
Context-Aware Data-Flow in the Cloud

Mandy Weißbach and Wolf Zimmermann
Institute of Computer Science

University of Halle
Halle (Saale), Germany

Email: {weissbach, zimmermann}@informatik.uni-halle.de

Welf Löwe
Software Technology Group

Linnaeus University
Växjö, Sweden

Email: welf.lowe@lnu.se

Abstract—In the last few months, clients of services running
in a cloud are getting more and more aware of storing and
processing their data in the cloud. In this paper, we present a
context-aware data-flow analysis approach to allow clients to
negotiate services that store or process (directly or indirectly)
their data in undesired locations. The approach is context-
aware to satisfy the stateless character of services in a multi-
tenant cloud. We show that the use of a dynamic context-aware
data-flow analysis ensures that the clients’ data does not reach
undesired locations in the cloud.

Keywords-context-aware; data-flow; service-oriented; data
security;

I. INTRODUCTION

Undoubtedly, Cloud Computing is one of the most grow-
ing internet technologies worldwide. The preparatory study
undertaken for the European Commission estimates that the
public cloud would generate EUR 250 billion in GDP (Gross
domestic product) in 2020 [1].

Reasons for the popularity of Cloud Computing are ob-
vious: IT-departments can be outsourced, investments in
resources, e.g., hardware, software or space, become no
longer necessary, energy costs can be reduced and cloud
services are available from everywhere.

Cloud Computing also plays an important role in the
private sector. About 56 % of the internet users store private
data, e.g., pictures, music or documents, in the cloud.

Because of the private and commercial use of Cloud
Computing sensitive data may be stored and processed by
cloud services. Unfortunately, encryption of data is not an
option to keep sensitive data secure. When data needs to be
processed by the used cloud services, it needs to be available
in decrypted form [4](research in the field of processing
encrypted data is just at the beginning). The abstracted
infrastructure of a cloud makes it impossible for the user
to know the exact location their applications or data are
running on [2], [3]. So, one major obstacle in using cloud
services is that clients have no control where their data are
being stored and processed [2].

However, if cloud servers are located at different loca-
tions, they obey national laws on the server’s location. These
might be rather different than the location of the cloud user.
Therefore there might be unauthorized access to clients’ data

that might be legal in the country of the server of the cloud
service, e.g., through [5], but illegal in the client country [6].
Despite this fact, we focus on data-security in the cloud.

In our previous work [6], we described an approach that
enables a client to control the data-flow in the cloud. Data-
flow to undesired locations could be negotiated by the client.
Cloud services were allowed to use other services in desired
locations and so on. Even callbacks between cloud services
installed at desired locations are allowed [6].

Our previous work assumes that there is one client, which
has a list of undesired locations. This client uses the cloud
services by its own. So, there exists only one view on the
cloud services. In this work, we generalize to cloud services
used by several clients where each client may have its own
wish of undesired locations.

Suppose client X has country wLoc as its undesired
location and client Y has country vLoc as its undesired
location, cf. Figure I. Client X calls service Z which is
installed on a server located in country xLoc. Service Z
can use service W or service V . Service W is installed on
a server located in country wLoc. Service V is installed
on a server located in country vLoc. Since the Service Z
is installed on a server in country zLoc, both clients are
going to use service Z. While the static data-flow analysis
for client X is done, service Z can use service V , because V
is located in country vLoc. Service W would be negotiated
by client X , because W is installed on a server located in
country wLoc. The same data-flow analysis is done for client
Y . Now, service Z can not use service V because service
V is installed on a server in country vLoc, an undesired
location of client Y , cf. 1(a). Service Z can use service
W , because service W is a desired location of client Y .
However, client X wants to use service Z, service Z can not
derive whether client X or client Y is calling and therefore
service Z does not know which service (service V or service
W) to use (One-View-Problem described in Figure 1(b)). So,
our approach is extended to support different views from
different clients to support multi-tenant services.

We realized this approach with a context-aware data-flow
analysis in the cloud. The used static data-flow analysis
is an conservative approach [6], which can guarantee in
the case of an positive answer that no sensitive data flow

81Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

undesired

no undesired no undesired

locations locations

locations?

Service W

uses uses

Client X Client Y

Service Z

Service V

=Locs {wLoc} Locs =

myLoc = zLoc

myLoc = vLocmyLoc = wLoc

{vLoc}

(a) Static Data-Flow-Analysis.

use cloud service

Service W

Client X

Service Z

??

Service V

Client Y

myLoc = zLoc

myLoc = vLocmyLoc = wLoc

Z

(b) One-View-Problem.

Figure 1. Conrolling Data-Flow in the Cloud.

/∗@return : true− > data-flow to undesired location(s)
false− > data-flow only to desired locations∗/

/∗UnDesX,S,L : data-flow from service B over provided
functions S to service X in countries L∗/

BOOL undesired(SET(ProvidedB) S,SET(Locations) Locs) {
if myloc ∈ Locs return true;
foreach service X used by B do

if UnDesX,S,L return true;
return false;

}

Figure 2. Implementation of undesired [6].

direct or indirect to services installed on servers in undesired
locations. In the case of a negative answer, there could be a
direct or indirect data-flow to services installed on servers in
undesired locations. Instantiation of one service on several
servers in different countries are not considered. This work
follows the service-level-agreement principle (SLA). So,
based on the result of the context-aware data-flow analysis,
the client can negotiate a service that is installed on a
server at an undesired location. In order to increase trust
in the given answer, we assume the use of the proposed
cryptographic approach in [6].

The paper is organized as following: In Section II, we
introduce a service model example. The context-aware data-
flow analysis with respect to the presented example is given
in Section III. Section IV discusses related work and Section
V concludes this work.

II. SERVICE MODEL EXAMPLE

This section gives a short overview of our service model
and states the problems that could occur if we are not aware
of the context.

We assume that each service A provides a set of functions,
denoted by ProvidedA. This might be given as a WSDL-
Description (Web Service Description Language). Further-
more, each service A must use another service. We assume
that this is not hard-coded in the implementation of A,
but there is a pair of variables I x where I contains the
set of functions that is called on x, and x can be bound
(dynamically) to a service X that provides at least I , i.e.,
I ⊆ ProvidedX . Functions in I are called required functions
of A w.r.t. x. The set of candidate services must be published
and we assume that a registry Reg maintains all published
services. We also assume an acyclic use structure of the

services. Section III shows how this assumption can be
dropped.

Example 1: Multi-Tenant Clients
Consider services A, B and C in Figure 3. A.b can be bound
to service B and also C.b can be bound to service B. The
provided interface of B is ProvidedB = {x, undesired}.
The required functions of A w.r.t. b are {x, undesired}.
The required functions of C w.r.t. b are also {x, undesired}.
The required functions of B w.r.t. d are {f, undesired}. So
service B can simultaneously be used by service A and by
service C. �
A client would like to negotiate an agreement that a selected
service guarantees to avoid data-flow from the clients’ data
to a set Locs of undesired locations. For the purpose of
negotiation, service B may offer a function undesired ∈
ProvidedB that returns true iff data flows via some op-
erations o from the provided interface of B to services at
undesired locations, cf. with Figure 2.

Remark: It is sufficient to take into account only the set
S ⊆ ProvidedB of operations used by the client. �

If service A uses service B, it needs to ask B (via
B’s function undesired) whether it can guarantee that its
data do not flow to a location in l ∈ Locs (undesired
locations). Obviously, this needs only to be guaranteed for
those operations of B where B passes (possibly processed)
data of A. For simplicity, we assume that each service X
knows its location and this location is stored in a constant
X.myLoc.

Example 2: Negotiation of Undesired Locations
Consider services A, B, C, D, E and F in Figure 3. Service
A would like to use service B. Service B is located in
BLoc. B can also be used by service C. B itself uses
service D located in DLoc. Service D uses service E or
F . E is located in ELoc. F is located in FLoc. We assume
that all services (except possibly client A and client C) are
published.
Suppose that client (service) A wants to avoid storing its data
(neither in original nor in processed form) at servers in FLoc.
Before client A actually uses service B it would like to know
whether data passed to B are never stored at a server in
FLoc. Let Locs be the set of servers in FLoc. The procedure
negotiate searches for a published service B offering at least
the operations specified in IB (IB is the set of functions of
the required service that are called from client A). For the
purpose of negotiation, client A calls undesired(IB ,Locs)
because client A calls b.x(mydata), if b is bound to service
B. Service B calls function f ∈ ProvidedD, if d is bound
to service D. So, a call of b.x(mydata), if b is bound to
service B, implies that data of client A flows to service
D by the call d.f(data) of service B, if d is bound to
service D. Thus, the call undesired(IB ,Locs) must return
false only if B .myLoc 6∈ Locs and undesired(ID,Locs)
returns false . The functions f ∈ ProvidedD calls g and
g ∈ ProvidedE or g ∈ ProvidedF , it depends on whether

82Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

DI

d
_
ID

_
 kIEF

negotiate () {VOID

until

repeat

and
}

main() {
T

read(mydata);

}

mydata;

b =

b.hasInterface(undesired);

Reg.choose(I);

Cnegotiate () {VOID

until

repeat

and
}

main() {
T

read(mydata);

}

mydata;

b =

A

b.hasInterface(undesired);

Reg.choose(I);

b.x(mydata);b.x(mydata);

VOID

B

B B

B

B

}

{
B

}

VOID

d.f(data);

{
x(T data)

private LOC myLoc = BLoc;

SET(I)r, SET(LOC)

_
b

_

BB II IB IBb

BOOL
VOID

}

{
BOOL

}

VOID

{

private LOC

}

{
BOOL

}

VOID

{

private LOCEmyLoc = ELoc;

g(T data)

//processing data

E

DmyLoc = DLoc;

f(T data)

k.g(data);

D

}

{
BOOL

}

VOID

{

private LOC myLoc = FLoc;

g(T data)

//processing data

FSET(I)r, SET(LOC) SET(I)r, SET(LOC)

F

IF kIEF

_

EI

b.undesired(I , Locs);

undesired(Locs)

b.undesired(I , Locs);

SET(I)r, SET(LOC) undesired(Locs)undesired(Locs) undesired(locs)

//Discussed in Section II and III

//Discussed in Section II and III//Discussed in Section II and IV //Discussed in Section II and III

Figure 3. Storing Data at undesired locations: Two-View-Example

k is bound to service E or F . The argument of the call
d.f(data) flows to the call k.g(data) of service E if k
is bound to service E or k.g(data) of service F if k is
bound to service F , respectively. So, if k is bound to service
E, there is a data-flow from client A over services B and
D to service E. Service E is located in ELoc, which is
not a undesired country. Therefore B.undesired(IB ,Locs)
returns false , because D.undesired({f},Locs) returns false
i.e., client A can use service B. But if there is a data-
flow from client A over service B and D to service
F , located in FLoc, B.undesired(IB ,Locs) returns true .
Because client A does not want to store or process data in
FLoc. D.undesired({f},Locs) returns true and therefore
B.undesired(IB ,Locs) returns true , i.e., client A cannot
use service B. �

Because the service model architecture is multi-tenant,
service B can simultaneously be used by client A and by
client C. The set LocsA of undesired locations of client A
might be different from the set LocsC of undesired locations
of client C. If B uses service D, it needs to ask D (via D’s
function undesired) whether it can guarantee that A’s data
do not flow to a location in LocsA. Obviously, the data-flow
needs to be guaranteed in context of the clients. If the context
is not considered, service D can not distinguish between the
calling services A and C. So if A calls B and B calls D,
it is possible that a later call of D by B which was called
by C is not detected as a call from C. So the undesired
countries LocsA may be applied for client C.

Example 3: Context-Aware Data-Flow
Consider the services A, B, C, D, E and F in Figure 3.
Service A would like to use service B. Service B is located
in BLoc. B itself uses service C located in CLoc while C
uses service D or E. D is located in DLoc. E is located
in ELoc. F is located in FLoc. Client A wants to avoid
storing its data (neither in original nor in processed form) at
servers in FLoc. C wants to avoid storing its data (neither
in original nor in processed form) at servers in ELoc.

Suppose the negotiation process starts. Service B, D
and E will be accepted by A because undesired(IB ,Locs)
returns false. Before client A starts to use service B, client
C tells service B it also wants to use service B. A starts
the negotiation process and for service B, D and F , the
negotiation process will succeed. However, service A starts
to use service B. Service B calls function f of service D.
But service D can not distinguish between clients A and
C. So it is possible, that service D binds to service F . But
the undesired countries LocsA include the location FLoc of
service F .

To distinguish between client A and client C, we need to
introduce a context-aware data-flow analysis mechanism to
know or compute the chain of used services by a client in
the service model.

III. CONTEXT-AWARE MECHANISM

We introduce the principle of context-aware attributes.
Lists of context-dependent attributes are created. If the
function undesired of a service B, called by client A, returns
false , the call id of the caller and the called service is added
to the attribute list, e.g., cl of service B. However, service B
can distinguish with the help of the call id, whether client
A or client C was the original caller.

Example 4: Context-Aware Multi-Tenant Clients
Consider the services A, B, C, D, E and F in Figure
3. Client A would like to use service B and specifies
a set LocA = {FLoc,XLoc} of undesired locations. Also,
client C would like to use service B and specifies a set
LocB = {ELoc,XLoc} of undesired locations. Service B is
located in BLoc. B calls service D located in DLoc while
D uses service E or F . Both, service E and service F offer
the same functionality. The only difference is, that service
E is located in ELoc and F is located in FLoc.

Suppose, the following scenario: client A wants to bind
to service B. The negotiation process starts. Service B uses
service D and service D finds through a Registry Reg

83Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

A

analyze

undesired
Client

I

A

Service

Program Analysis
PA

list: cl

Figure 4. Architecture of the Context-Aware Mechanism.

service E and F . Since service F is located in FLoc, an
undesired location, the call undesired(IF ,Locs) will return
true . Client A will negotiate the use of B and client A
will start to find via the Reg new services. A is going to
bind to service B again. This time B is going to ask D
and D is calling service E. The call undesired(IE ,Locs)
by service D will return false because ELoc is not in
LocsA. However, service D wants to bind to service E in
context of service A (service A called B, B called D).
So, the call id, computed with the service use chain, can
be stored in a context attribute list cl. Before service D
calls function g ∈ ProvidedE , service D checks if the
call id of E is registered for A. If there is a call id of E
registered, service D knows that service E can be used.
Now, if service C wants to use service B, a new negotiation
process starts. Now, the call of undesired(IB ,LocsC) and
the call of undesired(ID,LocsC) will return false. The call
of undesired(IE ,LocsC) will return true and no call id is
set and the list with the used service chain will be discarded.
Client C will negotiate service B and the negotiation process
starts as described before. This time, service D calls F . The
function undesired(IF ,LocsC) will return false. So, the
call id of B, D and F will be added to the context attribute
list cl of client C. However, if client C calls service B and
service B calls service D, service D can choose with respect
to the context attribute service F .

To implement the context-aware data-flow analysis, we
need a trusted third party which
• can compute the resource information (location) of the

used cloud service,
• ensures that the used cloud services act according to

promised behavior of undesired and
• maintains the information of the chain of used services

by a certain client.

Example 5: Context-Aware Mechanism
The first requirement is satisfied by every service itself, cf.
section II. Every service stores its location information. The
second and third requirement can be given by an independent
certified program analysis service PA. PA performs the
program analysis, computes the result of undesired and
will be extended to maintain the information of the chain
of used services by a certain client. For more details of the
work of the unextended PA, we refer to [6].

We propose a context-aware mechanism described by the

following algorithms in pseudo code and a sequence diagram
in Figure 5. To start the negotiation the client calls a registry
to ask for a service with the required Interfaces by providing
the set of undesired locations Locs, the callID of the client
A and the required Interface IreqA :

Algorithm 1: negotiate
INPUT: callID , Locs, IreqA
OUTPUT: true, service can be used

false, service can not be used

repeat Service b = Registry.choose(IreqA)
until ¬ b.undesired(IreqA , Locs, callID)

end
return true

However, the used service B selects a Program Analyzer pa
and starts the data-flow analysis, by calling analyze, cf. 5.

Algorithm 2: undesired
INPUT: IreqA , Locs, callID
OUTPUT: true, data − flow to undesired locations

false, ¬data − flow to undesired locations

pa ← choose();
return pa.analyze(Locs, callID , IreqA , sourceTextB)

Besides the data-flow analysis the Program Analyzer pa also
stores the context-aware attribute callID of the client to
keep track of the used services by client A.

Algorithm 3: analyze
INPUT: Locs, callID , IreqA , sourceTextB
OUTPUT: true, data − flow to undesired locations

false, ¬data − flow to undesired locations

callID ← computeCallID(callID)
for each location in Locs do

if (location == sourceTextB .myLoc) then return true;
end

end
cl ← cl.add(callID))
IreqB ← doDataF lowAnalysis(IreqA , sourceTextB)
return negotiate(callID, Locs, IreqB)

Remark:
As the PA is able to keep track of the analysis requests

of client A, it can check for cycles before processing the
analysis request. In particular, it checks whether a query
undesired(callID , Locs, IreqB) for client A is currently
being analyzed, i.e., whether there is an open analysis
request undesired(S′, Locs) with S′ ⊆ S. If yes, it can
return immediately false . This is valid because if there is a
data-flow from S′ to an undesired location loc, then there
must be another call of a provided function to service B
with a data-flow to an undesired location. �

Now, with the help of the computed list containing the
chain of used services of client A, this information can be
used to guarantee, that the data of client A flows only to
undesired locations. Before every service connects to another
service it can be checked asking the used PA if in the
context of the client this connection is allowed.

Remark: We assume a IAAS in a trusted cloud envi-
ronment [7]. This approach depends on trust in a trusted
cloud federation and we are using the encryption mechanism

84Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

[¬ b.undesired()]

repeat choose()

undesired()

choosePA()

 analyze() computeCallID()

:Registry :Service :Program Analysis:Client

Figure 5. Sequence Diagram of the Context-Aware Mechanism.

described in [6]. �

IV. RELATED WORK

[6] considers data security in the cloud. In contrast to
our work, this approach is not context-aware. [8] monitors
data-flow between services in order to detect malicious
services. They do not do a static data-flow analysis but they
assume a multi-tenant cloud infrastructure. Also, context-
awareness with respect to the client is not assumed. [9]
investigates data-flow analysis in the context of service
computing. Compared to our work, they focus on static
process adaptation to investigate if a service gets all the
data it needs. [10], [11] focus on data security within smart-
phone applications. While we allow sensitive data to leave
the client, they forbid sensitive data to leave the smart-phone.

There are also many works on context-aware service-
oriented systems. Truong and Dustdar [12] present a couple
of projects, e.g., CA-SOA [13], CoWSAMI [14], WASP
[15] and inContext [16], [17], to make service-oriented sys-
tems context-aware. CoWSAMI [14] is an interface-aware
context-gathering-environment. CA-SOA [13] formalizes an
ontology-based context model. Different views of different
clients using a chain of web services were not considered.
[18] proposes a multi-tenant service-oriented architecture
middleware for Cloud Computing. They focus on multiple
users sharing an instance and native multi-tenancy. In con-
trast to our work, using certain services in context of the
location is not considered.

Baldauf et al. also states some requirements that need
to be supported by a context-aware system. In contrast
to our work, [13], [14], [15], [16], [17] assume, that the
context information of the user has to be collected by some
mechanism, e.g., polling [16], [13]. In our work, the client
itself supports the system with context information, the list
of undesired locations, mechanisms like polling are not
needed. [19] also presents techniques to compute, with the
help of context information, the right service to get coupled
to. In our work, the client itself can decide whether a context

is given or not. A computation of contextual information [20]
to find the best fitting service does not need to be done.

Focusing data security in the cloud is done by [3]. Brandic
et al. guarantee data security by data fragmentation. A data
analyst or the domain expert decide where data can be stored
and which data need to be fragmented and stored in different
geographical regions. The client itself can not decide where
its data is stored or processed.

To the best of our knowledge, there exist no paper that
is using the context information of a client to control the
data-flow in the cloud and enables the client to negotiate
services.

V. CONCLUSION

In this work, [6] was extended to allow different views
on a service-oriented system in the cloud. The extended
work allows multiple clients to decide where their data
is stored, processed and transferred within the cloud. Our
approach supports different views to fit into multi-tenant
service-oriented architectures.

We have two context information: the client information
of used services and a list of undesired countries specified
by the client. With the extended static data-flow analysis
and the contextual information, the coupling of services in
context of the user can be computed at runtime. We obtain a
multi view or multi-tenant environment with loosely coupled
services, which will be coupled on demand in context of the
client.

Techniques to collect contextual information, e.g., polling,
are not an issue. Every service is supported with the list of
undesired countries by the client itself (direct or indirect).
Information of the used services are stored by a program
analysis service.

To evaluate the proposed approach, the implementation of
a tool is in process and subject for future work.

In this work, we considered data-flow analysis on the SaaS
(Software as a Service) level. Subject of further work will
be the generalization of the data-flow analysis to IaaS (In-
frastructure as a Service) and PaaS (Platform as a Service).

85Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

Due to the complexity of the IaaS and PaaS, we expect
on this level that data-flow analysis becomes more complex
and maybe some new abstraction mechanisms are needed
for feasibility. Another opportunity for program analysis is
to analyze the conformance to compliance rules as they have
similar characteristics as data-flow: the client cannot always
check the conformance or may even not observe violations
of compliance.

ACKNOWLEDGMENT

The authors would like to thank the anonymous reviewers
for their helpful comments.

REFERENCES

[1] Quantitative Estimates of the Demand for Cloud Computing
in Europe and the Likely Barriers to Up-take, Final
Report, IDC Std. D4, July 2012. [Online, retrieved:
03.2013]. Available: http://ec.europa.eu/information society/
activities/cloudcomputing/docs/quantitative estimates.pdf

[2] D. Durkee, “Why cloud computing will never be free,” Queue,
vol. 8, no. 4, 2010, p. 20.

[3] I. Brandic, S. Dustdar, T. Anstett, D. Schumm, F. Ley-
mann, and R. Konrad, “Compliant cloud computing (c3):
Architecture and language support for user-driven compliance
management in clouds,” in IEEE CLOUD, 2010, pp. 244–251.

[4] L. Wei, H. Zhu, Z. Cao, W. Jia, and A. Vasilakos, “Sec-
cloud: Bridging secure storage and computation in cloud,” in
Distributed Computing Systems Workshops (ICDCSW), 2010
IEEE 30th International Conference on, Jun 2010, pp. 52 –61.

[5] “Uniting and strengthening america by providing appropriate
tools required to intercept and obstruct terrorism act of
2001 (usa patriot act),” Oct 2001, effective February
1, 2002. [Online, retrieved: 03.2013]. Available: http:
//thomas.loc.gov/cgi-bin/query/z?c107:H.R.3162.ENR:

[6] M. Weissbach and W. Zimmermann, “Controlling data-flow
in the cloud,” in The Third International Conference on Cloud
Computing, GRIDs, and Virtualization, W. Zimmermann,
Y. W. Lee, and Y. Demchenko, Eds. ThinkMind, 2012, pp.
24–29.

[7] N. Santos, K. P. Gummadi, and R. Rodrigues, “Towards
trusted cloud computing,” in HOTCLOUD. USENIX, 2009.

[8] J. Du, W. Wei, X. Gu, and T. Yu, “Runtest: assuring
integrity of dataflow processing in cloud computing
infrastructures,” in Proceedings of the 5th ACM Symposium
on Information, Computer and Communications Security,
ser. ASIACCS ’10. New York, NY, USA: ACM, 2010,
pp. 293–304. [Online, retrieved: 03.2013]. Available: http:
//doi.acm.org/10.1145/1755688.1755724

[9] W. Song, X. Ma, S. Cheung, H. Hu, and J. Lu, “Preserving
data flow correctness in process adaptation,” Services Com-
puting, IEEE International Conference on, vol. 0, 2010, pp.
9–16.

[10] W. Enck, P. Gilbert, B.-G. Chun, L. P. Cox, J. Jung,
P. McDaniel, and A. N. Sheth, “Taintdroid: an information-
flow tracking system for realtime privacy monitoring on
smartphones,” in Proceedings of the 9th USENIX conference
on Operating systems design and implementation, ser.
OSDI’10. Berkeley, CA, USA: USENIX Association,
2010, pp. 1–6. [Online, retrieved: 03.2013]. Available:
http://dl.acm.org/citation.cfm?id=1924943.1924971

[11] M. Egele, C. Kruegel, E. Kirda, and G. Vigna, “PiOS:
Detecting privacy leaks in iOS applications,” in Proceedings
of the 18th Annual Network & Distributed System Security
Symposium (NDSS), Feb. 2011. [Online, retrieved: 03.2013].
Available: http://www.isoc.org/isoc/conferences/ndss/11/pdf/
9 2.pdf

[12] H. Truong and S. Dustdar, “A survey on context-aware web
service systems,” International Journal of Web Information
Systems, vol. 5, no. 1, 2009, pp. 5–31.

[13] I. Y. L. Chen, S. J. H. Yang, and J. Zhang, “Ubiquitous
provision of context aware web services,” in Proceedings of
the IEEE International Conference on Services Computing,
ser. SCC ’06. Washington, DC, USA: IEEE Computer
Society, 2006, pp. 60–68. [Online, retrieved: 03.2013].
Available: http://dx.doi.org/10.1109/SCC.2006.110

[14] D. Athanasopoulos, A. V. Zarras, V. Issarny, E. Pitoura, and
P. Vassiliadis, “Cowsami: Interface-aware context gathering
in ambient intelligence environments,” Pervasive Mob.
Comput., vol. 4, no. 3, Jun. 2008, pp. 360–389. [Online,
retrieved: 03.2013]. Available: http://dx.doi.org/10.1016/j.
pmcj.2007.12.004

[15] M. Zuidweg, J. Goncalves Filho, and M. van Sinderen,
“Using p3p in a web services-based context-aware application
platform,” in Proceedings of EUNICE 2003 9th Open
European Summer School and IFIP WG6.3 Workshop
on Next Generation Networks, E. Halasz, C. Lukovszki,
and T. Marosits, Eds. Budapest: Budapest University of
Technology and Economics, Sep. 2003, pp. 238–243. [Online,
retrieved: 03.2013]. Available: http://doc.utwente.nl/66531/

[16] H.-L. Truong, L. Juszczyk, S. Bashir, A. Manzoor, and
S. Dustdar, “Vimoware - a toolkit for mobile web services and
collaborative computing,” in Proceedings of the 2008 34th
Euromicro Conference Software Engineering and Advanced
Applications, ser. SEAA ’08. Washington, DC, USA: IEEE
Computer Society, 2008, pp. 366–373. [Online, retrieved:
03.2013]. Available: http://dx.doi.org/10.1109/SEAA.2008.42

[17] H.-L. Truong, S. Dustdar, D. Baggio, S. Corlosquet, C. Dorn,
G. Giuliani, R. Gombotz, Y. Hong, P. Kendal, C. Melchiorre,
S. Moretzky, S. Peray, A. Polleres, S. Reiff-Marganiec,
D. Schall, S. Stringa, M. Tilly, and H. Yu, “incontext:
A pervasive and collaborative working environment for
emerging team forms,” in Proceedings of the 2008
International Symposium on Applications and the Internet,
ser. SAINT ’08. Washington, DC, USA: IEEE Computer
Society, 2008, pp. 118–125. [Online, retrieved: 03.2013].
Available: http://dx.doi.org/10.1109/SAINT.2008.70

[18] A. Azeez, S. Perera, D. Gamage, R. Linton, P. Siriwar-
dana, D. Leelaratne, S. Weerawarana, and P. Fremantle,
“Multi-tenant soa middleware for cloud computing,” in IEEE
CLOUD, 2010, pp. 458–465.

[19] M. Baldauf, S. Dustdar, and F. Rosenberg, “A survey on
context aware systems,” Int. J. Ad Hoc Ubiquitous Comput.,
vol. 2, no. 4, Jun. 2007, pp. 263–277. [Online, retrieved:
03.2013]. Available: http://dx.doi.org/10.1504/IJAHUC.2007.
014070

[20] A. Danylenko, C. Kessler, and W. Löwe, “Comparing ma-
chine learning approaches for context-aware composition,” in
Proceedings of the 10th international conference on Software
composition, ser. SC’11. Berlin, Heidelberg: Springer-
Verlag, 2011, pp. 18–33. [Online, retrieved: 03.2013]. Avail-
able: http://dl.acm.org/citation.cfm?id=2025951.2025954

86Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

http://ec.europa.eu/information_society/activities/cloudcomputing/docs/quantitative_estimates.pdf
http://ec.europa.eu/information_society/activities/cloudcomputing/docs/quantitative_estimates.pdf
http://thomas.loc.gov/cgi-bin/query/z?c107:H.R.3162.ENR:
http://thomas.loc.gov/cgi-bin/query/z?c107:H.R.3162.ENR:
http://doi.acm.org/10.1145/1755688.1755724
http://doi.acm.org/10.1145/1755688.1755724
http://dl.acm.org/citation.cfm?id=1924943.1924971
http://www.isoc.org/isoc/conferences/ndss/11/pdf/9_2.pdf
http://www.isoc.org/isoc/conferences/ndss/11/pdf/9_2.pdf
http://dx.doi.org/10.1109/SCC.2006.110
http://dx.doi.org/10.1016/j.pmcj.2007.12.004
http://dx.doi.org/10.1016/j.pmcj.2007.12.004
http://doc.utwente.nl/66531/
http://dx.doi.org/10.1109/SEAA.2008.42
http://dx.doi.org/10.1109/SAINT.2008.70
http://dx.doi.org/10.1504/IJAHUC.2007.014070
http://dx.doi.org/10.1504/IJAHUC.2007.014070
http://dl.acm.org/citation.cfm?id=2025951.2025954

	Introduction
	Service Model Example
	Context-Aware Mechanism
	Related Work
	Conclusion
	References

