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Abstract— The Topology and Orchestration Specification for 
Cloud Applications (TOSCA) is an emerging framework 
aiming at enhancing the portability of cloud applications by 
standardizing their life cycle management in a vendor-neutral 
way. TOSCA captures the description of cloud application and 
infrastructure services, the relationships between parts of the 
services, and the operational behavior of these services (e.g., 
deploy, patch, shutdown). However, it lacks support for the 
equally important aspect of managing elasticity, i.e., managing 
the dynamic scaling of cloud applications at run-time. In this 
work we present the Elastic-TOSCA framework, which 
extends TOSCA to address this issue. We then describe how 
Elastic-TOSCA can be used to support a variety of analytical 
model-based approaches for elasticity management in complex 
cloud applications. We further provide a detailed example 
describing how Elastic TOSCA can be used to support easily a 
dynamic scaling approach based on a queueing system model. 
Using a case study for managing the elasticity of a multi-tier e-
commerce service, we demonstrate the effectiveness of both the 
Elastic-TOSCA framework and the scaling approach used.  

Keywords-TOSCA; cloud; elasticity; scaling approaches; 
queueing system 

I.  INTRODUCTION 
Cloud computing has gained unquestionable commercial 

success in recent years. Key value propositions promoted by 
cloud IaaS (Infrastructure-as-a-Service) providers such as 
Amazon AWS (Amazon Web Services) [1] and GoGrid [2] 
include the user’s ability to scale up or down resources used 
based on their computational demand, thus letting 
application owners (software service creators or developers) 
pay only for the resources used. This model is appealing for 
deploying complex applications that provide services for 
third parties or end users. Some examples of such services 
include traditional e-commerce sites, online healthcare 
applications, gaming applications, and media applications. In 
such applications, if the workload of the service increases 
(e.g., more end users start submitting requests 
simultaneously), the application owner ideally needs to scale 
up the resources used to maintain the Quality of Service 
(QoS) offered to the end users. When the workload eases 
down, the application owner ideally needs to scale down the 
resources used to reduce the cost incurred for service 
provision. Within this context, supporting dynamic (on-
demand) scaling, also known as elasticity, has become one of 
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the most important features that need to be supported in a 
cloud platform.  
       The Topology and Orchestration Specification for Cloud 
Applications (TOSCA) is an emerging framework for 
describing components’ dependencies and deployment plans 
of cloud applications. Proposed by the Organization for the 
Advancement of Structured Information Standards (OASIS) 
[3, 4], TOSCA is designed to simplify the life cycle 
management of cloud applications in a vendor-neutral way so 
as to enhance their portability. Such portability is enabled 
through specifying the operational behaviours of cloud 
applications, e.g., how servers are deployed or removed and 
how they are connected, in a uniform way independent of the 
cloud platform used. This uniform description provides 
application owners with flexibility when deploying and 
migrating their applications and associated components 
across different IaaS providers.  

Currently, TOSCA supports the specification of key 
activities required for the initial deployment of cloud 
applications and also the activities required to shut down the 
application. However, it does not provide support for the 
equally important aspect of specifying how application 
elasticity can be managed at run-time, e.g., by enabling the 
specification of how resources can be added or removed at 
run-time based on workload variation.  Our motivation in this 
paper is to enrich and extend the existing TOSCA framework 
to support such elasticity management activities in a vendor-
neutral way. In particular, our contributions are summarized 
as follow: 

Elastic-TOSCA: We provide extensions to TOSCA that 
support the specification of dynamic scaling plans and that 
enable guiding scale-up/down of cloud applications at run-
time. 

Supporting model-based application scaling 
approaches using Elastic-TOSCA: The Elastic-TOSCA 
framework is generic and can support a wide class of 
dynamic scaling approaches based on analytical models [1, 2, 
5-14]. The key requirement for using the framework is that 
the implemented scaling approach should be able to access 
its inputs from the Elastic-TOSCA server templates, and to 
feed its outputs to the template that enables the auto-scaling 
of applications. We describe and demonstrate how this can 
be achieved easily using a scaling approach based on a 
queuing system model [5]. 

Example implementation and evaluation: We extend 
the Imperial Smart Scaling engine (iSSe) [10, 15], an 
intelligent platform designed to automate the deployment and 
scaling process of cloud applications, to support the Elastic-
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TOSCA framework. Using iSSe, we evaluate the 
effectiveness of both Elastic TOSCA and the proposed 
scaling approach using a multi-tier e-commerce service as an 
example application. 

The remainder of this paper is organized as follows: 
Section II presents basic concepts on cloud applications and 
how auto-scaling of such applications can be achieved using 
analytical model-based approaches. Section III defines the 
Elastic-TOSCA framework and describes its key 
components. Section IV describes how a queueing system 
model-based approach can be supported by Elastic-TOSCA. 
Section IV introduces the architecture of the iSSe and 
describes the extensions implemented to support Elastic-
TOSCA. It also provides an experimental evaluation of the 
proposed approach. Finally, Section VI summarises the work 
presented in this paper and describes avenues for future 
research. 

II. BACKGROUND  
In this section, we first describe the structure of a 

traditional multi-tier application to illustrate how many 
applications benefit from dynamic scaling in a cloud 
environment and then discuss existing dynamic scaling 
techniques that are based on analytical models. 

A. Illustrative Example of Multi-tier Cloud Applications 
The main objective of this paper is to investigate the 

enrichment of TOSCA to support elasticity management of 
cloud applications. Addressing this issue effectively requires 
taking a closer look at the structure of common services and 
applications that can benefit from dynamic scaling when 
deployed on IaaS clouds so as to cope with varying 
workloads. Many such services are typically complex multi-
tier applications running on distributed software platforms. 
Figure 1, shows the logical structure of one such application 
implemented using four tiers of servers: a frontend 
HAProxy load balancer for accepting and distributing end 
users’ requests, an Apache web server for handling HTTP 
requests; a middle-tier Tomcat application server for 
implementing business logic; and a backend database with 
data store and processing. These servers work together to 
handle end users’ requests. Depending on the application 
workload, the servers at each tier can be stressed at different 
times and the implementation ideally needs to scale up or 
down the resources at the appropriate tier so as to maintain 
the overall QoS requirement of the application while 
minimizing the cost of resources used.  

Figure 2(a) shows the lifecycle of the e-commerce 
application as an example of such dynamic scaling. When 
the application is initially deployed (see Figure 1), five 
servers are deployed to support a small number of 
customers. If the demand increases, the application can be 
scaled up to add new servers. For example, in the scaling up 
of Figure 2(b), one Apache server and two Tomcat servers 
are added to maintain performance. Alternatively, if the 
demand decreases, some servers can be removed to reduce 
the cost of service provision. For example, in the scaling 

down of Figure 2(c), one Tomcat server is removed from 
Figure 1’s initially deployed application. 

 

  
Figure 1.  An example multi-tier cloud application.  

 
Figure 2.  An e-commerce service. We can see (a) the lifecycle of a e-
commerce service, (b) the service after a scaling up, and (c) the service 

after a scaling down. 

It should be noted that most scaling approaches for cloud 
applications, whether used in practice or described in the 
literature [1, 2, 5-14], are typically based on controlling 
(increasing or decreasing) the number of Virtual Machine 
(VM) instances that host the applications’ server 
components. Without loss of generality, we assume that 
each server component is installed in a stand-alone VM. 
Accordingly, the scaling up/down the application discussed 
in this work typically involves adding/removing extra 
software servers, and hence extra VMs in a cloud 
environment. 

B. Cloud Scaling Techniques Using Analytical Models  
A variety of approaches that are suitable for auto-scaling 

multi-tier applications have been proposed in the literature. 
Many of those employ analytical modelling techniques based 
on  queueing systems [5].  For example, in [6], Xiong et al. 
model an application by a network of queueing systems and 
conduct the performance analysis to show relationships 
among workloads, number of servers  and QoS level. In [7], 
Bacigalupo et al. model an application by a queueing 
network with three tiers, namely application, database and 
database disk tiers. Each tier is then solved to analyse the 
mean response time, throughput and utilisation of a server. In 
[8], Bi et al. break down an application’s end-to-end 
response time to each tier. They then calculate the number of 
servers allocated at each tier subject to constraints on the 
average response time and arrival rate. In [9], Hu et al. 
consider two allocation strategies using queueing systems: 1) 
shared allocation (SA) strategy where all incoming requests 
have the same queueing; 2) dedicated allocation (DA) 
strategy where requests with different arrival rate are divided 
into multiple queues. An algorithm is then proposed to 
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decide which strategy (SA or DA) results in a smaller 
number of servers being used to satisfy the QoS requirement. 
In addition, in [10], Han et al. consider the cost of VMs and 
introduce cost-aware criteria to detect and analyse the 
bottlenecks of multi-tier applications. They then present an 
adaptive scaling algorithm to lower cost by scaling up or 
down only at the bottleneck tiers. In [11], Pal et al. propose a 
pricing framework with economic models designed for 
multiple cloud providers in the marketplace, where each IaaS 
provider is modelled as a queueing system. Using this 
queueing system, the framework aims at informing 
application owners of the available price and its related QoS 
level. 

Various other stochastic model-based approaches have 
been studied and used. For example, in [12], Ghosh et al. 
divide an application into three types of sub analytical 
model: the resource provisioning decision model, VM 
provisioning model and run-time model. By iteratively 
solving each individual sub-model, their analysis obtains two 
results: response time and service availability. In addition, in 
[13] Ghosh et al. utilise a stochastic reward net to model an 
application and provide two analysis results: job rejection 
rate and response delay. In [14] Li et al. use a network flow 
model to analyse applications and introduce an approach to 
assist service providers in making a trade-off between cost 
and QoS requirements.  

It should be noted that the analytical models described 
here are mainly based on mathematical representations of the 
application and servers used. Their use in practice requires 
capturing the structure of the application itself to generate the 
mathematical representation. Furthermore, their 
implementation also needs interfacing with the run-time 
system so as to obtain the parameters used in the models at 
run-time and also to guide the system in implementing the 
computed scaling decisions. 

III. ELASTIC-TOSCA  
In this section, we first introduce the basic TOSCA 

framework briefly, and then describe how it is extended to 
define Elastic-TOSCA. 

A. Basic Introduction of TOSCA 
TOSCA server templates are described in XML and can 

be used for describing cloud application, including server 
components and their linking relationships [3, 4]. Figure 3 
shows the high-level structure of a TOSCA server template 
describing an e-commerce service with four sections: 
Topology template, Node types, Relationship type and Plans. 
The “Topology template” section specifies the dependency 
between different server components. The “Node types” 
section defines the properties of one server, e.g., its owner 
and the configuration of its hosted VM (CPU numbers, 
memory size, disk capacity and operating system). A 
“Relationship type” section specifies the relationship 
between two servers. In the shown example, an Apache 
server and a Tomcat server are connected, where the Apache 
is the source node and the Tomcat is the target node. Finally, 
the “Plans” section defines the process model for initially 

deploying a new application and also for removing a running 
application. 

B. Elastic-TOSCA: Extensions to Support Elasticity  
We extend the basic TOSCA framework and enrich it 

with the information required for guiding dynamic scaling of 
cloud applications, allowing application owners to specify 
different scaling strategies. For example, an owner could 
define a scaling up/down strategy based on performance 
requirements, budgets and QoS requirements specified in 
service-level agreements (SLAs). 

Using the Elastic-TOSCA framework, we generate a new 
Elastic-TOSCA-based XML document that includes 
monitoring information structures and new plans for scaling 
up/down. Figure 4 shows an example server template in 
Elastic-TOSCA, including two new sections (“Monitoring 
Information” and “SLA&Constraints”) as well as extensions 
to the “Plans” section, corresponding to three components 
needed for guiding dynamic scaling of an e-commerce 
service. Note that the specification and extension of these 
sections follows TOSCA extensibility mechanism [3, 4], 
which guarantees that the extended sections are independent 
of cloud IaaS providers. 

The “Monitoring Information” section mainly specifies a 
running application’s current status and underlying 
infrastructures. In the example fragment in Figure 5, this 
section records the detected response time and the request 
arrival rate, as well as the utilisation of resources of the 
application’s hosted VMs. 

 

 
Figure 3.  An example server template in basic TOSCA  

 
Figure 4.  An example server template in Elastic-TOSCA.  
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Figure 5.  An example “Monitoring Information” section in Elastic-

TOSCA.  

The “SLA&Constraints” section describes QoS 
requirements and any constraints on quality, budget, and 
other aspects of the application. In the example shown in  
Figure 6, this section specifies the end users’ required QoS: 
the maximal response time and the application owner’s 
constraints: the minimal resource utilisation (a resource is 
considered as idle if its utilisation is smaller than this 
requirement) and budget (the maximal cost to support the 
running of the service). 

Finally, we extend the “Plan” section in basic TOSCA to 
define more types of plans that handle the application’s 
dynamic scaling cases. Figure 4 shows the Elastic-TOSCA 
definition of two types of scaling plans — “Scale up 
applications” and “Scale down applications”. Each type can 
have multiple scaling plans and each plan describes a 
specific scaling scenario. For example, Figure 7 shows a 
fragment of a plan for scaling up an e-commerce service. 
This plan is used for adding one Apache server and two 
Tomcat servers to the application. 

A scaling plan in Elastic-TOSCA server template defines 
a list of scaling tasks, where each task corresponds to a 
deployment action. Based on Elastic-TOSCA, this 
deployment action is independent of any cloud platform, thus 
enabling applications an IaaS-neutral scaling process. In 
Figure 8, we provide two example segments in Elastic-
TOSCA server templates for specifying a deployment action 
in two different cloud platforms. These specifications contain 
all the parameters needed to call an auto scaling API of IC-
Cloud [16] (Figure 8(a)) and Amazon AWS [1] (Figure 8(b)) 
in order to deploy a new Tomcat server when scaling up. 
Note that for each scaling case, a scaling plan and its scaling 
tasks are generated dynamically. The information needed to 
generate documents describing the scaling tasks (e.g., a 
server’s user name, password and VM configuration) is 
obtained from the “Node types” section of Elastic-TOSCA. 

 

 
Figure 6.  An example “SLA&Constraints” section in Elastic-TOSCA.  

 
Figure 7.  An example scaling up plan in Elastic-TOSCA.  

IV. SUPPORTING SCALING APPROACHES BASED ON 
ANALYTICAL MODELS USING ELASTIC-TOSCA 

      In this section, we first explain the basic steps of scaling 
approaches using analytical models and how these steps are 
supported by Elastic-TOSCA. We then employ a queueing 
system as a typical example of analytical model to 
demonstrate these steps. 

A. Analytical Model-based Scaling Approaches Using 
Elastic-TOSCA 

Typically, an analytical model-based approach for scaling 
an application consists of four steps, which are preformed 
using information maintained in different sections of 
Elastic-TOSCA server templates as illustrate in Figure 9. 
 
 

  
Figure 8.  Two example scaling tasks for deploying a new server in two 

cloud platforms: (a) IC-Cloud and (b) Amazon AWS. 
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Figure 9.  Elastic-TOSCA server templates: for supporting scaling 

approaches using analytical model. 

At step 1, the approach continuously checks the 
“Monitoring Information” and “SLA&Constraints” sections 
to check where a scaling up/down is needed. The approach 
proceeds to step 2 if scaling up/down is triggered. At step 2, 
an analytical model is constructed according to the 
application topology, configurations of servers and their 
linking relationships. At step 3, the approach employs 
analytical modelling techniques to transform the high level 
QoS requirements into the number of servers to be 
deployed, and generates a scaling plan for meeting QoS 
requirements. Finally, step 4 executes the scaling plan.  

B. Basic Introduction to Queueing Systems  
Typically, a queueing system can be described using 

!/!/!, where ! represents the arrival process, ! represents 
the distribution of service time and ! is the number of servers 
[5]. In the example queueing system of Figure 10(a), !/!/! = 
!/!/! (G for general). This !/!/! queueing system includes 
! parallel and independent servers and one request waiting 
queue, where both requests’ interarrival time !  (the 
reciprocal of requests’ arrival rate) and servers’ service time 
follow arbitrary distributions. The !/!/! queueing system of 
Figure 10(a) is used to model a tier of Tomcat servers. 
Furthermore, the whole !-tier application is modelled as a 
network of ! !/!/! queueing systems and each queueing 
system represents a tier in the application. Take Figure 
10(b)’s 4-tier e-commerce service as an example, which is 
modelled by a queueing network of four ! /! /! queueing 
systems. The queueing system of the first tier (HAProxy 
servers) only receives requests from end users, and the 
departure requests of one tier are the incoming requests of its 
following tier. 

C. Scaling Approach Using Queueing Systems  
Queueing theory [5] has been successfully applied in 

many cloud scaling algorithms [5-11] to perform capacity 
planning for dynamic scaling. Typically, the overall scaling 
approach can be described in Figure 11’s pseudocode. This 
scaling approach described in this pseudocode corresponds to 
Figure 9’s four generic steps:  

 
 
 

 
Figure 10.  Queueing model and neiworks. We can see (a) a G/G/n 

queueing system to describe a tier of Tomcat servers, and (b) a queueing 
network to describe a e-commerce service.  

At step 1 (line 3 and 4), the approach decides whether to 
trigger a scaling up/down according to the latest monitoring 
information of the running application maintained in the 
“Monitoring Information” section of Elastic-TOSCA server 
templates and QoS requirements and constraints to be 
satisfied in the “SLA&Constraints” Section. For example, if 
the monitored response time (e.g., 3 seconds) exceeds the 
maximal required response time (e.g., 2 second), a scaling 
up is triggered. In contrast, if the detected resource 
utilisation (e.g., 20%) is below the minimal resource 
utilisation (e.g., 30%), a scaling down is conducted to 
remove some idle servers.  

At step 2 (line 6 and 10) and step 3 (line 7 and 11), the 
approach applies a queueing network to model the 
application and generate a scaling up or down plan (line 7 
and 11). This plan is then added to the “Plan” section of 
Elastic-TOSCA server templates. Section IV.D explains 
these two steps in detail.  

Finally, at step 4 (line 8 and 12), the approach performs 
the scaling according to the generated plan. 
  

 
Figure 11.  Pseudocode of a dynamic scaling approach using queueing 

systems.  

97Copyright (c) IARIA, 2013.     ISBN:  978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization



 
Figure 12.  The capacity planning using server templates in Elastic-TOSCA 

and queueing systems.   

D. Supporting the Scaling Approach using Elastic-TOSCA 
server templates 
The key component of a scaling approach using queueing 

systems as an analytical modelling technique is the capacity 
planning. This planning involves two steps: constructing a 
queueing network of a multi-tier application (step 2 in Figure 
9) and solving the analytical model to generate a scaling plan 
(step 3 in Figure 9). 

Figure 12 illustrates how the information maintained in a 
server template of Elastic-TOSCA maps to the corresponding 
part of a queueing network (dashed lines). The information 
maintained in the “Topology template” and “Relationship 
type” sections describe the topology of the queueing network 
and the linking relationship of different queueing systems. 
For each queueing system, ! / ! / ! , the information in 
“Monitoring Information” section specifies the arrival 
process ! , the information in the “Node types” section 
decides distribution of service time ! and server number !.  

After a queueing network representing the multi-tier 
application is constructed, the approach applies queueing 
theory to perform capacity planning using information in the 
“Monitoring Information” and “SLA&Constraints” sections. 
This planning estimates the number of servers to be deployed 
at each tier of the application and generates a scaling plan. 
The plan is then added to the “Plans” section to guide the 
scaling of the application (solid lines).  

Take the e-commerce service in Figure 1 for example, 
using information in the “Topology templates” and 
“Relationship type” sections, the approach first constructs a 
queueing network of four queueing systems to describe the 
four tiers of servers in the service, and decides the linking 
sequence of these four queueing systems. The “Monitoring 
Information” and “Node type” sections then decide the three 
components of each queueing system. For example, the 
queueing system   ! / ! / !  of Tomcat servers has arrival 
requests !  with arrival rate 150 requests/second, each 
Tomcat server has service rate 70 requests/second, and the 
number of Tomcat servers is 1. Using the constructed 
queueing network, capacity planning is conducted according 
to the detected response time (3.5 seconds) in the 

“Monitoring Information” section and the required response 
time (2.0 seconds) in the “SLA&Constraints” section. The 
detected response time is larger than the required one, so a 
scaling up plan is generated: the tier of Tomcat should be 
added two servers and the tier of the Apache should be added 
one server. 

V. IMPLEMENTATION AND EVALUATION 
In this section, we first introduce iSSe and describe how 

it has been extended to interact with Elastic-TOSCA and the 
analytical models. We then describe the experiments 
conducted to illustrate both the effectiveness of the queueing 
system based scaling approach and the interaction of iSSe 
with Elastic-TOSCA.  

A. Extension of iSSe to Support Elastic-TOSCA 
We extended iSSe (see [10, 15] for detail), an intelligent 

scaling engine, to support the Elastic-TOSCA framework. 
As shown in Figure 13, iSSe acts as middleware between 
cloud IaaS providers and application owners. It provides a 
Application owner portal to assist application owners to 
configure their services, allow them to select servers from 
the iSSe Repository of Servers, define VM configurations, 
and design their topology. This portal also allows them to 
specify the required QoS and constraints. To enable 
interaction with Elastic-TOSCA, the information is stored in 
the “Topology template”, “Node types”, “Relationship types” 
sections in Elastic-TOSCA server templates. 

The iSSe Monitoring service monitors each running 
application using two types of monitors. The first is the entry 
monitor, which examines the incoming requests over a finite 
interval (e.g., 60 seconds) and records information such as 
the requests’ arrival rate and average response time. This 
information is used to decide whether a scaling up/down is 
needed. The second is the server monitor installed on each 
server to monitor its resource usage (e.g., CPU utilisation), 
and to analyse tier-specific values, such as response time. 
The collected information is then used to update the 
“Monitoring information” section in Elastic-TOSCA server 
templates.  

 

 
Figure 13.  iSSe for supporting dynamic scaling using Elastic-TOSCA. 
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Note that the iSSe monitors are generic and independent 
of the IaaS providers. Existing providers usually provide 
users with standalone VM images. iSSe packages the VM 
images with pre-developed monitors as server templates that 
can be deployed in any cloud platform. The iSSe monitors 
hence only depend on the underlying operating systems, e.g., 
Linux Ubuntu and Centos, supported by iSSe. When a 
scaling is triggered, the iSSe Capacity planning service 
applies a scaling approach to generate a scaling up/down 
plan. When using Elastic-TOSCA, the information is 
maintained in the server templates. More concretely, the 
approach estimates the type and number of servers to be 
scaled, and then updates the “Plans” section by adding the 
generated scaling plan. Using the generated scaling plan, the 
iSSe Deployment service implements the required actions by 
calling interfaces of the underlying cloud platforms.   

B. Evaluation of the Scaling Approach 
Our evaluation is designed to illustrate the feasibility and 

effectiveness of Elastic-TOSCA in enabling dynamic scaling 
using a queueing system. The scaling approach itself is 
described in detail in [10], where it had been applied in an 
iSSe version not based on Elastic-TOSCA.  

Our experiments are conducted in a data centre running 
IC-Cloud platform [16]. The configuration used has four 
physical machines (PMs), each with eight CPUs and 32 GB 
memory. The version of each processor is Quad-Core AMD 
Opteron(tm) Processor 2380, with 2.5GHz clock frequency 
and 512 KB cache size. All four PMs share a 4.1 Tb 
centralised storage and are connected through a switched 
gigabit Ethernet LAN with speed 1000mbs.  

The e-commerce service in Figure 1 was implemented 
and its scaling up and down was tested. For convenience, 
each server of the service is installed on a single dedicated 
VM running Linux Centos 5.4. In deployment, different 
servers have different VM configuration details, as listed in 
Table I. Two versions of the MySQL database (Master and 
Slave) are implemented to support a data replication model. 
A MySQL Master is initially deployed and, when the tier of 
MySQL is scaled up, extra MySQL Slaves are added and 
configured with replication from the MySQL Master. Given 
a fixed VM configuration, the deployment of the Tomcat and 
Apache servers can be completed in a constant time. In the 
evaluation, the database has a fixed amount of data to be 
replicated, i.e., the data replication time of MySQL slave is 
fixed. Thus, the deployment time of MySQL databases is 
also a constant time.  

TABLE I.  FIVE TYPES OF SERVERS’ VM CONFIGURATIONS 

Service name CPU RAM (GB) Software version 

HAProxy 2 2 haproxy-1.4.8 

Apache 2 2 Apache 2.2.20 

Tomcat 1 1 Tomcat 7.0.22 

MySQL Master 4 4 MySQL 5.5 

MySQL Slave 1 1 MySQL 5.5 

 

We used a client emulator to simulate a number of 
concurrent end users. Each end user continuously generates a 
sequence of requests to stress the server-side application. We 
divide the test into nine periods, where each period lasts 600 
seconds. The first five periods of simulations stepwise 
increase in the number of end users so as to initiate scaling 
up. The remaining four periods gradually decrease this 
number to trigger scaling down. More concretely, the number 
of simulated concurrent users in the nine periods are: 200, 
400, 600, 900, 1200, 900, 600, 400, and 200, respectively. 
This variance of end user numbers denotes the changing 
workload volume. The first testing period starts at time = 0 
second. During the whole testing period, the application is 
monitored once every 60 seconds and Figure 14(a) displays 
the observed arrival rates of incoming requests. These 
observed arrival rates can be used to derive the mean and 
variance values of the request’s interarrival time used in the 
queueing system.  

Figure 14(b) lists the numbers of servers at each tier 
during scaling. Note that the numbers of HAProxy servers 
and MySQL Master database do not change. For the first 
period (the number of concurrent users is 200), the e-
commerce service is initially deployed with one HAProxy, 
Apache, MySQL Master server and two Tomcat servers. 
When the concurrent users increase to 400 at time = 600 
seconds and saturate the Apache and Tomcat tiers, dynamic 
scaling is triggered and one Apache and two Tomcats servers 
are added. When the number of concurrent users is increased 
at time=1200, 1800 and 2400 seconds, the cycle repeats. In 
contrast, when this number decreases at time =3000, 3600, 
4200 and 4800 seconds, the service is scaled down by 
removing idle servers.  

Note that, once scaling up or down is triggered, the 
construction of the application’s queueing network model 
and executing the capacity planning are completed within 
few seconds to generate a scaling plan. Using the plan, 
servers are added or removed in parallel using the iSSe 
Deployment service. In the IC-Cloud platform [16], the 
deployment actions are completed within 1 or 2 minutes.  

In the evaluation, we checked the monitoring information 
(request arrival rate and response time) every 60 seconds. We 
can observe in Figure 14 that there are 10 observation values 
for response time in each test period of 600 seconds. 
Typically, in each scaling up the first and second observed 
response time values violate the required constraint because 
scaling up is not yet completed. In other words, response 
recovery can be detected only after 1 to 2 minutes. 

Figure 14(c) demonstrates the fluctuation of the end-to-
end response time observed in the nine testing periods. In the 
first five periods, the response time is violated whenever the 
number of concurrent users is increased. For instance, when 
the number of users is increased to 400 at time = 600 seconds 
it saturates the Apache and Tomcat servers. Scaling up is 
then triggered and two Tomcat and one Apache servers are 
added. In contrast, in the last four periods, the scaling 
approach scales down the service while meeting the required 
response time. 
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Figure 14.  Evaluation of the scaling approach: (a) requests’ arrival rate, (b) 

number of servers in each tier, (c) the end-to-end response time. 

Result. The Elastic-TOSCA framework is able to support 
the scaling approach based on queueing systems for 
dynamically scaling up and down cloud applications to meet 
their QoS requirements. 

VI. CONCLUSION AND FUTURE WORK 
In this paper, we presented extensions to the TOSCA 

framework to enable platform-independent specification of 
dynamic scaling for cloud applications. The extensions 
covered three sections, corresponding to three types of 
information used in guiding dynamic scaling. The Elastic-
TOSCA framework is generic and supports a wide class of 
analytical mode-based scaling algorithms. We illustrated the 
effectiveness of Elastic-TOSCA framework by using a 
scaling approach based on a queueing system model. We also 
described how the framework can be supported easily in a 
scaling engine and conducted experiments to demonstrate the 
practicality of the framework using an example e-commerce 
service. 

Our direct future work is to evaluate supporting Elastic-
TOSCA on different cloud platforms and also to evaluate 
using other scaling techniques and approaches such as 
lightweight scaling at the VM level itself (CPUs, memory, 
I/O, etc) [17]. We will also test our approach using more 
complex scenarios such as considering the amount of data to 
be replicated in the MySQL slave databases in the e-
commerce application, as well as by using other multi-tier 
applications. 
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