need to have the dispatcher. These

considerations led us to choose the dispatcher add-on

architecture.

 This architecture has the following advantages:

 Easy to modify swift codes with it

 Easy to extend to more than two swift federations

baltic-

avenue

board

walk

fs3 Rado

sgw

sinatra

-s3

swift
Walrus

Redundancy

mechanism
△ △ - △ - × -

Max data size 1M ∞ ∞ ∞ ∞ 5G 5G

Max number

of data
1000 ∞ ∞ ∞ ∞ ∞ finite

Error

correcting
× × - × - × -

ACL × - × × × × ×

Cache

mechanism
- - - - - - -

×: OK, - : NG, △: redundacy mechanism with S3

Object Server

Container Server

Account Server

96Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

V. PROTOTYPING

We are now prototyping intercloud object storage service

and make the code public as the colony project in github [11]

by using the dispatcher add-on architecture which is described

in the previous section.

Figure 4 shows an overview of the colony architecture. New

components such as swift dispatcher, VM info converter, and

caching module were developed by analyzing this prototype.

The dispatcher calls the local swift or intercloud swift

depending on the container attributes. The VM info converter

is used to convert the virtual machine image metadata for one

cloud to metadata for another cloud in order to launch the

machine image in the other cloud. The content cache helps to

make the data transfer efficient.

Figure 4. Colony overview.

The swift client can send requests to swift-A and swift-I

through the swift dispatcher. In the prototype, the dispatcher

can find the destination swift by looking at the prefix string in

the container names. In the example in Figure 5, the prefix ‘A:’

indicates that the container resides in the local cloud, which is

‘cloud-A.’ The prefix ‘I:’ specifies that the containers having

this prefix are located in the intercloud, which is ‘cloud-I.’

When swift sends responses to the client, it merges the

response from each swift, as described in Figure 5.

Figure 5. Swift dispatcher.

Swift dispatcher can use a cache proxy per swift proxy to

retrieve objects from remote swifts (Fig. 6). In the prototype,

the cache is implemented using a squid content proxy cache

mechanism [12]. This sort of simple caching mechanism

works because the swift proxies in the swift-I are located

remotely from the swift client.

Figure 6. Colony cache.

We implemented a prototype of our intercloud storage

service using colony and have started evaluating the

performance and usability in three geographically distributed

sites. So far, we can say that the colony load balancing seems

to contribute to the performance of the intercloud object

storage service. We located inter-region swift between three

regions, i.e., Tokyo, Chiba, and Hokkaido, and investigated its

performance in relation uploading/downloading objects.

Throughputs between Tokyo and Chiba were about 1 Gbits/s

while throughputs between Hokkaido and Tokyo/Chiba were

about 7 Mbits/s.

In this case, uploading of objects is always the worst case

because swift proxy puts objects in three zones, sets

replication to default, and waits until all objects are uploaded.

In contrast, the worst case of downloading objects is one-third

of all transactions because the swift proxy randomly chooses

one of three object servers. When downloading objects

through web cache proxy l, the first download will likely be

the worst case, but the results nonetheless show the cache

proxy is effective (see Fig. 7).

Figure 7. Uploading and downloading objects performance.

Swift Proxy Swift Dispatcher

Cache(Proxy)

Glance

Upload/Retrieve

VMImage meta information

Swift Proxy Swift Proxy

Swift-A

(for local use)

Swift-I (for intercloud use)

VM info converter

A: container 1

A: container 2

I: container 1

I: container 2

Request to multiple Swifts

Swift Client

New

Components

Send request through Proxy server

Load balancing feature

Requests to local storage

Swift Proxy

Swift Dispatcher

Swift Proxy Swift Proxy

Swift-A (local) Swift-I (intercloud)

A: container 1

A: container 2

I: container 1

I: container 2

Swift Client

Requests modified in order to

merge responses.

•Account Info

•Container List

•X-Copy-from/to

Response merged by

Swift Dispatcher has a

prefix to indicate which

Swift is used to store.

Swift Proxy

Swift Dispatcher

Swift Proxy Swift Proxy

Swift-A (for local case) Swift-I (for intercloud case)

A: container 1

A: container 2

I: container 1

I: container 2

Swift Client

Cache(Proxy)

Swift

@Tokyo Swift@
Chiba

Swift
@Sapporo

6.15 Mbits/sec

6.29 Mbits/sec

941.23 Mbits/sec

929.15 Mbits/sec

7.80 Mbits/sec

7.73 Mbits/sec

1 2 3 4 5

1K 1,755 2,165 395 3,178 1.375

1M 431,840 446,824 537,768 412,542 43,307

10M 710,179 741,350 737,565 723,446 731,824

100M 780,548 775,131 788,620 782,503 786,224

1 2 3 4 5

1K 11,608 13,293 12,916 14,691 12,126

1M 3,427,827 3,427,402 3,455,788 673,614 3,386,009

10M 958,018 959,098 7,188,901 974,072 949,389

100M 1,109,440 98,400,555 99,641,184 15,411,221 92,400,774

• Upload – Always the worst case

• Download – without cache

Client

10G

1G

network performance
(netperf)

1 2 3 4 5

1K 398,133 415,753 397,979 446,576 406,510

1M 9,238,473 202,193,598 177,694,628 161,992,275 134,450,057

10M 55,186,177 288,776,403 319,892,614 331,691,392 307,500,293

100M 473,135,008 471,484,134 467,654,981 412,153,419 451,464,516

• Download - with cache

97Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

Swift should be zone-aware for geographically distributed

use. For example, swift dispatcher can choose the best swift

proxy to transfer a request to if it knows the network latency

(see Fig. 8).

Figure 8. Colony load balancing.

The swift code of the prototype was modified as follows:

 Uploading

Calculate the number of unfinished tasks in the send queue

for each area and when one area has much more than the

others stop uploading jobs to it.

 Downloading

 Check the connection performance of the object servers

and try to retrieve an object from the fastest one. Uploading

performance improves by utilizing zone awareness (Fig. 9).

object
size

1 2 3 4 5

1K 11,356 13,157 13,074 12,758 12,680

1M 9,824,750 11,205,249 7,599,312 10,931,206 11,199,982

10M
52,294,403 51,437,092 51,050,686 52,641,471 52,300,141

100M 97,937,987 101,847,002 102,385,002 102,413,801 101,462,855

Figure 9. Uploading performance with zone awareness.

The VM info converter can be used to share virtual machine

image metafiles and is implemented as a swift dispatcher filter

(Fig. 10). This implementation enables the shared machine

images stored in intercloud storage service to be launched in

user specified cloud compute services.

Figure.10. Colony virtual machine image metadata converter.

VI. CONCLUSION

We described an intercloud storage service architecture and

prototype using code of the project called colony. The

architecture looks feasible, and we will continue to evaluate it

in a real environment and enhance the code for better

performance.

We already know that there are points in the intercloud

object storage service we could tune to get better performance.

These points and their evaluations will be reported in the

future.

REFERENCES

[1] Nobukazu Yoshioka, Shigetoshi Yokoyama, Yoshionori
Tanabe, and Shinichi Honiden , “edubase Cloud: An
Open-source Cloud Platform for Cloud Engineers,”
SECLOUD '11 Proceedings of the 2nd International
Workshop on Software Engineering for Cloud Computing,
2011.

[2] Shibboleth: http://www.shibboleth.net/ [retrieved: June, 2012]

[3] Baltic-avenue : http://code.google.com/p/baltic-
avenue/[retrieved: June, 2012]

[4] Boardwalk :https://github.com/razerbeans/boardwalk [retrieved:
June, 2012]

[5] Fs3: http://fs3.sourceforge.net/ [retrieved: June, 2012]

[6] Sinatra-s3: https://github.com/nricciar/sinatra-s3 [retrieved: June,
2012]

[7] Radosgw: http://ceph.newdream.net/wiki/RADOS_Gateway

[8] Ceph: http://ceph.newdream.net/ [retrieved: June, 2012]

[9] Daniel Nurmi, Rich Wolski, Chris Grzegorczyk, Graziano
Obertelli, Sunil Soman, Lamia Youseff, and Dmitrii
Zagorodnov, “The Eucalyptus Open-source Cloud-
computing System,” 2009 J. Phys.: Conf. Ser. 180 012051.

[10] OpenStack Swift: http://openstack.org/downloads/openstack-object-
storage-datasheet.pdf and http://docs.openstack.org/cactus/openstack-
object-storage/admin/os-objectstorage-adminguide-cactus.pdf [retrieved:
June, 2012]

[11] Colony: https://github.com/nii-cloud/colony [retrieved:
June, 2012]

[12] Squid:http://www.squid-cache.org/ [retrieved: June, 2012]

Swift Dispatcher

Swift Proxy 3

Swift-I

A: container 1

A: container 2

I: container 1

I: container 2

Swift Client

Swift Proxy 1

Swift Dispatcher checks network latency (using ping

for now) periodically to find the best swift proxy.

Swift Dispatcher has swift proxy list for each Swift

swiftA.txt
•Swift proxy 1

•Swift proxy 2

•Swift proxy 3

- If one of the swift proxies fails to respond,

try to request another one.

Swift Proxy 2

OpenStack B

Swift Dispatcher

Swift Proxy

Swift -I

Glance A

VM info converter (for OpenStack)

Swift Dispatcher

Glance B

VM info converter (for OpenStack)

VM Image Metadata

VM Image

OpenStack A

Swift Dispatcher

Other C

VM info converter (for Other Cloud Stack)

Other Cloud Stack C

Share image

Share image

98Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

http://www.shibboleth.net/
http://code.google.com/p/baltic-avenue/
http://code.google.com/p/baltic-avenue/
https://github.com/razerbeans/boardwalk
http://fs3.sourceforge.net/
https://github.com/nricciar/sinatra-s3
http://ceph.newdream.net/wiki/RADOS_Gateway
http://ceph.newdream.net/
http://openstack.org/downloads/openstack-object-storage-datasheet.pdf
http://openstack.org/downloads/openstack-object-storage-datasheet.pdf
http://docs.openstack.org/cactus/openstack-object-storage/admin/os-objectstorage-adminguide-cactus.pdf
http://docs.openstack.org/cactus/openstack-object-storage/admin/os-objectstorage-adminguide-cactus.pdf
https://github.com/nii-cloud/colony
http://www.squid-cache.org/

