
De-replication: A Dynamic Memory-aware Mechanism

Manu Vardhan, Paras Gupta, Dharmender Singh Kushwaha
Department of Computer Science and Engineering

Motilal Nehru National Institute of Technology Allahabad
Allahabad, INDIA

e-mail: {rcs1002, cs1006, dsk}@mnnit.ac.in

Abstract—Resource replication in distributed environment
produces issues of secondary storage. De-replication of
resources is required when replication mechanism is hindered
due to lack of secondary storage. This paper introduces de-
replication approaches that depend upon last modification
time, number of replica available and resource size.
Comparative study shows that de-replication can be used to
overcome the space overhead issue and reduces the de-
replication time. Result shows that in case the space required is
same but number of files to be de-replicated varies, de-
replication time also varies depending on number of files to be
de-replicated. De-replication time will be more for case having
large number of files. With the proposed approach, if file size
increases by the multiple of 7, de-replication time will get
increase just by the multiple of 1.5. This shows that de-
replication time is decoupled from size of files that are de-
replicated on the fly dynamically and does not increase
proportionally with respect to file size.

Keywords-De-replication; Distributed Systems; Replication

I. INTRODUCTION

Use of computer systems and Internet is becoming the
part of day to day life, with the increasing demand for the
services provided by them. To fulfill the requirement of
services requested by an individual, service availability is an
important issue. Distributed systems provide the
environment to various experts, where services, resources
and information are distributed and can be accessed by the
members of that environment, as compared to the centralized
systems.

A basic definition of a distributed system in [1] is that a
distributed system is a collection of independent entities that
cooperate to solve a problem that cannot be individually
solved. This is a term that describes a wide range of
computers, from weakly coupled systems, such as wide area
networks, to strongly coupled systems, such as local area
networks, to very strongly coupled systems such as
multiprocessor systems [2].

Replication is a mechanism of service or resource
placement to provide their availability in case of
unavailability of resources and services. Replication is how
to replicate data and request actors using adaptive and
predictive techniques for selecting where, when and how fast
replication should proceed [3].

De-replication is a mechanism to de-replicate / garbage-
collect data or request actors and optimizes utilization of
distributed storage based on current system load and
expected future demands for the object [3].

De-replication is done to optimize the utilization of
storage space when the demand for a resource arises. The file
to be de-replicated must be carefully taken into consideration
of the future demands of a file. File currently being serviced
cannot be de-replicated. The number of previously replicated
files selected for de-replication can fulfill the requirement for
storage space need of the upcoming file to be replicated. De-
replication is considered as a part of resource management
process where as replication is considered as a part of
resource placement process.

The rest of the paper is organized as follows. The next
section discusses a brief literature survey of existing theories
and work done so far. Section III discusses the problem
definition. Section IV describes the proposed solution,
followed by the results and discussion section. Finally,
Section V concludes the work followed by references.

II. RELATED WORK

Various resource management policies and mechanisms
are globally available that represent a step towards the
adaptive resource management techniques, thus improving
the utilization of resources, which results in improving the
overall performance of the system by reducing several
overheads. Venkatasubramanian [3] discusses about the
security and timeliness application requirements using a
customizable and safe middleware framework called
CompOSE|Q. He describes the design and implementation of
CompOSE|Q, which is a QoS-enabled reflective middleware
framework. Also, to improve the performance of the system
in the field of continuous media application, resource
management technique is helpful in improving the utilization
of resources. Chou [4] describes various resource
management policies on threshold basis in context of
continuous media (CM) servers in the area of multimedia
application. Venkatasubramanian[5] discusses the two
replication policies, these are static and dynamic. The
division is based upon the number of copies of a file which is
termed as degree of replication. In static replication policies,
the degree of replication is constant, while dynamic
replication policies allow it to vary with time. Santry [6]
identified four file retention policies for Elephant and have
implemented these policies in their prototype. The policies
are viz. Keep One, Keep All, Keep Safe and Keep
Landmarks. Keep One provides the non versioned semantics
of a standard file system. Keep All retains every version of
the file. Keep Safe provides versioning for undo but does not
retain any long term history. Keep Landmarks enhances
Keep Safe to also retain a long-term history of landmark
versions. Hurley and Yeap [7] propose a file de-replication

124Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

method based on beta time interval that decides the
frequency of invoking the de-replication operation. Over
time, all files will eventually be candidates for
migration/replication. Although many exist, the one we
choose is as follows: every beta time units (where beta is a
uniform time interval which defines the time between de-
replication events), storage sites will decide which file
qualifies for de-replication. The de-replication policy chosen
applies the least recently used concept (i.e., the file selected
for de-replication is the file which was not requested for the
longest period of time at the storage site). Once the file has
been selected, it will be removed from this storage site.
Using beta, it is possible to create a variety of de-replication
policies: the smaller the value of beta, the greater the
frequency of de-replication, and the larger the value of beta,
the longer a file copy remains in the system. Resource
replication is basically of two types, active and passive. In
passive replication, all the resources are fixed in advance
depending upon the application requirement. In active
replication, mutual information about the peer nodes is
maintained and the replicated resources can be accessed at
any site. The traditional resource replication is passive and
does not participate in the decision on when to replicate,
where to replicate and the number of copies to replicate. In a
blind-replica service model proposed by Tang [10], request
routing is independent of where the replicas are located.
Each replica simply serves the requests flowing through it
under a given routing strategy. Various replication strategies
have been proposed on the basis of the relative popularity of
individual files, based on their query rate. Helen [8]
proposed a query-based file popularity approach for
replication. Common techniques include the square-root,
proportional, and uniform distributions. File clustering-based
replication algorithm in a grid environment is proposed by
Hitoshi [9], which presents the location based replication
mechanism. The files stored in a grid environment are
grouped together based on the relationship of simultaneous
file accesses and on the file access behavior.

III. PROBLEM DEFINITION

During replication, when a File Replicating Server (FRS)
creates a replica of file on the peer nodes, space
management issue arises, i.e., whether space is available or
not in the secondary storage of the peer nodes on which the
file needs to be replicated. If space is available, the file will
get copied, but if space is not available de-replication of
previously replicated files needs to be done in the secondary
storage of that peer node.

De-replication of files will take place in a manner such
that it will fulfill the size requirement of upcoming files.
While maintaining the space management overhead,
decision for deleting a file, depends on three criteria that are
discussed in Section III-A.

A. Parameters to be Used

Solution to this problem will be represented on the basis
of three parameters of a file which are last modification time
of the file, number of replica available of a file and file size.

 Last Modification Time of a File: Last modification
time is the time at which the file was last modified or
last used.

 Number of Replicas Available of a File: Number of
replicas available of a file is a count on number of
copies available for a particular file. Whenever a
copy of file is created, it will increase the number of
replicas available of a file.

 Size of a File: File size is the size of a file required
on a disk.

IV. PROPOSED SOLUTION

With everything being lodged on Internet, computing
paradigm is changing fast to harness this capability. Many
information servers and files are resident on various
machines and this can be effectively utilized by the users.
We present a scenario discussed in Section IV-A, although
on a smaller scale where geographically disparate clusters
interact with each other for information sharing through
replication. Each of these clusters are owned by respective
organizations.

In our proposed model, we talk about space overhead in
replicating file on the storage site. If space is available, the
file will get replicated; otherwise, de-replication of
previously replicated files needs to be done in that directory.

A. Architecture Used

One node in each cluster is designated as FRS. FRS can
also be replicated on some other node in the cluster for
backup and recovery. The scenario presented in the paper is
illustrated in Figure 1 and is elaborated subsequently.

Figure 1. Architecture

The proposed architecture consists of loosely coupled
systems, capable of providing various kinds of services like
replication, storage, I/O specific, computation specific and
discovery of resources. Based on the application
requirement, the resources are made available to other
nodes. Figure 1 shows a network of three clusters that are
connected to each other via intercommunication network.
Each cluster consists of a group of trusted nodes and a File
Replicating Server (FRS) assigned to these nodes. A FRS

125Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

can be ‘local’ or ‘remote’. A FRS is assigned to a subset of
nodes known as local FRS and FRS positioned outside that
cluster, will be called as remote FRS. Each subset of nodes
(denoted as requesting nodes) receives the list having IP-
address of remote FRS, to increase fault tolerance
capability. But, the nodes of a cluster will send the file
request only to the local FRS. In case of the failure of the
local FRS, a node can automatically select a remote FRS
from the list and file request will be routed to the selected
remote FRS. This makes the model robust and capable of
handling crashes in case of local or even remote FRS fails.
The system will keep functioning under all circumstances
and will never come to halt. Each FRS maintains two tables:

 File request count table with the following attributes:
<file_id, file_name, request_count, meta data>.

 Peer FRS table with the following attributes:
<FRS_IP, FRS_PORT>.

Each FRS is informed whenever a new FRS is added to
the network, to updates its peer FRS table. FRS does not
monitor and maintains the status of remote FRS, instead
FRS request for the current status of remote FRS on-
demand. FRS status can either be ‘busy’ or ‘ready’.

Threshold based file replication works as follows:
Each local FRS is responsible for accepting the file

request and based on its current status (checks if the number
of requests currently serving for a particular file is below the
threshold or not), in the following manner:

 If the status of local FRS is ‘ready’, the local FRS
will fulfill the request.

 If the status of local FRS is busy, it looks for a
remote FRS that can handle the request, by one of
the following manner, described as under:

The local FRS contacts the remote FRS that can handle
the request by the available copy of the requested file i.e. the
status of remote FRS is ready. If not so, the local FRS
contacts those remote FRS on which the requested file is not
available. In that case file replication will be initiated, by the
local FRS of the cluster and the file replica will be created
on remote FRS on which the file is not available. For both
the cases mentioned above, IP address of the remote FRS
that can handle the request will be send to the requesting
node. On receiving the IP address, the requesting node will
connect to the remote FRS and receives the file, without any
user intervention. Thus the overhead of polling and
broadcasting is reduced.

B. Approaches Proposed for De-replication

De-replication of files will take place in a manner such
that it will fulfill the size requirement of upcoming files.
While maintaining the space management overhead, three
approaches for file de-replication are discussed below.

1) Last Modification Time Based Approach: In this
approach, files are sorted on the usage basis file that was not
requested for longest period of time will be selected for de-
replication. A drawback of this approach is that if only one
requested file is there before deletion, it causes loosing of
information. So, a check is performed before de-

replicationwhich will be done on number of replica
available basis approach.

2) Number of Replicas Available of a File Based
Approach: In this approach, files having many copies or the
files with more than one replica are de-replicated only when
there is not sufficient space available for new replicated
files. Files with one replica are not de-replicated to avoid
losing information of the file. In this case, before the de-
replication of file, a check is performed, whether or not
there are other copies of file available or not. If only single
copy of file exists in the system, in that case next probable
file for de-replication will be selected from the sorted file
list on the basis of last modification time.

3) File Size Based Approach: File size based de-
replication approach is used when time required for de-
replication considered as important factor. When there is a
very little difference in the last modification time of the two
files and number of replicas available of both files is more
than one, de-replication of file with minimum file size
among them will take place to avoid the delay in the process
and complete it in the less time.

The proposed approach for de-replication will be
described in Figure 2. The detailed description of the
number labeled arcs will be described in sequential manner
as follows:

1. Node A of cluster1 sends connection request to
FRS1.

2. FRS1 sends ip addresses of peer FRS and resource
list to node A of cluster1.

3. Node A of cluster1 sends request for file f1 to FRS1
at time t0.

4. Node A of cluster1 starts receiving requested file f1

from FRS1.
5. Node D of cluster1 sends connection request to

FRS1.
6. FRS1 sends IP addresses of peer FRS and resource

list to node D of cluster1.
7. Node D of cluster1 sends request for same file f1 to

FRS1 at time t1.

Cluster1

FRS1

A
D

B C

3

2 5

6

8

9

10

File Replica Table
of FRS 1

11

12

File Replica Table
of FRS 2

13

1417

18

Cluster2

FRS2

A

B

C

1

4

7

15

16

File Threshold
on FRS1=1

Figure 2. Proposed Model

126Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

8. As FRS1 can fulfill only one request at a time
because the threshold value for a particular file on
FRS1 is 1, so node D of cluster1 will receive the
requested file from another FRS in the system, here
FRS2, to fulfill its request. To fulfill the request of
node D of cluster1, replication of requested files is
initiated by FRS1 as the requested file is not present
on FRS2. This is because the FRS does not
maintain any information about the “requesting
node (e.g. node D)” at any point of time. So
FRS1will replicate the requested file to other FRS
as its shared resource information is being
maintained, as discussed in section IV-A. Now,
FRS1sends the size of the file to be replicated to
FRS2.

9. FRS2 does not accept the file replication request
because of space/storage scarcity. FRS2 initiates
de-replication operation on set of previously
replicated files. The required amount of space is
made available on FRS2. If the secondary storage
on FRS2did not contains any replicated files then
user interruption will come, as de-replication of
non-replicated file is not allowed.

10. FRS2 sends message ‘ready to receive file f1’ to
FRS1.

11. FRS1 starts replicating the file f1 to FRS2.
12. FRS2 sends message ‘replication of file f1to be

done successfully’ to FRS1.
13. FRS1 updates its file replica table.
14. FRS2 updates its file replica table.
15. FRS1 sends IP address and port of FRS2 to node D

of cluster1informing that the file f1 is now available
on FRS2.

16. Request of node D of Cluster1 for file f1 will now
be fulfilled by peer FRS, FRS2.

17. After some time node A of cluster1 request same
file f1from FRS1.

18. In case file with the same name already exists on
the node A of Cluster1,file de-replication will be
done on that node then the file transfer from FRS1
to node A of cluster1 will be initiated.

C. Stability Analysis

According to Figure 3, the communication between a
requesting node and a FRS (Source A and FRS1) is
described as follows: Source A sends a file request to
FRS1throughܯଵ

തതതത.FRS1 will receive the request of Source A
represented as M1. In return, FRS1 sends file to Source A
shown by M3 received on Source A using ܯଷ

തതതത.
The total communication between requesting node

Source A and FRS1 with internal actions (߬) will be given
by equation 1 as follows:

SourceA≝ SourceAMM ... 31 (1)

M
3

M 5

M
1

M
1

File
_s

ize

Figure 3. File De-replication Model Flow Graph in Process Algebraic

Approach

Also as shown in Figure 3, communication between the
two existing FRS in the architecture (FRS1 and FRS2) is
described as follows: FRS1 will send file size of the file to
be replicated usingܨଓ݈݁_ݏଓ݁ݖതതതതതതതതതതതത which will be received at FRS2
end by݁ݖ݅ݏ_݈݁݅ܨ . When file size is received by FRS2, it
initiates de-replication operation on set of previously
replicated files which will be represented by
߬. which is file de-replication with internal ,݈݂݁݅_݁ݐ݈ܽܿ݅ݎ݁݀
actions (߬). After the successful completion of de-
replication operation, the required size for replication will
be available on FRS2. Now, FRS2 will send ‘ready to
receive replicated file’ message to FRS1 represented
throughܯସ

തതതത . FRS1 received this message using M4. After
receiving the message, FRS1 will send the file to be
replicated to FRS2 represented by message ܯଶ

തതതത. FRS2 will
receive the file send by FRS1 represented as M2. When the
file will be replicated successfully on FRS2, it will send a
message ‘successful replication done’ to FRS1 byܯହ

തതതതwhich
was received by FRS1 using M5.

1) Illustration of State Transition of Source Node: As
shown in Figure 3, FRS1 will act as a source node. Status
change illustration of source node (FRS1), as shown in
Figure 4, will be described as follows:

Figure 4. State Transition Diagram of Source Node (FRS1)

After the action of sending file size of the file to be
replicated through message ܨଓ݈݁_ݏଓ݁ݖതതതതതതതതതതതത, source node (FRS1)
transit to state B of FRS1 shown in equation 2,

127Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

1FRS ≝ BsizeFile ._ (2)

State B of FRS1 switch to state C of FRS1 through
message M4, which represents the action of receiving ‘ready
to receive replicated file’ message by FRS1shown in
equation 3,

B ≝ CM .4 (3)

State C of FRS1 switch to state D of FRS1 through
message ܯଶ

തതതത which represents the action of sending the file
to be replicated by FRS1 shown in equation 4,

C ≝ DM .2 (4)

State D of FRS1 upon the action of receiving message
‘successful replication done’ by FRS1through message M5
switch to starting state FRS1 shown in equation 5,

D≝ 15.FRSM (5)

From the equations 2, 3, 4 and 5 of various states of
FRS1, we can build the definition of FRS1, which is defined
as by the equation 6:

1FRS ≝ 135241_. FRSMMMMsizeFileM (6)

2) Illustration of State Transition of Destination
Node:As shown in Figure 3, FRS2 will act as a destination
node. Status change illustration of destination node (FRS2) as
shown in Figure 5 will be described as follows:

After the action of receiving file size of the file to be
replicated through messageݖ݅ݏ_݈݁݅ܨ, destination node (FRS2)
transit to state E of FRS2 shown in equation 7,

2FRS ≝ EsizeFile ._ (7)

State E of FRS2 switch to state F of FRS2 through
message ݈݀݁݁ݎଓܿܽ݁ݐ_݂ଓ݈݁തതതതതതതതതതതതതതതതതതതതതത which represents the action of
de-replication on previously replicated files by FRS2 shown
in equation 8,

E ≝ Ffileedereplicat ._ (8)

Figure 5. State Transition Diagram of Destination Node (FRS2)

State F of FRS2 upon some internal actions (߬) by FRS2
switch to starting state FRS2 shown in equation 9,

F ≝ 2.FRS (9)

 From the equations 7, 8 and 9 of various states of FRS2,
we can build the definition of FRS2 which is defined as by
the equation 10:

2FRS

≝ 2524_.._ FRSMMMfileedereplicatsizeFile

(10)

From the equations 1, 6 and 10, we can build the
complete system as defined by the equation 11:

FDM ≝ nDestinatioFRSSource |||| (11)

V. RESULTS AND DISCUSSION

To overcome from the overhead of space management
issue, a data structure consisting of a table considered which
is described in Table 1. The proposed model is simulated on
linux platform and LAN having speed of 100.0 Mbps.

TABLE I. ATTRIBUTES

Attribute Name Type

Last Modification Date yyyy-mm-dd

Last Modification Time hh:mm

File Name String

File Size Long

File replica Integer

Replicated files on the storage site will be sorted based on
least recently used parameter which will be obtained using
the combination of both last modification date and last
modification time. The list of replicated files will be sorted
in descending order. Example of a data structure of available
files maintained at the storage site is described in Table 2.

TABLE II. DATA STRUCTURE EXAMPLE FOR COMPARISON BETWEEN
APPROACHES

Last
Modification

Date

Last
Modification

Time

File
Name

File Size
(in MB)

File
replica

2011-12-21 20:08 a.mp3 3 4
2011-12-08 22:48 b.mp3 500 1
2011-11-23 16:36 c.mp3 100 2
2011-11-23 16:03 d.mp3 250 1
2011-11-09 20:11 e.mp3 50 1
2011-11-09 18:47 f.mp3 5 4
2011-11-09 18:43 g.mp3 10 2

The Figure 6 plots efficiency of all the three approaches

versus load based on the data shown in Table 2 and the three
approaches based on least recently used parameter, replica
counts and file size parameters. Efficiency calculated is
proportional to the reciprocal of extra memory size vacated
during de-replication based on low, low-medium, medium-
high and high load for which range of file size (Rf) is
Rf<20MB, 20MB<Rf<60MB, 60MB<Rf<100MB, and
Rf>100MB, respectively.

Figure 6. Comparison of the Three Approaches

128Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

Unlike 2nd and 3rd approaches (i.e., number of replica
available of a file basis and file size basis respectively),
1stapproach(i.e. last modification time basis) is based only on
least recently used parameter and disregards the replica
counts and file size parameters. Thus it may even delete the
last replica of file present in system. While 2ndapproach is
based on both least recently used and replica counts
parameters and disregards the file size parameter. The 3rd
approach is based on all the three parameters, least recently
used, replica counts parameters and file size parameter. Most
of the time, the percentage efficiency of the 2nd and 3rd
approach is equal and better than of the 1st approach, except
in case low-medium load. Only in case of low load
percentage efficiency of 3rdapproach is better than
2ndapproach. All the three approaches said to be 100%
efficient only when space required before and after de-
replication is exactly the same.

De-replication time increases, as the number of files not
accessed for the longest period and smaller in size, are more
as compared to the files that are larger in size. Table 3 shows
when the space required is same but the number of files to be
de-replicated varies, de-replication time also varies
depending on the number of files to be de-replicated. De-
replication time will be more for the case having large
number of files. Table 3 shows that if file size increases by
the multiple of 7, i.e., from 6 MB to 43.9405 MB, de-
replication time will get increase by the multiple of 1.5, i.e.,
from 60millisecond to 98 millisecond. This shows that the
de-replication time is decoupled from the size of files that are
de-replicated dynamically and does not increase
proportionally with respect to the file size.

TABLE III. DE-REPLICATION TIME IN REQUIRED SPACE

Number
of Files

de-replicated

Space
Required
(in MB)

Space
Freed

(in MB)

De-replication
Time

(in msec)
1 6 6.0523 60
2 7.8607 13.1792 75
3 20.0399 21.0399 77
3 36.2634 39.7985 79
5 36.2634 59.7151 96
5 43.9405 51.0140 98

Finally, equation 11 establishes a relationship between

the formal aspect of file de-replication server and its
architectural model through process algebra approach. The
stability analysis ensures that the system will run in the
finite sequences of interaction and transitions. On the basis
of these equations, a transparent, reliable and safe file de-
replication model is build.

VI. CONCLUSION

This paper proposed an approach that tackles the issue of
space overhead in a distributed system environment. The
proposed solution resolves this issue of space overhead. De-

replication time increases, as the number of files increases
that are not accessed for the longest time period and smaller
in size as compared to the files that are larger in size. Result
shows that, in case when the space required is same but the
number of files to be de-replicated varies, de-replication time
also varies depending on the number of files to be de-
replicated. De-replication time will be more for the case
having large number of files. With the proposed approach, if
file size increases by the multiple of 7, de-replication time
will get increase just by the multiple of 1.5. This shows that
the de-replication time is decoupled from the size of files that
are de-replicated on the fly dynamically and does not
increase proportionally with respect to the file size.

REFERENCES
[1] A. D. Kshemkalyani and M. Singhal, "Distributed

Computing: Principles, Algorithms, and Systems”, ISBN:
9780521189842, paperback edition, Cambridge University
Press, March 2011 (corrects the errata in the 2008 edition).
756 pages.

[2] M. Gupta, M. H. Ammar, and M. Ahamad, "Trade-offs
between reliability and overheads in peer-to-peer reputation
tracking,” Computer Networks, pp. 501-522, 2006.

[3] N. Venkatasubramanian, “CompOSE|Q-a QoS-enabled
customizable middleware framework for distributed
computing,” Electronic Commerce and Web-based
Applications/Middleware. in 19th IEEE International
Conference on Distributed Computing Systems, pp. 134-139,
1999.

[4] Cheng-Fu Chou, L. Golubchik, and J. C. S. Lui, “Striping
doesn't scale: how to achieve scalability for continuous media
servers with replication,” in 20th International Conference on
Distributed Computing Systems, pp. 64-71, 2000.

[5] N. Venkatasubramanian, M. Deshpande, S. Mohapatra, S.
Gutierrez-Nolasco, and J. Wickramasuriya, “Design and
implementation of a composable reflective middleware
framework,” in 21st International Conference on Distributed
Computing Systems, pp. 644-653, Apr 2001.

[6] D. S. Santry, M. J. Feeley, N. C. Hutchinson, A. C. Veitch, R.
W. Carton, and J. Ofir, “Deciding when to forget in the
Elephant file system,” vol. 33, issue 5, pp. 110-123, Dec
1999.

[7] R. T. Hurley, and Soon Aun Yeap, “File migration and file
replication: a symbiotic relationship,” IEEE Transactions on
Parallel and Distributed Systems, vol. 7, no. 6, pp. 578-586,
Jun 1996.

[8] S. Helen, “IRM: Integrated file replication and consistency
maintenance in P2P Systems”, IEEE Trans. on Parallel and
Distributed Systems, Vol. 21, No. 1, pp. 100-113, 2010.

[9] S. Hitoshi, S. Matsuoka and T. Endo, “File Clustering Based
Replication Algorithm in a Grid Environment”, 9th
IEEE/ACM Int. Sym. on Cluster Computing and the Grid, pp.
204-211, 2009.

[10] X. Tang, C. Huicheng, and S. T. Chanson, “Optimal Replica
Placement under TTL-Based Consistency”, IEEE
Transactions on Parallel and Distributed Systems, vol.18, no.
3, pp. 351-363, March 2007.

129Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

