
Elastic-TOSCA: Supporting Elasticity of Cloud Application in TOSCA

Rui Han, Moustafa M. Ghanem, Yike Guo*
Department of Computing
Imperial College London

London, UK
{r.han10, mmg, y.guo}@imperial.ac.uk

Abstract— The Topology and Orchestration Specification for
Cloud Applications (TOSCA) is an emerging framework
aiming at enhancing the portability of cloud applications by
standardizing their life cycle management in a vendor-neutral
way. TOSCA captures the description of cloud application and
infrastructure services, the relationships between parts of the
services, and the operational behavior of these services (e.g.,
deploy, patch, shutdown). However, it lacks support for the
equally important aspect of managing elasticity, i.e., managing
the dynamic scaling of cloud applications at run-time. In this
work we present the Elastic-TOSCA framework, which
extends TOSCA to address this issue. We then describe how
Elastic-TOSCA can be used to support a variety of analytical
model-based approaches for elasticity management in complex
cloud applications. We further provide a detailed example
describing how Elastic TOSCA can be used to support easily a
dynamic scaling approach based on a queueing system model.
Using a case study for managing the elasticity of a multi-tier e-
commerce service, we demonstrate the effectiveness of both the
Elastic-TOSCA framework and the scaling approach used.

Keywords-TOSCA; cloud; elasticity; scaling approaches;
queueing system

I. INTRODUCTION
Cloud computing has gained unquestionable commercial

success in recent years. Key value propositions promoted by
cloud IaaS (Infrastructure-as-a-Service) providers such as
Amazon AWS (Amazon Web Services) [1] and GoGrid [2]
include the user’s ability to scale up or down resources used
based on their computational demand, thus letting
application owners (software service creators or developers)
pay only for the resources used. This model is appealing for
deploying complex applications that provide services for
third parties or end users. Some examples of such services
include traditional e-commerce sites, online healthcare
applications, gaming applications, and media applications. In
such applications, if the workload of the service increases
(e.g., more end users start submitting requests
simultaneously), the application owner ideally needs to scale
up the resources used to maintain the Quality of Service
(QoS) offered to the end users. When the workload eases
down, the application owner ideally needs to scale down the
resources used to reduce the cost incurred for service
provision. Within this context, supporting dynamic (on-
demand) scaling, also known as elasticity, has become one of

* Please direct your enquiries to the communication author Professor Yike Guo.

the most important features that need to be supported in a
cloud platform.
 The Topology and Orchestration Specification for Cloud
Applications (TOSCA) is an emerging framework for
describing components’ dependencies and deployment plans
of cloud applications. Proposed by the Organization for the
Advancement of Structured Information Standards (OASIS)
[3, 4], TOSCA is designed to simplify the life cycle
management of cloud applications in a vendor-neutral way so
as to enhance their portability. Such portability is enabled
through specifying the operational behaviours of cloud
applications, e.g., how servers are deployed or removed and
how they are connected, in a uniform way independent of the
cloud platform used. This uniform description provides
application owners with flexibility when deploying and
migrating their applications and associated components
across different IaaS providers.

Currently, TOSCA supports the specification of key
activities required for the initial deployment of cloud
applications and also the activities required to shut down the
application. However, it does not provide support for the
equally important aspect of specifying how application
elasticity can be managed at run-time, e.g., by enabling the
specification of how resources can be added or removed at
run-time based on workload variation. Our motivation in this
paper is to enrich and extend the existing TOSCA framework
to support such elasticity management activities in a vendor-
neutral way. In particular, our contributions are summarized
as follow:

Elastic-TOSCA: We provide extensions to TOSCA that
support the specification of dynamic scaling plans and that
enable guiding scale-up/down of cloud applications at run-
time.

Supporting model-based application scaling
approaches using Elastic-TOSCA: The Elastic-TOSCA
framework is generic and can support a wide class of
dynamic scaling approaches based on analytical models [1, 2,
5-14]. The key requirement for using the framework is that
the implemented scaling approach should be able to access
its inputs from the Elastic-TOSCA server templates, and to
feed its outputs to the template that enables the auto-scaling
of applications. We describe and demonstrate how this can
be achieved easily using a scaling approach based on a
queuing system model [5].

Example implementation and evaluation: We extend
the Imperial Smart Scaling engine (iSSe) [10, 15], an
intelligent platform designed to automate the deployment and
scaling process of cloud applications, to support the Elastic-

93Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

TOSCA framework. Using iSSe, we evaluate the
effectiveness of both Elastic TOSCA and the proposed
scaling approach using a multi-tier e-commerce service as an
example application.

The remainder of this paper is organized as follows:
Section II presents basic concepts on cloud applications and
how auto-scaling of such applications can be achieved using
analytical model-based approaches. Section III defines the
Elastic-TOSCA framework and describes its key
components. Section IV describes how a queueing system
model-based approach can be supported by Elastic-TOSCA.
Section IV introduces the architecture of the iSSe and
describes the extensions implemented to support Elastic-
TOSCA. It also provides an experimental evaluation of the
proposed approach. Finally, Section VI summarises the work
presented in this paper and describes avenues for future
research.

II. BACKGROUND
In this section, we first describe the structure of a

traditional multi-tier application to illustrate how many
applications benefit from dynamic scaling in a cloud
environment and then discuss existing dynamic scaling
techniques that are based on analytical models.

A. Illustrative Example of Multi-tier Cloud Applications
The main objective of this paper is to investigate the

enrichment of TOSCA to support elasticity management of
cloud applications. Addressing this issue effectively requires
taking a closer look at the structure of common services and
applications that can benefit from dynamic scaling when
deployed on IaaS clouds so as to cope with varying
workloads. Many such services are typically complex multi-
tier applications running on distributed software platforms.
Figure 1, shows the logical structure of one such application
implemented using four tiers of servers: a frontend
HAProxy load balancer for accepting and distributing end
users’ requests, an Apache web server for handling HTTP
requests; a middle-tier Tomcat application server for
implementing business logic; and a backend database with
data store and processing. These servers work together to
handle end users’ requests. Depending on the application
workload, the servers at each tier can be stressed at different
times and the implementation ideally needs to scale up or
down the resources at the appropriate tier so as to maintain
the overall QoS requirement of the application while
minimizing the cost of resources used.

Figure 2(a) shows the lifecycle of the e-commerce
application as an example of such dynamic scaling. When
the application is initially deployed (see Figure 1), five
servers are deployed to support a small number of
customers. If the demand increases, the application can be
scaled up to add new servers. For example, in the scaling up
of Figure 2(b), one Apache server and two Tomcat servers
are added to maintain performance. Alternatively, if the
demand decreases, some servers can be removed to reduce
the cost of service provision. For example, in the scaling

down of Figure 2(c), one Tomcat server is removed from
Figure 1’s initially deployed application.

Figure 1. An example multi-tier cloud application.

Figure 2. An e-commerce service. We can see (a) the lifecycle of a e-
commerce service, (b) the service after a scaling up, and (c) the service

after a scaling down.

It should be noted that most scaling approaches for cloud
applications, whether used in practice or described in the
literature [1, 2, 5-14], are typically based on controlling
(increasing or decreasing) the number of Virtual Machine
(VM) instances that host the applications’ server
components. Without loss of generality, we assume that
each server component is installed in a stand-alone VM.
Accordingly, the scaling up/down the application discussed
in this work typically involves adding/removing extra
software servers, and hence extra VMs in a cloud
environment.

B. Cloud Scaling Techniques Using Analytical Models
A variety of approaches that are suitable for auto-scaling

multi-tier applications have been proposed in the literature.
Many of those employ analytical modelling techniques based
on queueing systems [5]. For example, in [6], Xiong et al.
model an application by a network of queueing systems and
conduct the performance analysis to show relationships
among workloads, number of servers and QoS level. In [7],
Bacigalupo et al. model an application by a queueing
network with three tiers, namely application, database and
database disk tiers. Each tier is then solved to analyse the
mean response time, throughput and utilisation of a server. In
[8], Bi et al. break down an application’s end-to-end
response time to each tier. They then calculate the number of
servers allocated at each tier subject to constraints on the
average response time and arrival rate. In [9], Hu et al.
consider two allocation strategies using queueing systems: 1)
shared allocation (SA) strategy where all incoming requests
have the same queueing; 2) dedicated allocation (DA)
strategy where requests with different arrival rate are divided
into multiple queues. An algorithm is then proposed to

94Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

decide which strategy (SA or DA) results in a smaller
number of servers being used to satisfy the QoS requirement.
In addition, in [10], Han et al. consider the cost of VMs and
introduce cost-aware criteria to detect and analyse the
bottlenecks of multi-tier applications. They then present an
adaptive scaling algorithm to lower cost by scaling up or
down only at the bottleneck tiers. In [11], Pal et al. propose a
pricing framework with economic models designed for
multiple cloud providers in the marketplace, where each IaaS
provider is modelled as a queueing system. Using this
queueing system, the framework aims at informing
application owners of the available price and its related QoS
level.

Various other stochastic model-based approaches have
been studied and used. For example, in [12], Ghosh et al.
divide an application into three types of sub analytical
model: the resource provisioning decision model, VM
provisioning model and run-time model. By iteratively
solving each individual sub-model, their analysis obtains two
results: response time and service availability. In addition, in
[13] Ghosh et al. utilise a stochastic reward net to model an
application and provide two analysis results: job rejection
rate and response delay. In [14] Li et al. use a network flow
model to analyse applications and introduce an approach to
assist service providers in making a trade-off between cost
and QoS requirements.

It should be noted that the analytical models described
here are mainly based on mathematical representations of the
application and servers used. Their use in practice requires
capturing the structure of the application itself to generate the
mathematical representation. Furthermore, their
implementation also needs interfacing with the run-time
system so as to obtain the parameters used in the models at
run-time and also to guide the system in implementing the
computed scaling decisions.

III. ELASTIC-TOSCA
In this section, we first introduce the basic TOSCA

framework briefly, and then describe how it is extended to
define Elastic-TOSCA.

A. Basic Introduction of TOSCA
TOSCA server templates are described in XML and can

be used for describing cloud application, including server
components and their linking relationships [3, 4]. Figure 3
shows the high-level structure of a TOSCA server template
describing an e-commerce service with four sections:
Topology template, Node types, Relationship type and Plans.
The “Topology template” section specifies the dependency
between different server components. The “Node types”
section defines the properties of one server, e.g., its owner
and the configuration of its hosted VM (CPU numbers,
memory size, disk capacity and operating system). A
“Relationship type” section specifies the relationship
between two servers. In the shown example, an Apache
server and a Tomcat server are connected, where the Apache
is the source node and the Tomcat is the target node. Finally,
the “Plans” section defines the process model for initially

deploying a new application and also for removing a running
application.

B. Elastic-TOSCA: Extensions to Support Elasticity
We extend the basic TOSCA framework and enrich it

with the information required for guiding dynamic scaling of
cloud applications, allowing application owners to specify
different scaling strategies. For example, an owner could
define a scaling up/down strategy based on performance
requirements, budgets and QoS requirements specified in
service-level agreements (SLAs).

Using the Elastic-TOSCA framework, we generate a new
Elastic-TOSCA-based XML document that includes
monitoring information structures and new plans for scaling
up/down. Figure 4 shows an example server template in
Elastic-TOSCA, including two new sections (“Monitoring
Information” and “SLA&Constraints”) as well as extensions
to the “Plans” section, corresponding to three components
needed for guiding dynamic scaling of an e-commerce
service. Note that the specification and extension of these
sections follows TOSCA extensibility mechanism [3, 4],
which guarantees that the extended sections are independent
of cloud IaaS providers.

The “Monitoring Information” section mainly specifies a
running application’s current status and underlying
infrastructures. In the example fragment in Figure 5, this
section records the detected response time and the request
arrival rate, as well as the utilisation of resources of the
application’s hosted VMs.

Figure 3. An example server template in basic TOSCA

Figure 4. An example server template in Elastic-TOSCA.

95Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

Figure 5. An example “Monitoring Information” section in Elastic-

TOSCA.

The “SLA&Constraints” section describes QoS
requirements and any constraints on quality, budget, and
other aspects of the application. In the example shown in
Figure 6, this section specifies the end users’ required QoS:
the maximal response time and the application owner’s
constraints: the minimal resource utilisation (a resource is
considered as idle if its utilisation is smaller than this
requirement) and budget (the maximal cost to support the
running of the service).

Finally, we extend the “Plan” section in basic TOSCA to
define more types of plans that handle the application’s
dynamic scaling cases. Figure 4 shows the Elastic-TOSCA
definition of two types of scaling plans — “Scale up
applications” and “Scale down applications”. Each type can
have multiple scaling plans and each plan describes a
specific scaling scenario. For example, Figure 7 shows a
fragment of a plan for scaling up an e-commerce service.
This plan is used for adding one Apache server and two
Tomcat servers to the application.

A scaling plan in Elastic-TOSCA server template defines
a list of scaling tasks, where each task corresponds to a
deployment action. Based on Elastic-TOSCA, this
deployment action is independent of any cloud platform, thus
enabling applications an IaaS-neutral scaling process. In
Figure 8, we provide two example segments in Elastic-
TOSCA server templates for specifying a deployment action
in two different cloud platforms. These specifications contain
all the parameters needed to call an auto scaling API of IC-
Cloud [16] (Figure 8(a)) and Amazon AWS [1] (Figure 8(b))
in order to deploy a new Tomcat server when scaling up.
Note that for each scaling case, a scaling plan and its scaling
tasks are generated dynamically. The information needed to
generate documents describing the scaling tasks (e.g., a
server’s user name, password and VM configuration) is
obtained from the “Node types” section of Elastic-TOSCA.

Figure 6. An example “SLA&Constraints” section in Elastic-TOSCA.

Figure 7. An example scaling up plan in Elastic-TOSCA.

IV. SUPPORTING SCALING APPROACHES BASED ON
ANALYTICAL MODELS USING ELASTIC-TOSCA

 In this section, we first explain the basic steps of scaling
approaches using analytical models and how these steps are
supported by Elastic-TOSCA. We then employ a queueing
system as a typical example of analytical model to
demonstrate these steps.

A. Analytical Model-based Scaling Approaches Using
Elastic-TOSCA

Typically, an analytical model-based approach for scaling
an application consists of four steps, which are preformed
using information maintained in different sections of
Elastic-TOSCA server templates as illustrate in Figure 9.

Figure 8. Two example scaling tasks for deploying a new server in two

cloud platforms: (a) IC-Cloud and (b) Amazon AWS.

96Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

Figure 9. Elastic-TOSCA server templates: for supporting scaling

approaches using analytical model.

At step 1, the approach continuously checks the
“Monitoring Information” and “SLA&Constraints” sections
to check where a scaling up/down is needed. The approach
proceeds to step 2 if scaling up/down is triggered. At step 2,
an analytical model is constructed according to the
application topology, configurations of servers and their
linking relationships. At step 3, the approach employs
analytical modelling techniques to transform the high level
QoS requirements into the number of servers to be
deployed, and generates a scaling plan for meeting QoS
requirements. Finally, step 4 executes the scaling plan.

B. Basic Introduction to Queueing Systems
Typically, a queueing system can be described using

!/!/!, where ! represents the arrival process, ! represents
the distribution of service time and ! is the number of servers
[5]. In the example queueing system of Figure 10(a), !/!/! =
!/!/! (G for general). This !/!/! queueing system includes
! parallel and independent servers and one request waiting
queue, where both requests’ interarrival time ! (the
reciprocal of requests’ arrival rate) and servers’ service time
follow arbitrary distributions. The !/!/! queueing system of
Figure 10(a) is used to model a tier of Tomcat servers.
Furthermore, the whole !-tier application is modelled as a
network of ! !/!/! queueing systems and each queueing
system represents a tier in the application. Take Figure
10(b)’s 4-tier e-commerce service as an example, which is
modelled by a queueing network of four ! /! /! queueing
systems. The queueing system of the first tier (HAProxy
servers) only receives requests from end users, and the
departure requests of one tier are the incoming requests of its
following tier.

C. Scaling Approach Using Queueing Systems
Queueing theory [5] has been successfully applied in

many cloud scaling algorithms [5-11] to perform capacity
planning for dynamic scaling. Typically, the overall scaling
approach can be described in Figure 11’s pseudocode. This
scaling approach described in this pseudocode corresponds to
Figure 9’s four generic steps:

Figure 10. Queueing model and neiworks. We can see (a) a G/G/n

queueing system to describe a tier of Tomcat servers, and (b) a queueing
network to describe a e-commerce service.

At step 1 (line 3 and 4), the approach decides whether to
trigger a scaling up/down according to the latest monitoring
information of the running application maintained in the
“Monitoring Information” section of Elastic-TOSCA server
templates and QoS requirements and constraints to be
satisfied in the “SLA&Constraints” Section. For example, if
the monitored response time (e.g., 3 seconds) exceeds the
maximal required response time (e.g., 2 second), a scaling
up is triggered. In contrast, if the detected resource
utilisation (e.g., 20%) is below the minimal resource
utilisation (e.g., 30%), a scaling down is conducted to
remove some idle servers.

At step 2 (line 6 and 10) and step 3 (line 7 and 11), the
approach applies a queueing network to model the
application and generate a scaling up or down plan (line 7
and 11). This plan is then added to the “Plan” section of
Elastic-TOSCA server templates. Section IV.D explains
these two steps in detail.

Finally, at step 4 (line 8 and 12), the approach performs
the scaling according to the generated plan.

Figure 11. Pseudocode of a dynamic scaling approach using queueing

systems.

97Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

Figure 12. The capacity planning using server templates in Elastic-TOSCA

and queueing systems.

D. Supporting the Scaling Approach using Elastic-TOSCA
server templates
The key component of a scaling approach using queueing

systems as an analytical modelling technique is the capacity
planning. This planning involves two steps: constructing a
queueing network of a multi-tier application (step 2 in Figure
9) and solving the analytical model to generate a scaling plan
(step 3 in Figure 9).

Figure 12 illustrates how the information maintained in a
server template of Elastic-TOSCA maps to the corresponding
part of a queueing network (dashed lines). The information
maintained in the “Topology template” and “Relationship
type” sections describe the topology of the queueing network
and the linking relationship of different queueing systems.
For each queueing system, ! / ! / ! , the information in
“Monitoring Information” section specifies the arrival
process ! , the information in the “Node types” section
decides distribution of service time ! and server number !.

After a queueing network representing the multi-tier
application is constructed, the approach applies queueing
theory to perform capacity planning using information in the
“Monitoring Information” and “SLA&Constraints” sections.
This planning estimates the number of servers to be deployed
at each tier of the application and generates a scaling plan.
The plan is then added to the “Plans” section to guide the
scaling of the application (solid lines).

Take the e-commerce service in Figure 1 for example,
using information in the “Topology templates” and
“Relationship type” sections, the approach first constructs a
queueing network of four queueing systems to describe the
four tiers of servers in the service, and decides the linking
sequence of these four queueing systems. The “Monitoring
Information” and “Node type” sections then decide the three
components of each queueing system. For example, the
queueing system ! / ! / ! of Tomcat servers has arrival
requests ! with arrival rate 150 requests/second, each
Tomcat server has service rate 70 requests/second, and the
number of Tomcat servers is 1. Using the constructed
queueing network, capacity planning is conducted according
to the detected response time (3.5 seconds) in the

“Monitoring Information” section and the required response
time (2.0 seconds) in the “SLA&Constraints” section. The
detected response time is larger than the required one, so a
scaling up plan is generated: the tier of Tomcat should be
added two servers and the tier of the Apache should be added
one server.

V. IMPLEMENTATION AND EVALUATION
In this section, we first introduce iSSe and describe how

it has been extended to interact with Elastic-TOSCA and the
analytical models. We then describe the experiments
conducted to illustrate both the effectiveness of the queueing
system based scaling approach and the interaction of iSSe
with Elastic-TOSCA.

A. Extension of iSSe to Support Elastic-TOSCA
We extended iSSe (see [10, 15] for detail), an intelligent

scaling engine, to support the Elastic-TOSCA framework.
As shown in Figure 13, iSSe acts as middleware between
cloud IaaS providers and application owners. It provides a
Application owner portal to assist application owners to
configure their services, allow them to select servers from
the iSSe Repository of Servers, define VM configurations,
and design their topology. This portal also allows them to
specify the required QoS and constraints. To enable
interaction with Elastic-TOSCA, the information is stored in
the “Topology template”, “Node types”, “Relationship types”
sections in Elastic-TOSCA server templates.

The iSSe Monitoring service monitors each running
application using two types of monitors. The first is the entry
monitor, which examines the incoming requests over a finite
interval (e.g., 60 seconds) and records information such as
the requests’ arrival rate and average response time. This
information is used to decide whether a scaling up/down is
needed. The second is the server monitor installed on each
server to monitor its resource usage (e.g., CPU utilisation),
and to analyse tier-specific values, such as response time.
The collected information is then used to update the
“Monitoring information” section in Elastic-TOSCA server
templates.

Figure 13. iSSe for supporting dynamic scaling using Elastic-TOSCA.

98Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

Note that the iSSe monitors are generic and independent
of the IaaS providers. Existing providers usually provide
users with standalone VM images. iSSe packages the VM
images with pre-developed monitors as server templates that
can be deployed in any cloud platform. The iSSe monitors
hence only depend on the underlying operating systems, e.g.,
Linux Ubuntu and Centos, supported by iSSe. When a
scaling is triggered, the iSSe Capacity planning service
applies a scaling approach to generate a scaling up/down
plan. When using Elastic-TOSCA, the information is
maintained in the server templates. More concretely, the
approach estimates the type and number of servers to be
scaled, and then updates the “Plans” section by adding the
generated scaling plan. Using the generated scaling plan, the
iSSe Deployment service implements the required actions by
calling interfaces of the underlying cloud platforms.

B. Evaluation of the Scaling Approach
Our evaluation is designed to illustrate the feasibility and

effectiveness of Elastic-TOSCA in enabling dynamic scaling
using a queueing system. The scaling approach itself is
described in detail in [10], where it had been applied in an
iSSe version not based on Elastic-TOSCA.

Our experiments are conducted in a data centre running
IC-Cloud platform [16]. The configuration used has four
physical machines (PMs), each with eight CPUs and 32 GB
memory. The version of each processor is Quad-Core AMD
Opteron(tm) Processor 2380, with 2.5GHz clock frequency
and 512 KB cache size. All four PMs share a 4.1 Tb
centralised storage and are connected through a switched
gigabit Ethernet LAN with speed 1000mbs.

The e-commerce service in Figure 1 was implemented
and its scaling up and down was tested. For convenience,
each server of the service is installed on a single dedicated
VM running Linux Centos 5.4. In deployment, different
servers have different VM configuration details, as listed in
Table I. Two versions of the MySQL database (Master and
Slave) are implemented to support a data replication model.
A MySQL Master is initially deployed and, when the tier of
MySQL is scaled up, extra MySQL Slaves are added and
configured with replication from the MySQL Master. Given
a fixed VM configuration, the deployment of the Tomcat and
Apache servers can be completed in a constant time. In the
evaluation, the database has a fixed amount of data to be
replicated, i.e., the data replication time of MySQL slave is
fixed. Thus, the deployment time of MySQL databases is
also a constant time.

TABLE I. FIVE TYPES OF SERVERS’ VM CONFIGURATIONS

Service name CPU RAM (GB) Software version

HAProxy 2 2 haproxy-1.4.8

Apache 2 2 Apache 2.2.20

Tomcat 1 1 Tomcat 7.0.22

MySQL Master 4 4 MySQL 5.5

MySQL Slave 1 1 MySQL 5.5

We used a client emulator to simulate a number of
concurrent end users. Each end user continuously generates a
sequence of requests to stress the server-side application. We
divide the test into nine periods, where each period lasts 600
seconds. The first five periods of simulations stepwise
increase in the number of end users so as to initiate scaling
up. The remaining four periods gradually decrease this
number to trigger scaling down. More concretely, the number
of simulated concurrent users in the nine periods are: 200,
400, 600, 900, 1200, 900, 600, 400, and 200, respectively.
This variance of end user numbers denotes the changing
workload volume. The first testing period starts at time = 0
second. During the whole testing period, the application is
monitored once every 60 seconds and Figure 14(a) displays
the observed arrival rates of incoming requests. These
observed arrival rates can be used to derive the mean and
variance values of the request’s interarrival time used in the
queueing system.

Figure 14(b) lists the numbers of servers at each tier
during scaling. Note that the numbers of HAProxy servers
and MySQL Master database do not change. For the first
period (the number of concurrent users is 200), the e-
commerce service is initially deployed with one HAProxy,
Apache, MySQL Master server and two Tomcat servers.
When the concurrent users increase to 400 at time = 600
seconds and saturate the Apache and Tomcat tiers, dynamic
scaling is triggered and one Apache and two Tomcats servers
are added. When the number of concurrent users is increased
at time=1200, 1800 and 2400 seconds, the cycle repeats. In
contrast, when this number decreases at time =3000, 3600,
4200 and 4800 seconds, the service is scaled down by
removing idle servers.

Note that, once scaling up or down is triggered, the
construction of the application’s queueing network model
and executing the capacity planning are completed within
few seconds to generate a scaling plan. Using the plan,
servers are added or removed in parallel using the iSSe
Deployment service. In the IC-Cloud platform [16], the
deployment actions are completed within 1 or 2 minutes.

In the evaluation, we checked the monitoring information
(request arrival rate and response time) every 60 seconds. We
can observe in Figure 14 that there are 10 observation values
for response time in each test period of 600 seconds.
Typically, in each scaling up the first and second observed
response time values violate the required constraint because
scaling up is not yet completed. In other words, response
recovery can be detected only after 1 to 2 minutes.

Figure 14(c) demonstrates the fluctuation of the end-to-
end response time observed in the nine testing periods. In the
first five periods, the response time is violated whenever the
number of concurrent users is increased. For instance, when
the number of users is increased to 400 at time = 600 seconds
it saturates the Apache and Tomcat servers. Scaling up is
then triggered and two Tomcat and one Apache servers are
added. In contrast, in the last four periods, the scaling
approach scales down the service while meeting the required
response time.

99Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

Figure 14. Evaluation of the scaling approach: (a) requests’ arrival rate, (b)

number of servers in each tier, (c) the end-to-end response time.

Result. The Elastic-TOSCA framework is able to support
the scaling approach based on queueing systems for
dynamically scaling up and down cloud applications to meet
their QoS requirements.

VI. CONCLUSION AND FUTURE WORK
In this paper, we presented extensions to the TOSCA

framework to enable platform-independent specification of
dynamic scaling for cloud applications. The extensions
covered three sections, corresponding to three types of
information used in guiding dynamic scaling. The Elastic-
TOSCA framework is generic and supports a wide class of
analytical mode-based scaling algorithms. We illustrated the
effectiveness of Elastic-TOSCA framework by using a
scaling approach based on a queueing system model. We also
described how the framework can be supported easily in a
scaling engine and conducted experiments to demonstrate the
practicality of the framework using an example e-commerce
service.

Our direct future work is to evaluate supporting Elastic-
TOSCA on different cloud platforms and also to evaluate
using other scaling techniques and approaches such as
lightweight scaling at the VM level itself (CPUs, memory,
I/O, etc) [17]. We will also test our approach using more
complex scenarios such as considering the amount of data to
be replicated in the MySQL slave databases in the e-
commerce application, as well as by using other multi-tier
applications.

REFERENCES
[1] Amazon Web Services (Amazon WS):

http://aws.amazon.com/ec2/ [retrieved: 03, 2013]
[2] GoGrid: http://www.gogrid.com/ [retrieved: 03, 2013].

[3] Binz, T., Breiter, G., Leyman, F. and Spatzier, T., "Portable
Cloud Services Using TOSCA," Internet Computing, IEEE,
vol. 16, pp. 80-85, 2012.

[4] Topology and Orchestration Specification for Cloud
Applications (TOSCA), OASIS specification:
https://www.oasis-
open.org/committees/tc_home.php?wg_abbrev=tosca
[retrieved: 03, 2013].

[5] R. B. Cooper, Introduction to queueing theory, second edition
ed. New York: North-Holland, 1981.

[6] K. Xiong and H. Perros, "Service performance and analysis in
Cloud computing," in 2009 Congress on Services - I, Los
Angeles, CA 2009, pp. 693-700.

[7] D. A. Bacigalupo, et al., "Managing dynamic enterprise and
urgent workloads on clouds using layered queuing and
historical performance models," Simulation Modelling
Practice and Theory, vol. 19, pp. 1479-1495, 2011.

[8] Bi, jin, Zhu, Zhiliang, Tian, Ruixiong and Wang, Qingbo,
"Dynamic Provisioning Modeling for Virtualized Multi-tier
Applications in Cloud Data Center," in 2010 IEEE 3rd
International Conference on Cloud Computing (CLOUD'10),
Miami, Florida, 2010, pp. 370-377.

[9] Hu, Y., Wong, J., Iszlai, G. and Litoiu, M., "Resource
provisioning for cloud computing," in Proceedings of the
2009 Conference of the Center for Advanced Studies on
Collaborative Research (CASCON '09), 2009, pp. 101-111.

[10] R. Han, M. Ghanem., L. Guo, Y. Guo, and M. Osmond,
"Enabling cost-aware and adaptive elasticity of multi-tier
cloud applications," Future Generation Computer Systems,
2012, pp. 1-17, doi:10.1016/j.future.2012.05.018.

[11] R. Pal and P. Hui, "On the Economics of Cloud Markets," ,
Technical Report, University of Southern Californi, Los
Angeles, 2011, pp. 1-7.

[12] Ghosh, R., Trivedi, K.S., Naik, V.K. and Kim, D.S., "End-to-
end performability analysis for infrastructure-as-a-service
cloud: An interacting stochastic models approach," in 2010
IEEE 16th Pacific Rim International Symposium on
Dependable Computing, Tokyo, Japan, 2010, pp. 125-132.

[13] Ghosh, R., Longo, F., Naik, V.K. and Trivedi, K.S.,
"Quantifying resiliency of IaaS cloud," in 2010 29th IEEE
Symposium on Reliable Distributed Systems, New Delhi,
Punjab India, 2010, pp. 343-347.

[14] J. Z. Li, "Fast Optimization for Scalable Application
Deployments in Large Service Centers," Doctor of
Philosophy, Department of Systems and Computer
Engineerin, Carleton University, Ottawa, Ontario, 2011.

[15] R. Han, L. Guo, Y. Guo, and S. He, "A Deployment Platform
for Dynamically Scaling Applications in The Cloud," in the
3rd IEEE International Conference on Cloud Computing
Technology and Science (CloudCom'11), Athens, Greece,
2011, pp. 506-510.

[16] L. Guo, Y. Guo, X. Tian, "IC Cloud: A Design Space for
Composable Cloud Computing," in 2010 IEEE 3rd
International Conference on Cloud Computing (CLOUD'10),
Miami, Florida, 2010, pp. 394-401.

[17] R. Han, L. Guo, M. Ghanem., and Y. Guo, “Lightweight
Resource Scaling for Cloud Applications,”, in 2012 12th
IEEE/ACM International Symposium on Cluster, Cloud and
Grid Computing (CCGrid 2012), Ottawa, Canada, 2012, pp.
644-651.

100Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

