CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

Analysis and Optimization of Massive Data Processing
on High Performance Computing Architecture

He Huang, Shanshan Li, Xiaodong Yi, Feng Zhang, Xiangke Liao and Pan Dong
School of Computer Science
National Univ. of Defense Technology, Changsha, China
{huanghe, shanshanli, xdyi, zhangfeng, xkliao, pdong} @nudt.edu.cn

Abstract—MapReduce has emerged as a popular and easy-
to-use programming model for numerous organizations to deal
with massive data processing. Present works about improving
MapReduce are mostly done under commercial clusters, while
little work has been done under HPC architecture. With high
capability computing node, networking and storage system, it
might be promising to build massive data processing paradigm
on HPCs. Instead of DFS storage systems, HPCs use ded-
icated storage subsystem. We first analyze the performance
of MapReduce on dedicated storage subsystem. Results show
that the performance of DFS scales better when the number
of nodes increases; but, when the scale is fixed and the I/O
capability is equal, the centralized storage subsystem can do
a better job in processing large amount of data. Based on the
analysis, two strategies for reducing the network transmitting
data and distributing the storage I/O are presented, so as to
solve the problem of limited data I/O capability of HPCs. The
optimizations for storage localization and network levitation
in HPC environment respectively improve the MapReduce
performance by 32.5% and 16.9%.

Keywords-high-performance computer; massive data process-
ing; MapReduce paradigm.

I. INTRODUCTION

MapReduce [1] has emerged as a popular and easy-to-use
programming model for numerous organizations to process
explosive amounts of data and deal with data-intensive
problems. Meanwhile, data-intensive applications, such as
huge amount of web pages indexing and data mining in
business intelligence nowadays have become very popular
and are among the most important classes of applications.
At the same time, High Performance Computers (HPCs)
often deal with traditional computation-intensive problems.
Though HPCs are very powerful when dealing with scientific
computation problems, the architecture currently is not very
suitable for running MapReduce paradigm and processing
data-intensive problems.

There have been works done by improving MapReduce
performance under HPC architecture. Yandong Wang et al.
[3] improves Hadoop performance through optimizing its
networking and several stages of MapReduce on HPC archi-
tecture. Wittawat et al. [4] integrates PVES (Parallel Virtual
File System) into Hadoop and compare its performance to
HDEFS and studies how HDFS-specific optimizations can be
matched using PVFS and how consistency, durability, and

Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

persistence tradeoffs made by these file systems affect appli-
cation performance. However, specific issues related to HPC
architecture, especially the dedicated storage subsystem, are
seldom taken into consideration in these former works. In
the storage aspect these works are oriented to distributed file
system (DFS) which uses local disks of each node to store
data blocks, and it is not relevant to the centralized storage
subsystem of the HPC architecture.

In this paper, alternatively, we consider every aspect
of the HPC architecture, including processor, networking
and especially the storage subsystem. In our work, the
differences of DFS and centralized storage subsystem are
analyzed in detail, and optimizations are proposed for the
storage subsystem specifically in HPC environment. The
prior concern of this paper is the deploying of MapRe-
duce paradigm on HPCs and its overall performance. First
of all, the difficulty and the significance of the Massive
Data Processing problem on HPCs is described, and the
necessity, feasibility, and problems that may be encountered
of deploying MapReduce Paradigm on HPCs are analyzed.
Secondly, the performance of MapReduce Paradigm on
HPCs, especially the I/O capability of the dedicated storage
subsystem and the DFS is analyzed and evaluated. Following
that, two optimization strategies for relieving the I/O burden
of the system and improving the performance of MapReduce
on HPC:s are presented, due to the limited data I/O capability
of HPCs, which probably cannot meet the requirements of
data-intensive applications.

Several challenges exist for deploying MapReduce
paradigm and dealing with data-intensive problems effec-
tively on HPCs. Firstly, data blocks are distributed and
stored on DFS but centrally stored on the storage subsystem
of HPCs. Therefore, how to decrease data transmission in
advantage of the centralized storage in order to improve
performance is a great challenge. Secondly, the IO and
buffering capability of centralized storage is not as good as
DFS. How to relieve the burden of storage I/O and improve
the overall performance is another challenge.

This paper explores the possibility of building Massive
Data Processing Paradigm on HPCs, and discusses how to
deal with Massive Data Processing applications efficiently
on HPCs and how to improve its performance. The main

186

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

contributions are:

(1) The performance of MapReduce Paradigm on HPCs,
especially the I/O capability of the dedicated storage sub-
system specific to HPCs is analyzed. Results show that the
performance of DFES scales better when the number of nodes
increases, but when the scale is fixed, the centralized storage
subsystem can do better in processing large amount of data.

(2) Two strategies for improving the performance of the
MapReduce paradigm on HPCs are presented, so as to solve
the problem of limited data I/O capability of HPCs. The
optimizations for storage localization and network levitation
in HPC environment respectively improve the MapReduce
performance by 32.5% and 16.9%.

The paper is organized as follows: related works of HPCs
and data-intensive applications are discussed in Section II.
In Section III, the specific issues of running MapReduce
paradigm on HPCs are analyzed. Following that, in Section
IV, two optimization strategies for improving the perfor-
mance of the MapReduce Paradigm on HPCs are presented,
in order to solve the problem of limited data I/O capability of
HPCs, which probably cannot meet the requirements of data-
intensive applications. Then, the effectiveness of these two
optimization strategies is demonstrated respectively through
experiments in Section V. Finally, we give a conclusion in
Section VI.

II. RELATED WORK

MapReduce is a programming model for large-scale ar-
bitrary data processing. The model popularized by Google
provides very simple but powerful interfaces, while hiding
complex details of parallelizing computation, fault-tolerance,
distributing data and load balancing. Its open-source imple-
mentation, Hadoop [2], provides a software framework for
distributed processing of large datasets.

A rich set of research has been published on improving
the performance of MapReduce recently. Originally, the
Hadoop scheduler assumed that all nodes in a cluster were
homogeneous and made progress with the same speed.
Jiang et al. [5] conducted a comprehensive performance
study of MapReduce (Hadoop), concluding that the total
performance could be improved by a factor of 2.5 to 3.5 by
carefully tuning the factors, including: I/O mode, indexing,
data parsing, grouping schemes and block-level scheduling.
Zaharia et al. [6] designed a new scheduling algorithm,
Longest Approximate Time to End (LATE), for heteroge-
neous environments where ideal application environment
might not be available.

Ananthanarayanan et al. [7] proposed the Mantri sys-
tem which manages resources and schedules tasks on the
MapReduce system of Microsoft. Mantri monitors tasks and
culls outliers using cause- and resource-aware techniques
and Mantri improves job completion times by 32%. Y. Chen
et al. [8] proposed a strategy called Covering Set (CS) to
improve the energy efficiency of Hadoop. It keeps only a

Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

small fraction of the nodes powered up during periods of
low utilization, as long as all nodes in the Covering Set are
running. The strategy should ensure that there is at least one
copy of all data blocks in the Covering Set. On the other
hand, Willis Lang et al. [9] proposed All-In Strategy (AIS).
AIS uses all the nodes in the cluster to run a workload and
then powers down the entire cluster. Both CS and AIS are
efficient energy saving strategies.

The closest work to ours is Hadoop-A as proposed by
Yandong Wang et al. [3] and Reconciling HDFS and PVEFS
by Wittawat et al. [4] The former paper improves Hadoop
performance through optimizing its networking and several
stages of MapReduce on HPC architecture. It introduces an
acceleration framework that optimizes Hadoop and describes
a novel network-levitated merge algorithm to merge data
without repetition and disk access. Taking advantage of the
InfiniBand network and RDMA protocol of HPCs, Hadoop-
A doubles the data processing throughput of Hadoop, and
reduces CPU utilization by more than 36%.

The second one, Reconciling HDFS and PVFES, explores
the similarities and differences between PVES, a parallel file
system used in HPC at large scale, and HDFS, the primary
storage system used in cloud computing with Hadoop. It
integrates PVFS into Hadoop and compare its performance
to HDFS using a set of data-intensive computing bench-
marks. It also studies how HDFS-specific optimizations can
be matched using PVFS and how consistency, durability,
and persistence tradeoffs made by these file systems affect
application performance.

Nonetheless, not every aspect of the HPC architecture is
taken into consideration. For example, previous works claim
that due to the price and the poor scalability of the cen-
tralized storage subsystem, disk arrays are not suitable for
massive data processing. So in these works they simply use
the DFS built upon local disks of each node. Consequently,
in this paper a thorough study of dealing with massive data
processing on the HPC architecture is given. The impact of
every aspect on performance is checked, including processor,
networking, and especially the storage subsystem.

III. SPECIFIC ISSUES OF MAPREDUCE ON HPCs

This section mainly evaluates performance of MapReduce
paradigm on HPCs through experiments and analyzes the
problems of running MapReduce paradigm on both HPCs
and clusters of commercial machines, especially the differ-
ences caused by the centralized storage subsystem and the
DFS.

When running MapReduce paradigm on HPCs, the input
and output data are stored in a dedicated storage subsystem
(mainly composed of disk arrays and a parallel file system).
Meanwhile, when running MapReduce paradigm on clusters
of commercial machines, the Distributed File System (DFS)
is responsible for managing the input and output data, and
the data is actually stored on local disks of each node.

187

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

Table T
CLUSTER I/O PERFORMANCE UNDER DIFFERENT SIZES (MB/S)

#nodes DFS Storage Subsystem
Read Write | Read Write
2,960 408 13,300 | 1,024

7 4,690 630 15,500 | 1,010

10 6,400 860 19,000 | 1,020

20 12,120 | 1,680 | 29,044 | 1,022

40 23,760 | 3,280 | 31,100 | 1,200

80 44,000 | 6,400 | 31,000 | 1,190

100 62,200 | 8,080 | 31,093 | 1,160

Note that the read & write throughput of the cluster is evaluated by the Hadoop
benchmark TestDFSIO. The throughput of 2,960, e.g., denotes that the cluster has a
throughput of 2,960 MB/s for read.

In order to analyze the performance of MapReduce
paradigm on HPCs, it is needed to compare its performance
with the performance of MapReduce paradigm on cluster of
commercial machines under the same scale. So experiments
in this section are divided into two groups: the first group
store input and output data on dedicated storage subsystem
of HPCs, representing the HPC computing environment. The
second group uses the same scale of nodes, and differences
are that the data is actually stored on local disks of each
node and the DFS is responsible for managing data storage.

Data-intensive applications are different from traditional
scientific computation applications. They need much more
data accessing I/O bandwidth (i.e., disk accessing I/O band-
width and network accessing I/O bandwidth) than computa-
tion resources. For I/O bandwidth is so important, the I/O
capacity of the cluster should be evaluated first.

First of all, cluster I/O performance under different
sizes is evaluated. Evaluation is done respectively in
a commercial cluster and under the HPC environment.
Nodes in these two clusters are the same, but during each
assessment the number of nodes increases. The size of
the DFS increases as the cluster scales, but the size of
the centralized storage subsystem stays all the same: the
dedicated storage system is composed of 167 600 GB fiber
channel disks, and managed by Lustre [11] parallel file
system. The I/O capacity of the cluster under different
scales is listed in Table 1.

From Table I, we can see that the I/O performance of
DFS can improve linearly as the number of nodes increases.
This is because as the number of nodes increases, the
number of local disks in the DFS also increases. Under the
management of the DFS, the I/O performance of the cluster
can take advantage of all local disks to achieve aggregation
I/O bandwidth, bringing linear performance improvement.

On the other hand, for dedicated storage subsystem, its
I/O performance depends on the scale of disk arrays in
the storage subsystem, and is almost not relevant with the

Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

Table II
MAPREDUCE PERFORMANCE UNDER DIFF. AMOUNT OF DATA
60G | 80G | 100G | 120G | 140G
1| 242 | 2°57 | 6’45 1022 | 18’22
DFS 2| 316 | 606 | 7°55 12’17 | 15’34
3| 243 | 622 | 11’49 | 17’38 | 15’49
) 1| 417 | 630 | 727 847 10’32
/]Srlrsaky 2 | 449 | 6’51 | 808 9’52 11°40
3| 502 | 643 | 809 9’40 11°25

Note that the job finish time is evaluated by the Hadoop benchmark Sort with
different amount of data. The finish time of 2’42, e.g., denotes that the job was
finished in 2 min 42 sec. The size of both clusters is fixed with 10 nodes. Every job
is evaluated for three times.

number of computing nodes. As in the current experiment
the size of the storage subsystem is fixed, the /O bandwidth
it can provide for all compute nodes is limited. Therefore,
we get Analysis 1: the scalability of DFS is better than
that of the centralized storage system. The performance of
DFS improves when the number of nodes increases, and
the performance of centralized storage improves only when
new disk arrays are added.

Secondly, the performance of these two clusters under
the same scale is evaluated. Table II describes MapReduce
performance under different amount of data when the
system is composed of 10 nodes and the I/O capability of
DFS and centralized storage is nearly equal. From Table
II, we can see that when the amount of data is small (less
than 100 GB), the MapReduce performance of the DFS
is better than the performance of the centralized storage
subsystem. On the contrary, When the amount of data is
large (more than 100 GB), the MapReduce performance
based on centralized storage subsystem becomes much
better. Besides the disadvantage in scalability of the
centralized storage, this phenomenon reveals an advantage
of the disk arrays and we get Analysis 2: when the DFS
and the centralized storage subsystem can provide equal
/O capability, the disk arrays of the centralized storage
subsystem are better at dealing with huge amount of data,
compared to disks of the DFS.

In general, the experiments show that compared to the
computation resources, the I/O accessing bandwidth is a
valuable resource under HPC architecture and may has
great impact on the performance of MapReduce. Firstly,
the scalability of DFS is better than that of the centralized
storage system. Meanwhile, the cost of enlarging the
scale of centralized storage is much higher than that of
DFS. Secondly, an advantage of the centralized storage
is, the disk arrays are better at handling large amount of
data, compared to the DFS. Based on the above analysis,
optimizations for relieving the burden of I/O system and
improving the overall performance are proposed in the next
section.

188

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

IV. OPTIMIZATIONS OF MAPREDUCE PARADIGM ON
HPCs

Based on the analysis of Section III, designs for improving
the performance of the MapReduce Paradigm on HPCs are
proposed, in order to solve the problem of limited data
I/O capability of HPCs, which probably cannot meet the
requirements of data-intensive applications. Therefore, two
optimizations for relieving the burden of I/O system and
improving the overall performance, Intermediate Results
Network Transfer Optimization and Intermediate Results
Localized Storage Optimization, are proposed in this section.

A. Intermediate Results Network Transfer Optimization

Data blocks are distributed and stored on DFS but
centrally stored on the storage subsystem of HPCs. The
main idea of Intermediate Results Network Transfer
Optimization is to decrease data transmission in advantage
of the centralized storage in order to reduce the time cost
on networking and improve performance.

HPCs use dedicated storage subsystem and parallel
file system to provide storage services for all computing
nodes. DFS handle data blocks that is physically distributed
on disks of each node, and logically organize these data
blocks into a unified name space. On the other hand, when
using dedicated storage subsystem, the difference is that
data blocks are stored in disk arrays that are physically
centralized. Therefore, the Map Output Files (MOFs) in the
MapReduce paradigm are centrally stored in the storage
subsystem, not distributed on every disk of each node,
which brings possibility of optimizing network transmission
of MOFs.

On clusters of commercial machines, after the Map
phase of a MapReduce job finishes, the intermediate
results (MOFs) are stored locally on the disk of the Map
task execution node. At the Shuffle phase, all nodes that
execute Reduce tasks must get the MOFs from the Map
task execution node. So, these data blocks (MOFs) must
be transmitted over the network between nodes. At this
time, the MOFs are stored on distributed nodes, and their
network transmission is inevitable.

Different from MapReduce jobs on clusters of commercial
machines, these jobs on HPCs store intermediate results
in the dedicated storage subsystem. Therefore, in this
case, Map tasks just need to transmit the division and
storage information of MOFs to all Reduce tasks, and then
the Reduce tasks themselves are responsible for reading
the corresponding intermediate results directly from the
dedicated storage subsystem. Intermediate Results Network
Transfer Optimization is illustrated in Figure 1.

From Figure 1, we can see that after Intermediate
Results Network Transfer Optimization, Map tasks just
transmit the division and storage information of MOFs to

Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

Submit a Job

I Split the Job into MapTask {1,2,**,m}, ReduceTask {a,b,*** r} ‘
-
Map phase begins ‘
Node 2, 3. ...

Node 1

Map Task 1

read)
Input Split | I

Map output ~ (Tntermediate)

Disk Array W: Disk Array }

Map phase ends ‘

Reduce phase begins ‘

Node a

Shuffle

Node Memory

Reduce Task a

write

| Disk Array write: Resulta

Reduce phase ends]

Figure 1. Intermediate Results Network Transfer Optimization

all Reduce tasks, and then the Reduce tasks themselves go
for reading the corresponding intermediate results directly
from the dedicated storage subsystem. This eliminates the
process of transmitting the intermediate results to Reduce
tasks over network and can relieve the networking I/O
burden of the system. If the network is the performance
bottleneck of the system, this optimization can improve the
overall system performance.

B. Intermediate Results Localized Storage Optimization

Compared to the networking I/O resources, the storage
I/O resources provided by the centralized storage system are
more likely to become the performance bottleneck of the
system. The main idea of Intermediate Results Localized
Storage Optimization is to distribute the storage I/O to both
the centralized storage and local disks of each computing
node. By storing temporary data files on local disks of
computing nodes, the I/O pressure of centralized storage
can be reduced greatly.

The /O capability which the dedicated storage subsystem
can provide is limited by the size of the storage subsystem
itself. On the other side, when the MapReduce paradigm is
initially designed, the intermediate results (MOFs) are not
written to DFS, but stored temporarily on the local disk of
each node. We can learn from this design, and store the
intermediate results temporarily on the local disk of each
node to reduce data I/O pressure of the centralized storage
system.

Furthermore, as the dedicated storage subsystem of HPCs
is expensive and limited in scale, the capacity and I/O
capability of the storage subsystem often become a kind
of scarcer resources, rather than network I/0O bandwidth or
computation resources. Then it is more urgent to relieve the
I/O pressure of the storage system, rather than to optimize

189

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

| Split the Job into MapTask{1.2,---.m}, ReduceTask {a,b, -1}

-
‘ Map phase begins ‘

Node 1
Map Task 1

read 3
I

i Disk Array read
|

Inpul Split I

Map output (Intermediate)
Lmux Local FS

Map phase ends

‘ HTTP

‘ Reduce phase begins ‘
Node a Node b, c. ...

Shuffle

Node Memory
Reduce Task a

write

R - e e]
| Disk Array write: HDFS !

[Reduce phase ends |

Figure 2. Intermediate Results Localized Storage Optimization

the data transmission over the network to improve the
performance of MapReduce paradigm on HPCs.

In view of this, we can learn from the practice of
distributed file systems, and buffer the intermediate results
locally. As MOFs are temporary files and belong to specific
jobs, and are usually deleted after the completion of their
corresponding job, buffering the MOFs locally does not
affect the correct execution of MapReduce jobs. At the
same time, buffering intermediate results locally can relieve
the burden of the centralized storage greatly. Intermediate
Results Localized Storage Optimization is illustrated in
Figure 2.

From Figure 2, we can see that the job input and output
data are read and written to the centralized storage, but the
intermediate results are no longer written to the centralized
storage. Instead, they are buffered locally on disks of each
computing node. Therefore, the I/O of the whole system is
distributed and the burden of centralized storage is relieved
greatly.

V. EVALUATION

Experiments are done respectively in a commercial
cluster and the HPC environment. The commercial cluster
and HPC environment both have 100 compute nodes, each
node has dual-way six-core 2.93 GHz Intel Xeon processors
and 50GB memory. In the commercial cluster nodes are
connected by 1 GB Ethernet. In HPC environment nodes are
connected by 40 Gbps optical fiber channel and InfiniBand
[10] network. The dedicated storage system is composed
of 167 600 GB fiber channel disks, and managed by Lustre
[11] parallel file system.

Three groups of evaluation are done in this section. First
of all, the scalability of the DFS and the centralized storage

Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

3000

2500

2000

m Reduce

1500
Shuffle

1000 = Map

DFS

Completion Time (seconds)

100GB 1TB

. ,,-7-

Figure 3. The Performance Scalability of DFS and CS

is evaluated and compared. Then, the effectiveness of the
Intermediate Results Network Transfer Optimization and
the Intermediate Results Localized Storage Optimization is
demonstrated respectively, when the networking or storage
I/O becomes the performance bottleneck of the overall
system.

Firstly, the Terasort benchmark of Hadoop is run to
evaluate the performance scalability of DFS and centralized
storage. 100 GB data is sorted on 10 nodes and 1TB data
is sorted on 100 nodes respectively. And the networking
of both groups is 40 Gbps InfiniBand. The results are
illustrated in Figure 3. In Figure 3, DFS represents the
distributed file system and CS represents the centralized
storage. The total time cost is composed of the time cost of
three MapReduce phases: Map, Shuffle and Reduce.

From Figure 3, we can see that, when 100 GB data is
sorted on 10 nodes, the performance of DFS and CS is
nearly equal. But when the system scales, that is, when 1
TB data is sorted by 100 nodes, the performance of CS
is worse than that of DFS. As the computation hardware
and networking are the same, the differences come from
distinctive storage system. This validates our analysis in
Section 3: the scalability of DFS is better than that of the
centralized storage system. In fact, the cost of enlarging
the scale of centralized storage is much higher than that of
DFS, as disk arrays are much more expensive than simple
disks attached to computing nodes.

Secondly, the effectiveness of Intermediate Results
Localized Storage Optimization is demonstrated. The
same from above, 1 TB data is sorted on 100 nodes with
centralized storage, for the first time without optimization
and the second time with storage localization optimization.
The networking of both tests is 40 Gbps InfiniBand. From
the former experiments we can see that the performance
bottleneck of the overall system lies on the storage I/O.
After Intermediate Results Localized Storage Optimization,
the MOFs are not written to the centralized storage system
anymore, and it greatly relieves the pressure of the disk
arrays of the storage subsystem. The results are illustrated
in Figure 4.

From Figure 4, we can see that after storage localization

190

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

3000

2500

2000

W Reduce
1500
Shuffle

1000 - § Map

Completion Time [seconds)

500 +

[.
I B §

with
optimizaton

without
optimizaton

Figure 4. Validation of Intermediate Results Localized Storage Optimiza-

tion

with
optimizaton

3500

3000 -

2500 -

2000 + M Reduce

1500 - Shuffle

® Map
1000 +

Completion Time [seconds)

500

without
optimizaton

Figure 5.
tion

Validation of Intermediate Results Network Transfer Optimiza-

optimization, the time cost decreases greatly, especially
the time cost of Map phase. Because during Map phase,
it is not needed any more to write intermediate results
to the centralized storage, the performance of Map phase
improves a lot. In fact, the Intermediate Results Localized
Storage Optimization in HPC environment can improve the
MapReduce performance by 32.5%.

Thirdly, the effectiveness of Intermediate Results Network
Transfer Optimization is demonstrated. The same from
above, 1 TB data is sorted on 100 nodes with centralized
storage, for the first time without optimization and the
second time with network levitation optimization. But the
networking changes to 1 GB/s Ethernet this time, in order
to see the networking as performance bottleneck. The
results are illustrated in Figure 5.

Different from the former experiments, we can see from
Figure 5 that the performance bottleneck of the overall
system this time lies on both the networking and the
storage I/0. Note that if the 40 Gbps InfiniBand is used
this time, the networking would not be the bottleneck and
the Intermediate Results Network Transfer Optimization
would become useless.

Figure 5 shows that when the networking capability turns
into the bottleneck of the system, the Intermediate Results

Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

Network Transfer Optimization in HPC environment can
improve the MapReduce performance by 16.9%. In fact,
only the Shuffle phase consumes the networking resources,
and the Intermediate Results Network Transfer Optimization
improves the performance of the Shuffle phase a lot. Most
data transmitted over network is MOFs, and after the
networking levitation optimization most network flow of
the Shuffle phase is eliminated.

VI. CONCLUSION

This paper aimed at exploring the possibility of building
Massive Data Processing Paradigm on HPCs. The perfor-
mance of MapReduce Paradigm on HPCs, especially the
I/O capability of the dedicated storage subsystem specific to
HPC:s is analyzed. Two optimizations for storage localization
and network levitation in HPC environment respectively
improve the MapReduce performance by 32.5% and 16.9%.
The conclusion is that when the corresponding 1/O capability
is the performance bottleneck of the overall system, these
optimizations can help improve MapReduce paradigm under
HPC architecture.

ACKNOWLEDGMENT

The authors are thankful to the anonymous reviewers. This
work was supported by NSF China grant 61133005.

REFERENCES

[1] J. Dean, and S. Ghemawat, “Mapreduce: Simplified Data
Processing on Large Clusters,” In Proc. of OSDI, 2004, pp.
137-150.

[2] Hadoop, http://hadoop.apache.org/, retrieved: May, 2012.

[3] Y. Wang, X. Que, W. Yu, D. Goldenberg, and D. Sehgal,
“Hadoop Acceleration through Network Levitated Merging,”
In Proc. of Super Computing, 2011, pp. 57-66.

[4] W. Tantisiriroj, S. Son, S. Patil, S. Lang, G. Gibson, and R.
Ross, “On the Duality of Data-Intensive File System Design:
Reconciling HDFS and PVFS,” In Proc. of Super Computing,
2011, pp. 67-78.

[5] D. Jiang, B. Ooi, L. Shi, and S. Wu, “The Performance of
Mapreduce: An In-Depth Study,” In Proc. of VLDB, 2010, pp.
472-483.

[6] M. Zaharia, A. Konwinski, A. Joseph, R. Katz, and I. Stoica,
“Improving Mapreduce Performance in Heterogeneous Envi-
ronments,” In Proc. of OSDI, 2008, pp. 29-42.

[71 G. Ananthanarayanan, S. Kandula, A. Greenberg, I. Stoica,
Y. Lu, and B. Saha, “Reining in the Outliers in Map-Reduce
Clusters using Mantri,” In Proc. of OSDI, 2010, pp. 265-278.

[8] Y. Chen, L. Keys, and R. Katz, “Towards Energy Effi-
cient Hadoop,” In UC Berkeley Technical Report, number
UCB/EECS-2009-109, 2009.

[9] W. Lang, and J. Patel, “Energy Management for MapReduce
Clusters,” In Proc. of VLDB, 2010, pp. 129-139.

[10] IBTA, “InfiniBand Architecture Specification, Release 1.0,”
http://www.infinibandta.org/specs/, retrieved: May, 2012.

[11] Lustre Parallel Filesystem, “The Lustre Storage Architecture,”
http://www.lustre.org/, retrieved: May, 2012.

191

