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Abstract— This paper describes an efficient MapReduce 

algorithm for converting raw rainfall data into meaningful 

storm information, which can then be easily analyzed and 

mined. Our previous work proposed a method to identify 

relevant storm characteristics from raw rainfall data. The 

original storm identification system takes too long to produce 

the summarized storm characteristics, because: (1) the raw 

rainfall data, which is considered as big data, is stored in a 

traditional relational database based on CUAHSI (Consortium 

of Universities for the Advancement of Hydrologic Science, 

Inc.) ODM (Observations Data Model), which leads to 

substantial disk I/O; (2) the storm identification algorithm is 

based on recursion and regular depth-first-search (DFS), 

which leads to multiple retrievals for parts of the data. In this 

paper, we obtain a substantial improvement in performance by 

utilizing MapReduce. We also utilize the original raw rainfall 

data text files instead of using the data in the relational 

database. In our experiments, the performance of the new 

storm identification system is significantly improved compared 

to the previous one. With this new system, it will dramatically 

benefit hydrologists in helping them performing rainfall-

related analysis (both location-specific and storm-specific) such 

as flood prediction using our identified storms. 

Keywords-storm analysis; rainfall; big data; MapReduce; 

distributed computing; CUAHSI 

I. INTRODUCTION 

This paper describes an efficient MapReduce algorithm 

for converting raw rainfall data into meaningful storm 

information, which can then be easily analyzed and mined. 

Our previous work [1] proposed a method to identify 

relevant storm characteristics from raw rainfall data. The 

original storm identification system takes too long to 

produce the summarized storm characteristics, because: (1) 

the raw rainfall data, which is considered as big data [7][8], 

is stored in a traditional relational database based on 

CUAHSI (Consortium of Universities for the Advancement 

of Hydrologic Science, Inc.) ODM (Observations Data 

Model) [17][18][9], which leads to substantial disk I/O; (2) 

the storm identification algorithm is based on recursion and 

regular depth-first-search (DFS), which leads to multiple 

retrievals for parts of the data. In this paper, we obtain a 

substantial improvement in performance by utilizing 

MapReduce. We also utilize the original raw rainfall data 

text files instead of using the data in the relational database. 

In our experiments, the performance of the new storm 

identification system is significantly improved compared to 

the previous one. With this new system, it will dramatically 

benefit hydrologists in helping them performing rainfall-

related analysis (both location-specific and storm-specific) 

such as flood prediction using our identified storms. 

Our raw rainfall data, called MPE (Multi-sensor 

Precipitation Estimates) [19][20][21], is estimated by using 

combination of radars and physical rain gauges (multi-

sensors) and is retrieved from National Weather Service 

(NWS) - West Gulf River Forecast Center (WGRFC) [19]. 

The raw data is supplied as hourly text files using the HRAP 

(Hydrologic Rainfall Analysis Project) standard grid 

coordinate system [20][17]. The raw rainfall data is 

converted into a relational database in order to follow the 

CUAHSI ODM standard, which was required for the 

HydroDesktop system [22] that allows hydrology users to 

search the rainfall data.  

Our previous storm identification system used the 

relational data as input. Due to the relational database I/O 

overhead, and the tremendous amount of data, system 

performance was too slow. The data covers 17 years (1996 - 

2012) of historical hourly precipitation, which is translated 

to 8.004123763 billion records in the database. We receive 

the rainfall data on an hourly basis covering 4 states (Texas, 

Colorado, New Mexico, and Louisiana) (mainly Texas) and 

part of Mexico (see Figure 1) covering 69,830 site locations. 

The number of records inserted per hour, day, month, and 

year is 69,830, 1,675,920, 50,277,600, and 603,331,200, 

respectively.  

In this paper, we develop more efficient storm 

identification algorithms using the original text file formats, 

and the MapReduce framework to parallelize the 

processing.  

 

Figure 1. Coverage of WGRFC observations [19][21] 
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Figure 2. Relationships among neighboring sites 

MapReduce is a programming paradigm developed by 

Google in 2004 [5] and now becoming a new standard for 

distributed computing. Our previous storm identification 

algorithms, based on recursion and depth-first-search, 

traverse the data exhaustively without taking advantage of 

the known regular grid structure of the raw rainfall data. We 

greatly improved the performance by using the original raw 

rainfall data and applying MapReduce to every component 

of the storm identification process. However, only local 

storm and hourly storm identifications (also known as event 

separator and sub storm identification in [1]) are discussed 

in this paper. The details of each component are described in 

Sections IV and V, which are MapReduce for local storm 

and hourly storm identifications, respectively. First, we 

review the storm identification concepts from [1] in 

Sections II and III. Section VI discusses experimental 

results. Related work is discussed in Section VII.  

II. INPUT DATA STRUCTURE 

The raw rainfall data is supplied as text files. The file 

name indicates a particular date and time (hourly, e.g., 

2011041323_2011041400), and includes the precipitation 

data for all sites during that hour. Each row consists of row 

number, site id, and precipitation value (inches). The data is 

ordered by site id in a row major order from west to east and 

south to north. Sites are in an HRAP regular grid and four 

kilometers apart to north, south, east, and west. Each row in 

the grid has 425 sites and each column has 390 sites as 

shown in Figure 2. Because of the systematic grid structure, 

given any site, we can determine the neighboring sites by 

using the formulas in Figure 2. Moreover, given any site id, 

we can determine its HRAP local X and Y coordinates, and 

vice versa using the following equations: (1) and (2). 

      ((            )         )             ( ) 

     ((            )         )                  ( ) 

 

 
 

 

III. STORM-RELATED CONCEPTS 

In this section, we review some key components of the 

previous work [1] that are needed for this paper. Two main 

components are: (1) storm formalization and (2) storm 

identification process.   

A. Storm Formalization 

We formalize storms into three different categories 

(local storms, hourly storms, and overall storms), the goal of 

which is to develop a storm identification process and storm 

characteristics analysis. The following is some terminology 

needed for the storm formalization. 

- storm duration: the time length over which 

precipitation occurs (hours) [23]. 

- storm coverage: the number of sites covered by a 

storm. 

- storm area: the total area of a storm.   

1) Local Storms 

Generally speaking, local storm is a site-specific storm, 

which considers each site location independently when 

analyzing a storm. An example of local storms is the set of 

storms that occurred at site location 586987 last month. 

Local storm is one type of storm, which was researched by 

most hydrologists [11][12][13][14]. This may be due to the 

traditional way of storm analysis, which does the analysis 

primarily based on how raw rainfall data are collected and 

stored without applying distributed computing technology.  

Formally, a local storm is a set of time points and 

associated rainfall data at a particular spatial site. Two 

distinct local storms are separated by at least h consecutive 

time points with zero precipitation, where h is called the 

inter-event time [11][12][16]. In this paper, inter-event time 

(h) is set to 6 hours as suggested in [11][12]. Several 

consecutive time points with zero precipitation within a 

local storm, however, are allowed as long as it is less than h 

time points. For any local storm, there will not be a 

subsequence of h or more consecutive zeroes in the series. 

Figure 3 shows some examples of local storms at site id, 

586987. Some storm characteristics for this storm type 

include: 
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Figure 3. Examples of local storms at site id, 586987 
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Figure 4. Examples of hourly storms at different hours on 4/1/12 

- storm depth: the amount of precipitation occurring 

throughout the storm duration at a particular site 

[23]. 

- storm intensity: the storm depth divided by the 

storm duration (inches per hour) [23].  

2) Hourly Storms 

Informally, hourly storm is a time-specific storm, which 

has an orthogonal concept to local storm. It considers each 

hour independently when analyzing a storm. An example of 

hourly storms is the set of storms that occurred between 

9:00 am and 10:00 am today. Hourly storm considers a 

specific time point (an hour) instead of considering a 

particular site location. In other words, local storm fixes one 

site and covers its data over many time points, whereas 

hourly storm fixes a time point and covers its data over 

many adjacent sites. Figure 4 shows some examples of 

hourly storms at different hours on April 1, 2012. 

Formally, an hourly storm is a set of adjacent sites of 

local storms at a particular hour. However, a more relaxing 

definition can also be applied as discussed in our previous 

work [1] as space-tolerance. The concept of space-tolerance 

is to allow indirect neighboring sites to be considered as part 

of the same hourly storm. In this paper, we use the original 

definition of hourly storm, which takes into account only 

direct neighboring sites when identifying hourly storms. The 

following are storm characteristics that are applicable for 

this type of storm:   

- storm sites total: the total amount of precipitation 

occurring at a particular hour for the sites of an 

hourly storm. 

- storm average: the average precipitation (per site) 

for an hourly storm. 

3) Overall Storms 

Unlike local storm and hourly storm that consider either 

a site location or time (an hour) independently, it considers 

both location and time together when analyzing a storm. So, 

the result is the capture of storm as a whole, called overall 

storm, which can capture storm movement and other storm 

characteristics that could not be found in most hydrology 

papers [11][12][13][14]. An overall storm is built upon 

hourly storms. Some examples of overall storms are shown 

in Figure 5. 

Formally, an overall storm is a set of hourly storms that 

meet two requirements: (1) grouping-window and (2) 

spatial-window.  Grouping-window is the maximum time  
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Figure 5. Examples of overall storms 

interval within which hourly storms will be considered to be 

part of the same storm whereas spatial-window is the 

minimum number of common site(s) shared between two 

hourly storms. This formalization allows hourly storms that 

go to the same direction be considered together. However, 

in a rare situation, it is also possible that two different paths 

of hourly storms with different origins and/or destinations 

could end up being part of the same overall storm. In such 

case, the final path of the overall storm will be averaged 

based on those two paths. In this work, grouping-window 

and spatial-window are set to 1 hour and 1 site, respectively. 

Overall storm characteristics include:   

- storm overall depth: the total amount of 

precipitation occurring throughout the storm 

duration across the hourly storms. 

- storm overall intensity: the storm overall depth 

divided by the storm duration (inches per hour). 

- storm overall average: the average precipitation 

(per site) for an overall storm.  

B. Storm Identification Process 

The main goal of our storm identification system is to 

analyze storms as a whole. Since a storm can start at one 

place and stop at another, we slice the whole storm into 

several pieces by hour. We then assemble each slice back 

together into the original overall storm. Each slice of storm 

is, in fact, an hourly storm. Figure 6 shows architecture of 

our previous storm identification system. 

The storm identification process can be divided into 

three main components: (1) event separator (to identify local 

storms), (2) sub storm identification (to identify hourly 

storms), and (3) main storm identification (to identify 

overall storms). The architecture of our new storm 

identification system is shown in Figure 7. 
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Figure 6. Architecture of previous storm identification system 

51Copyright (c) IARIA, 2013.     ISBN:  978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization



Check within the row &

update prev. array

Check within and across

the row & update curr. array

1
s
t  s

c
a

nF
ro

m
 2

n
d
s
c
a

n
 o

n

IV. MAPREDUCE FOR LOCAL STORM IDENTIFICATION 

The local storm identification identifies the storms at a 
particular site and specifies each storm duration (in hours) at 
that site. The previous implementation of local storm 
identification required the selection of data from the 
relational database and then sorting them. The computation 
is done based on the selected sorted data and the result is 
inserted back to the database. The selection, sorting, and 
insertion required substantial execution time, making it 
impractical to analyze the whole raw data. 

Our new algorithms utilize MapReduce, and use the 
rainfall data text files as input. Each raw rainfall file contains 
the precipitation value of all the sites for a particular hour 
and hence, for the analysis of local storm, we need to group 
all the precipitation values by site and order them by time. 
Once all the values for a site are grouped together and 
ordered, then we can find all the local storms that occurred at 
that site. Thus, the local storm analysis contains two steps: 
(1) grouping precipitation values by site and ordering them 
by time and (2) finding the local storms for a site from the 
grouped values. In the MapReduce framework, there are 
three main phases: (1) map phase, (2) sorting and shuffling 
phase, and (3) reduce phase. The first two phases of 
MapReduce are used to perform the first step of our local 
storm identification and the reduce phase is used to find the 
local storms at the particular site. 

Algorithm 1. Local Storm Identification 

Input:  
- Text file-format rainfall data  

Output:  
- Local storms data in text file format 

1: class MAPPER 

2: function MAP(key object, value line) 

3:   key <-- (line.siteId, line.time) 

4:   value <-- (line.precipValue, line.time) 

5:   Emit(key, value)  

6: class REDUCER 

7: function REDUCE(key siteId, [val1, val2, …]) 

8:   timeList, precipRec <-- null //timeList.size = inter-event + 2 

9:   interEventTime <-- 0, lsId <-- 1 

10:   timeList.Add(firstNonZeroPrecip.GetTime()) 

11:   precipRec.Add(firstNonZeroPrecip.GetPrecipValue()) 

12:   for all val  values [val1, val2, …] do 

13:    precipRec.Add(val.GetPrecipValue()) 

14:    if (val.GetPrecipValue() = 0) then 

15:     timeList.Add(val.GetTime()) 

16:     interEventTime++ 

17:    else  

18:     tempTime <-- timeList[0], Clear(timeList)  

19:     timeList.Add(tempTime; val.GetTime()) 

20:    end if  

21:    if interEventTime ≥ 6 then 

22:     initialTime, finalTime <-- timeList[0], timeList[1] 

23:     value.Set(initialTime, finalTime, precipRec) 

24:     Emit(siteId, lsId, value) 

25:     Clear(timeList; precipRec), lsId++ 

26:    end if 

27:   end for 

 
 
 
 
 
 
 
 

 
 

Figure 7. Architecture of current storm identification system 

The pseudo code for the implementation for local storm 
analysis in the MapReduce framework is shown in 
Algorithm 1. Each of the map tasks takes one raw rainfall 
file and processes it line by line emitting the site and time 
together as the key and time and precipitation value together 
as the value. We take advantage of the key-comparator class 
and grouping-comparator class of MapReduce to group the 
data on the basis of site id and then sort them by time. The 
reducer gets a site id as a key and list of precipitation values 
sorted by time. This list is processed sequentially to identify 
all the local storms at that particular site. 

V. MAPREDUCE FOR HOURLY STORM IDENTIFICATION 

The second main component is hourly storm 

identification, the goal of which is to identify hourly storms 

for each particular hour.  

In the previous approach [1], we assume that any non-

zero precipitation site can be part of the hourly storm, 

meaning it can start at one site and stop at a very farther site 

as long as there are some connections among them. As a 

result, we implemented DFS to keep track of every possible 

site and perform site node revisiting when needed. This, 

however, led to a high time complexity problem. In 

addition, the algorithm interacts with the data in the 

relational database, which causes a large overhead. 

In the new approach, the program is designed 

specifically to take full advantage of the original raw rainfall 

data text file structure. Since the grid (HRAP) is known and 

we know exactly which site is a neighbor of which, only 

those candidate neighboring sites need to be checked. 

Unlike previous approach which uses DFS to keep track of 

node, we use linked lists and append them together as we 

scan when necessary. Moreover, since the data in each text 

file is stored in row major order, we scan each grid row 

once. An overview of the hourly storm identification 

process is shown in Figure 8. 

 

 

 

 

 

 

Figure 8. Overview of hourly storm identification process 
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Algorithm 2. Hourly Storm Identification 

Input:  
- Text file-format rainfall data 

Output:  
- Hourly storms data in text file format 

1: class MAPPER 

2: function SETUP() 

3:   prev.InitializeArray(), curr.InitializeArray() 

4:   hourlyStorms.InitializeArrayOfLinkedList() 

5:   id <-- 0 

6: function MAP(key object, value r) 

7:   if r  first bottom grid sites then 

8:    if r.precip = 0 then 

9:     prev[r.site].hsId <-- 0 //no hourly storm 

10:    else 

11:     if r.site = first site or r.leftNeighborPrecip = 0 then 

12:      prev[r.site].hsId <-- id++ 

13:      temp <-- CreateLinkedList(r.site) 

14:      hourlyStorms.AddLinkedList(temp) 

15:     else 

16:      prev[r.site].hsId <-- id 

17:      hourlyStorms.GetLinkList(id).Add(r.site) 

18:     end if 

19:    end if 

20:   else if r  next above grid sites then 

21:    if r.precip ≠ 0 then 

22:     if r.site = first site or r.leftNeighborPrecip = 0 then 

23:      CheckPrevious(r, id, prev, curr, 1) 

24:      else 

25:      CheckPrevious(r, id, prev, curr, 0) 

26:     end if 

27:    else 

28:     curr[r.site].hsId <-- 0 //no hourly storm 

29:    end if 

30:   else 

31:    prev <-- curr   

32:   end if 

33: function CLOSE() 

34:   Emit(hourlyStorms) 

35: function CHECKPREVIOUS(r, id, prev, curr, flag) 

36:   if flag = 1 then 

37:    if hsIds of all 3 neighbors of r in prev. array = 0 then 

38:     curr[r.site].hsId <-- id++ 

39:     temp <-- CreateLinkedList(r.site) 

40:     hourlyStorms.AddLinkedList(temp) 

41:    else  

42:     minId <-- MinHsId(r.all3Neighbors in prev. array) 

43:     curr[r.site].hsId <-- minId 

44:     hourlyStorms.GetLinkedList(minId).Add(r.site) 

45:     UpdateHsId(r.neighbors, minId) 

46:     minId <-- 0 //reset minId  

47:    end if 

48:   else 

49:    curr[r.site].hsId <-- id 

50:    hourlyStorms.GetLinkedList(id).Add(r.site) 

51:    if hsId of r’s southeast neighbor in prev ≠ id then 

52:     UpdateHsId(r.southeastNeighbor, id) 

53:    end if 

54:   end if 

The program starts from the very bottom grid row to the 

top by calling map function for each line in the text file. It 

begins to identifying hourly storms as soon as it reads in the 

data in order to minimize the number of checking. The data 

are then kept in two arrays called previous and current 

arrays, which are two-dimensional arrays and contains site 

ids and hourly storm ids. The current array always does the 

identification based on the previous array. There are two 

main parts of the program. The first part (line: 7-19) is 

executed only once for the very bottom row in a grid 

whereas another part (line: 20-32) is executed for the rest. 

The first part identifies hourly storms within the same row 

whereas the other part identifies hourly storms within and 

across the rows simultaneously. At the end of each row 

scan, the hourly storms so far are identified and are kept in 

an array of linked lists called hourly storms list, in which 

index of array indicates hourly storm id and linked list 

contains a set of adjacent non-zero precipitation sites of the 

hourly storm. When reached the last row, the final hourly 

storms are produced and already kept in the hourly storms 

list.  

Since the raw rainfall data files are independent from 

each other, in which each file records hourly precipitation 

for an individual hour, MapReduce can easily be applied. 

Each hourly file is sent to different mapper nodes for the 

identification of hourly storms. At the closing of mapper, all 

hourly storms identified within the hour will be written back 

to a disk. Currently, no reducer is needed because there is no 

need to group the data or sort them in any order. The raw 

files, by themselves, are already grouped and sorted by site 

id in a row-major order as mentioned in Section II. An 

algorithm for hourly storm identification is shown in 

Algorithm 2. 

VI. EXPERIMENTAL RESULTS 

In the previous approach, the experiment was performed 

on the rainfall dataset, resided in a relational database, using 

a single server. The server runs on Microsoft
®
 Windows 

Server
®
 2008 Enterprise operating system with 2.83 GHz 

Intel
®
 Xeon

®
 quad-core processors, 20 GB of RAM, 500 

GB of local disk, and 10 TB of external disk. In the new 

approach, the experiment was performed on the same 

dataset that is in the original text file format rather than 

relational format using a Hadoop
®
 cluster [6] of 1 frontend 

server and 18 worker nodes. Each worker node contains 3.2 

GHz Intel
®
 Xeon

®
 quad-core processors, 4 GB of RAM and 

1.5 TB of local disk allocated to HDFS. The server has the 

same specification but with 3 TB of local disk. The cluster 

is set up by using ROCKS Cluster 6.3 OS and then 

installing Hadoop
®
 1.0.3 on every node. 

Both local storm and hourly storm identifications are 

analyzed over 16 months of data. The data has 11,488 hours 

and is 10 GB in size. The raw files are in text format. Each 

file is for all sites during a single hour and is zipped into one 

gunzip file. These files are fed into to the MapReduce job 

for the storm analysis. There are separate map tasks for each 
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of the files because each file is gunzipped into separate .gz 

files.  

The comparison between the time taken by the previous 

implementations and the new MapReduce implementations 

is shown in Table I. Please also note that the processing 

time does not include the time taken to load the data into 

HDFS/SQL. In addition, each experiment was performed 10 

times and an average processing time is calculated.  

The experiments of the new approach give the same 

results for both local storms and hourly storms as the 

previous approach but is executed significantly faster. The 

new approach allows programs to be executed distributedly 

on multiple machines and hence the efficiency of the storm 

analysis is increased. For local storm (LS) identification, the 

time improved to 2.79 hours, compared to 53.44 hours in 

the previous approach. For hourly storms (HS), the 

MapReduce (MR) took 0.45 hours, compared to 6.78 hours 

in the previous method (DFS). 

VII. RELATED WORK 

There are two main parts of related work: (1) storm 

characteristics analysis and (2) MapReduce framework for 

spatial data computing. 

A. Storm Characteristics Analysis 

In most hydrology papers, most rainfall data analysis is 

either site-specific or region-specific and only few do storm 

analysis by integrating them across sites 

[10][11][12][13][14][15][16]. Asquith et al. [11][16][15] 

studies storm statistical characteristics by looking at the 

means of storm inter-event time, depth, and duration. In 

[10][12][14], Overeem and Asquith study storm 

characteristics through their DDF (depth-duration-

frequency) properties. Lanning-Rush [13] studies storm 

characteristics by focusing on their extreme precipitation 

(EP) values. Within these, only a small amount of data and 

limited number of gauges were used. The storm analysis 

was conducted mainly based on how raw rainfall data is 

collected and stored, which is by location stored in different 

folders. This might be a reason why there are not many 

programs developed to process rainfall data across sites. 

Consequently, the flexibility in analyzing overall storm 

characteristics was lacking.  

Our work, on the other hand, allows rainfall data to be 

analyzed in both location-specific (site-specific and region-

specific) and storm-specific. Additionally, a much larger 

amount of data across a large number of gauges on HRAP 

standard grid coordinates can be analyzed. Our efficient 

algorithms were custom designed to take advantage of the 

format of the original raw rainfall data, as well as adopt 

renowned distributed computing technology, called 

MapReduce, to analyze storms in a storm-specific manner. 

 

 

 

 

TABLE I.  EXPERIMENTAL RESULTS 
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2. Edwards Plateau 

(73,415,532) 

 

6,962 

8.72 

4.51s/site 

 

1.23 

3. High Plains 
(31,711,927) 

 
3,008 

4.50 
5.39s/site 

 
0.32 

4. Low Rolling Plains 
(24,965,521) 

 
2,368 

3.35 
5.10s/site 

 
0.28 

5. North Central 

(59,082,957) 

 

5,604 

8.66 

5.56s/site 

 

1.17 

6. South Central 

(31,102,334) 

 

2,949 

4.28 

5.22s/site 

 

0.67 

7. South Texas 

(31,949,386)  

 

2,933 

3.97 

4.87s/site 

 

0.48 

8. Lower Valley 

(5,324,898)  

 

601 

0.55 

3.32s/site 

 

0.07 

9. Trans-Pecos 

(65,136,216) 

 

6,177 

6.86 

4.00s/site 

 

0.55 

10. Upper Coast 

(22,863,789) 

 

2,168 

3.88 

6.45s/site 

 

0.57 

 

TOTAL 

 

37,413 
53.44 

5.14s/site 

 

6.78 

 

This enables flexibility in analyzing overall storm 

characteristics.  

B. MapReduce Framework for Spatial Data Computing 

MapReduce has become the de-facto framework for the 

data-intensive applications. It is now being used for big data 

related to geography, sciences, humanities, statistics, etc. 

There has been previous work for spatial data analysis in 

MapReduce. Cary [2] shows the construction of R-Tree 

index from spatial data in MapReduce. It uses the mappers 

to partition the data and then every partition is sent to a 

different reducer which in turn build the R-Tree index on 

the input. Google used the MapReduce framework to study 

road alignments by combining satellite and vector data [3]. 

The work focused more on the complexity of the problem 

than the implementation in MapReduce. Hadoop
®
 was also 

used to build octrees for later use in earthquake simulations 

at a large scale [4]. Octrees were built in the bottom up 

fashion in their approach. Mappers were used to first 

generate the leaf nodes and then reductions were performed 

to merge two homogeneous leaf nodes into a sub tree. This 

was done in iterations to build the final sub tree.  
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VIII. CONCLUSION AND FUTURE WORK 

A. Conclusion 

In this work, we use the MapReduce framework to 

analyze large amounts of raw rainfall data. With this new 

system, the original input data structure was fully utilized in 

order to create more efficient algorithms for storm 

identification. It eliminates the major performance issue 

with the previous system, which mostly has to do with the 

retrieval of relational data overhead. The experimental 

results show significant improvement on both local storm 

and hourly storm identifications processes. This will allow 

hydrologists to perform: (1) storm analysis (both location-

specific and storm-specific) such as storm frequency and 

characteristics analysis and flood prediction and (2) storm 

mining such as clustering on types of the storm and 

trajectory analysis, more efficiently. 

B. Future Work 

We will work on the computation of overall storm 

identification using the MapReduce framework. We will 

also be working on parallelizing the computation of storm 

area, storm center, and within storm variations [24] by the 

use of MapReduce framework. 
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