
Collaborative Autonomic Resource Management System for Mobile Cloud
Computing

Ahmed Khalifa¹,², Mohamed Eltoweissy¹
¹ The Bradley Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, Virginia, USA

² Switching Department, National Telecommunication Institute, Cairo, Egypt
e-mail: {akhalifa, toweissy}@vt.edu

Abstract— Mobile cloud computing promises more effective
and efficient utilization of the ever-increasing pool of
computing resources available on modern mobile devices. To
support mobile cloud computing, we propose a Collaborative
Autonomic Resource Management System (CARMS), which
automatically manages task scheduling and resource allocation
to realize efficient cloud formation and computing in a
dynamic mobile environment. CARMS utilizes our previously
proposed Global Resource Positioning System (GRPS) to track
current and future availability of mobile resources. In this
paper, we present CARMS architecture and its associated
Adaptive List-based Scheduling and Allocation AlgorithM
(ALSALAM) for adaptive task scheduling and resource
allocation. ALSALAM uses the continually updated data from
the loosely federated GRPS to automatically select appropriate
mobile nodes to participate informing clouds, and to adjust
both task scheduling and resource allocation according to the
changing conditions due to the dynamicity of resources and
tasks in an existing cloud. Our simulation results show that
CARMS offers effective and efficient support for mobile cloud
computing that has not yet been adequately provided by prior
research.

Keywords- Mobile cloud computing; Resource management;
Dynamic resource maps;Autonomic computing; Collaborative
computing.

I. INTRODUCTION

Cloud computing enables the delivery of computing
resources as a utility. This utility concept is expected to
drastically bring down computing costs. Moreover, the
computation resources of mobile devises are increasing, for
example quad-core platforms and significantly enhanced
storage and memory capabilities. Recently, principles of
cloud computing have been extended to the mobile
computing domain, leading to the emergence of Mobile
Cloud Computing (MCC). A MCC system (MCCS) has been
defined from different views in the literature [1]. One of
these perspectives defines a MCCS as a way of outsourcing
the computing power and storage from mobile devices into
an infrastructure cloud of fixed supercomputers. Here, a
mobile device is simply a terminal which accesses services
offered in the cloud. Another view defines a MCCS as an
infrastructure-less cloud that is formed locally by a group of
mobile devices, sharing their computing resources to run
applications. This paper adopts and extends the latter
definition as follows: A MCCS is a shared pool of
configurable computing resources that are harvested from
available or potentially available local or remote nodes that

are either mobile or fixed over a network to provide on-
demand computational services to users.

Mobile devices in MCCS are expected to have
reasonably powerful capabilities, for example exploiting the
virtually unlimited power supply in our vehicles making
them good candidates for housing powerful on-board
computers augmented with huge storage devices that may act
as networked computing centers on wheels [15].

MCC has a dynamic nature as nodes, usually having
heterogeneous capabilities, may join or leave the formed
cloud varying its computing capabilities. Also, the number of
reachable nodes may vary according to the mobility pattern
of these nodes. Resource management systems for MCCS
should support this dynamicity, hide the heterogeneity of
resources, provide users with unified access, evaluate and
predict the availability and performance of resources, and
guarantee the quality of service to meet users’ requests.

Research in resource management systems and
algorithms for mobile cloud computing is still in its infancy.
In [4], authors proposed a preliminary design for a
framework to exploit resources of a collection of nearby
mobile devices as a virtual ad hoc cloud computing provider.
In [5], a mobile cloud computing framework was presented.
Experiments for job sharing were conducted over an ad-hoc
network linking a user group of mobile devices. The Hyrax
platform [6] introduced the concept of using mobile devices
as resource providers. The platform used a central server to
coordinate data and jobs on connected mobile devices. Task
scheduling and resource allocation algorithms were reported
in [7-11]. These algorithms used cost, time, reliability and
energy as criteria for selection.

Most of the existing resource management systems [4-6]
for MCC were designed to select the available mobile
resources in the same area or those follow the same
movement pattern to overcome the instability of the mobile
cloud environment. However, they did not consider more
general scenarios of users’ mobility where mobile resources
should be automatically and dynamically discovered,
scheduled, allocated in a distributed manner largely
transparent to the users. Additionally, most current task
scheduling and resource allocation algorithms [7-11] did not
consider the prediction of resource availability or the
connectivity among mobile nodes in the future, or the
channel contention, which affects the performance of
submitted applications. Consequently, there is a need for a
solution that effectively and autonomically manages the high
resource variations in a dynamic cloud environment. It
should include autonomic components for resource

115Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

discovery, scheduling, allocation and monitoring to provide
ubiquitously available resources to cloud users.

In an apparent departure from previous work, our
Collaborative Autonomic Resource Management System
(CARMS) provides a more general distributed solution to
cloud formation and management based on dynamic
calendars of available or potentially available resources. Our
main contributions in this paper are:

(1) The CARMS architecture which provides system-
managed cloud services such as configuration, adaptation
and resilience through collaborative autonomic management
of dynamic cloud resources, services and membership; and

(2) Adaptive task scheduling and resource allocation
algorithm to map applications' requirements to the currently
or potentially available mobile resources. This would support
formed cloud stability in a dynamic resource environment.

The rest of the paper is organized as follows. Section II
presents the architecture of CARMS. Section III presents
ALSALAM; our proposed adaptive task scheduling and
resource allocation algorithm. Section IV discusses the
performance evaluation. Finally Section V concludes the
paper and outlines future work.

II. COLLABORATIVE AUTONOMIC RESOURCE

MANAGEMENT SYSTEM (CARMS)

In [12], we proposed the PlanetCloud concept to enable
MCC to tap into the otherwise unreachable resources, which
may be located on any opt-in reachable node, rather than
being exclusively located on a static cloud service providers’
side. A key PlanetCloud component was the Global
Resource Positioning System (GRPS) that we presented in
detail in [13]. GRPS adopts a spatiotemporal calendaring
mechanism with real-time synchronization to support
dynamic real-time recording and tracking of idle mobile or
fixed resources. The calendar consists of records including
data about time, location, and computing capabilities of
GRPS participants. GRPS also forecasts the availability of
resources, anytime and anywhere. GRPS makes use of the
analysis of calendaring data coupled with data from other
sources such as social networking to improve the prediction
accuracy of resource availability. In addition, the GRPS
provides hierarchical zone architecture with a
synchronization protocol between different levels of zones to
enable scalable resource-infinite computing.

In this paper, we describe and evaluate our CARMS
integral to PlanetCloud. In PlanetCloud, a cloud application
comprises a number of tasks. At the basic level, each task
consists of a sequence of instructions that must be executed
on the same node. Tasks of a submitted application are
represented by nodes on a directed acyclic Graph (DAG)
which is addressed in the next section. The set of
communication edges among these nodes show the
dependencies among the tasks. The edge , joins nodes

and , where is called the immediate predecessor of
, and is called the immediate successor of . A task

without any immediate predecessor is called an entry task,
and a task without any immediate successors is called an exit

task. Only after all immediate predecessors of a task finish,
that task can start its execution.

CARMS manages clouds of mobile or hybrid resources
(resources of mobile and fixed nodes). A CARMS-managed
cloud consists of resources on virtual nodes that meet the
cloud applications’ requirements. Each virtual node is
emulated by a subset of the real physical mobile nodes. The
subset locally stores the state of the emulated virtual node.
The real nodes perform the tasks assigned to their emulated
virtual node. If a mobile node fails or leaves the cloud, it
ceases to emulate the virtual node; a mobile node that joins
the cloud attempts to participate in the emulation. CARMS
attempts to provide each subset with a sufficient number of
real mobile nodes, such that in case of failure, a redundant
node can be ready to substitute the failed node.

A Cloud Agent, as a requester to form a cloud, manages
the formed cloud by keeping track of all the resources
joining its cloud using the updates received from the GRPS.

We design our CARMS architecture using the key
features, concepts and principles of autonomic computing
systems. As shown in Fig. 1, components of the CARMS
and GRPS architectures interact with each other to
automatically manage resource allocation and task
scheduling to affect cloud computing in a dynamic mobile
environment.

CARMS interacts with the information-base which
maintains the necessary information about a requested cloud.
The information-base includes user information, e.g.,
personal information and subscribed services, etc. Also, it
contains information about the formed cloud, e.g., SLAs,
types of resources needed, the amount of each resource type
needed, and billing plan for the service.

CARMS comprises two primary types of nodes: Cloud
Agent and participant nodes. CARMS performs all required
management functions using the components detailed below.

1) Controller: In order to obtain a self-controlled
operation, a controller is needed to automatically take
appropriate actions. These actions are taken according to
results of the evaluation received from the Performance
Analyzer, described below, due to variations in the
performance and workload in a cloud environment. The
Controller manages interactions to form, maintain and
disassemble a cloud. Besides, it makes decisions according
to the applied policies. The Controller provides both policy
and participant control functions. The policy control
function prevents conflicts and inconsistency when policies
are updated due to change inthe demands of a cloud. In
addition, it distributes policies to other CARMS
components. On the other hand, the participant control
function manages the interaction between a cloud requester
and resource providers, the cloud participants, to perform a
Service Level Agreement (SLA) negotiation. Once the
negotiation is successful, the participant control function
updates the billing information and SLA of a participant in
the information-base. Then, the Controller sends a cloud
activation request to a Cloud Manager component.

116Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

Figure 1. CARMS Architecture.

Participants

Cloud Agent

2) Cloud Manager: decomposes the requested
application, in a Cloud Agent, upon receiving a cloud
activation request, to a set of tasks. This component can
create some policies on the fly and assign a set of virtual
resources to these tasks according to the received SLA
information from the controller component. Then, the
information of thevirtual resources is sent to the resource
manager component for the appropriate real mobile
resources allocation or de-allocation.

3) Resource Manager: Real mobile resources need to be
allocated to the requested application. On the other hand,
tasks of a requested application need to be scheduled. The
Resource Manager component handles the resource
allocation and task schedulingprocesseson real mobile
nodes.The Resource Manager consists of two main units:

a) Resource Allocator: allocates local real resources
for a task. Also, the resource allocator obtains the required
information about the available real resources
from(potential) participants by interacting with a GRCS of
GRPS system. The Resource Allocator interacts with
theregistry of Cloud Agentto store and retrieve the
periodically updated data related to all participants within a
cloud.

b) Task Scheduler: distributes tasks to the appropriate
real mobile nodes and keeps a copy of these tasks in an
image registry to retrieve them as needed such as in case of

failure.
4) Monitoring Manager: consists of the following two

units:
a) Performance Monitor: monitors the performance

measured by monitoring agents at resource providers. Then,
it provides the results of these measurements to the
Performance Analyzer component.

b) Workload Monitor: The workload information of
the incoming request is periodically collected by the
Workload Monitor component.

5) Performance Analyzer:continually analyzes the
measurements received from the Monitoring Manager to
detect the status of tasks and operations, and evaluate both
the performance and SLA. The results are then sent to both
the Controller and the Account Manager.

6) Account Manager: In case of violation of SLA,
adjustments are needed to the bill of a particular participant.
These adjustments are performed by the Account Manager
component depending on the billing policies negotiated by
the requester of cloud formation.

III. ADAPTIVE TASK SCHEDULING AND RESOURCE

ALLOCATION ALGORITHM

A. Application Model

For simplicity, we start with a basic application model.
The load of submitted application is defined by the following

117Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

parameters: the number of submitted applications, the
number of tasks per application, and the settings of each task.
For example, the input and the output file size of a task
before and after execution in bytes, the memory and the
number of cores required to execute this task, and the
execution time of a task.

Based on the criteria for selection, we mainly define two
matrices: Criteria costs matrix, C, of size v ×p, i.e., c , gives
the estimated time, cost, or energy consumption to execute
task on participant node ; and a R matrix, of size p × p,
which includes criteria costs per transferred byte between
any two participant nodes. For Example, time or cost to
transfer n bytes of data from task , scheduled on , to task

, scheduled on .
As an example of time-based selection criteria, a set of

unlisted parent-trees is defined from the graph where a
critical-node (CN) represents the root of each parent-tree. A
CN refers to the node that has zero difference between its
earliest start time (EST) and latest start time (LST).The EST
of a task is shown in (1). It refers to the earliest time that
all predecessor tasks can be completed. ET is the average
execution time of a task.EST (v) = max∈ (){ EST (v) + ET(v)} (1)

Where () is the average execution time of a task
, and pred() is the set of immediate predecessors of .

The LST of a task is shown in (2).LST (v) = max∈ (){ LST (v)} − ET(v) (2)
Where succ(v) is the set of immediate successors of .

B. Resource Model

Our cloud system represents a heterogeneous
environment since the mobile nodes have different
characteristics and capabilities, The total computing
capability of the real mobile nodes, hosts, within a cloud is a
function of the number of hosts within a cloud and the
configuration of their resources, i.e., memory, storage,
bandwidth, number of CPUs/Cores, and the number of
instructions a core can process per second.

C. Proposed Algorithm

We propose a generic GRPS-driven algorithm for the
task scheduling and resource allocation: Adaptive List-based
Scheduling and Allocation AlgorithM (ALSALAM) for
mobile cloud computing. ALSALAM supports the stability
of a formed cloud in a dynamic resource environment.
Where, a certain resource provider is selected to run a task
based on resource discovery and forecasting information
provided by the GRPS. The algorithm consists of two phases
as follows.

1) Initial static scheduling and assignment phase
After, the information of virtual resources is sent to the

Resource Manager for the appropriate real mobile nodes’
resource allocation, the Resource Manager uses its Resource
Allocator unit, which interacts with the GRPS to find the
available resources of every possible node a Cloud Agent
could reach. The information of location, time and the
computing capabilities of these resources, which match the

application requirements, are obtained from GRPS. This
information affects matrices of criteria for node selection.
Based on the next waypoint, a destination obtained from
GRPS, of each mobile node and the updated location of the
Cloud Agent, we can estimate which mobile nodes will pass
through the transmission range of the Cloud Agent.

A priority is assigned to a node depending on the criteria
of selection. For example, in a time-based approach, we may
select a host such that the highest priority is given to the
nodes which are located inside the transmission range of a
Cloud Agent, followed by the nodes which are located
outside this transmission range and will cross it, and finally
to the rest of the nodes. Within each group, nodes are listed
in descending order according to the available computing
capabilities, e.g. their number of cores or central processing
units (CPUs). Nodes, with the same computing capabilities,
are listed in descending order according to the time they will
spend in the transmission range of a Cloud Agent. This could
minimize the overall execution and communication time.As
a result, a host list, H, is formed based on the priorities as
shown in Algorithm 1 presented in Appendix.

The Cloud Agent sends the cloud formation requests,
through its Communicator unit, to all resource providers to in
the list of hosts H. According to the (earliest) responses
received about resource available time from all responders
and the criteria of selection, the responders’ IDs are pushed
by the Resource Manager in increasing order of parameters
which reduce their costs. For example, CPUs in use in time-
based approach, i.e. the responding node, , with
maximum free CPUs is on the top of responders stack RS,
top(RS). This could reduce the queuing delay and therefore
enhance the overall execution time.

The Task Scheduler unit of the resource manager assigns
and distributes the task at the top of the list of tasks L, top(L)
to the host at the top of responders stack RS, top(RS).

2) Adaptive scheduling and reallocation phase
The actual measures, e.g., time, cost or energy, required

to finish a task may differ from the estimated due to both the
mobility of hosts and the resource contention. For example,
the mobility of hosts affects the actual finish time of a task
due to the delay a host takes to submit task results to other
hosts in a MCCS.

The Estimated Finish Time of a task on a node ,(,) , is shown in (3), where ERAT is the earliest
resource available time.EFT (v , p) = ERAT (v , p) + ET(v , p) (3)

We propose an adaptive task scheduling and resource
allocation phase to adjust the resource allocation and
reschedule the tasks dynamically based on both the updated
measurements, provided by the Monitoring Manager, as well
as the evaluation results performed by the Performance
Analyzer. The Monitoring Manager aggregates the
information about the current executed tasks periodically, as
a pull mode. Due to the dynamic mobile environment, hosts
of a cloud update the Monitoring Manager with any changes
in the status of their tasks, as a push mode. Also, hosts
periodically update the cloud registry of a Cloud Agent with
any changes in the status of resources. Consequently, the

118Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

Figure 2. Average Execution Time of Application Vs Number of nodes at
different number of submitted tasks/application and number of cores/host.

TABLE I. PARAMETERS

Parameters Values Parameters Values

Density of nodes
4-40

(Nodes/Km²)
Communication

range
0.1-1 (km)

Number of
Hosts/Cloud

4-24

Application
Arrival Rate

(Poisson
distribution)

7
(Applications/sec)

Number of hosts
/Application

2-20
Expected

execution time
for a task

800
(Sec)

Number of
tasks/Application

4 – 140

Number of
CPUs/Cores

per host
(Uniform

distribution)

1-8

Number of
applications/Cloud 1 – 14

Average Node
Speed

(Uniform
distribution)

1.389,10,20
(m/sec)

Performance Analyzer could re-calculate the estimated
measures of the submitted tasks. As a result, tasks and
resources could be rescheduled and reallocated according to
the latest evaluation results and measurements.

IV. EVALUATION

To simulate the MCCS environment, we have extended
the CloudSim simulator [14] to support the mobility of nodes
by incorporating the Random Waypoint (RWP) model. A
mobile node moves along a line from one waypoint to the
next . These waypoints are uniformly distributed over a
unit square area. At the start of each leg, a random velocity is
drawn from a uniform velocity distribution.

In our evaluation model, an application is a set of tasks
with one primary task. Each task, or cloudlet, runs in a single
virtual machine (VM) which is deployed on a mobile node.
VMs on mobile nodes could only communicate with the VM
of the primary task node and only when a direct ad-hoc
connection is established between them. For simplicity, a
primary node collects the execution results from the other
tasks which are executed on other mobile nodes in a cloud.
There is only one cloud in this simulation. For scheduling
any application on a VM, first-come, first-served (FCFS) is
followed. We only considered the initial static scheduling
and assignment phases through this part of the evaluation.

For calculating the collision delay, we consider the worst
case scenario, a saturation condition, where each node has a
packet to transmit in the transmission range.

A. Assumptions

 Communication between nodes is possible within a
limited maximum communication range, x (km).
Within this range, the communication is assumed to
be error free and instantaneous.

 The distribution of speed is uniform.
 Every mobile node can always function well all the

time with high reliability and does not fail.

B. Metrics and Parameters

Preliminarily, the evaluated metric is the average
application execution time, which is the time elapsed from
the application submission to the application completion.

We set parameters in the simulation according to the
maximum and minimum values shown in Table I. The
number of hosts represents the mobile nodes that provide
their computing resources and participate in the cloud.

C. Experiments

We started our evaluation by studying the effect of
collision delay due to channel contention on the performance
of the submitted application. In this evaluation, all nodes
have the same computing capabilities, i.e. homogeneous.
Fig. 2 shows the average execution time of an application at
a different number of nodes, ranging from 4 to 24 nodes, in a
unit square area. The average speed of a mobile node equals
10 (m/sec). We set the transmission range to be 0.8 (km),
which has been obtained from an evaluation not presented
here due to space limitation. At this value, we can neglect the
effect of the connectivity, i.e. a node is almost always

connected with others. Fig. 2 shows that the worst
performance is obtained when a host has a minimum number
of cores, i.e. 1 core, and at a maximum number of tasks per
application, i.e. 30. This is because at a small number of
nodes, e.g. 4, most of the submitted tasks will be queued in a
waiting list since just one core is available per task. The
more the available nodes participate in the formed cloud, the
more available cores to execute these tasks. Consequently,
the average execution time of an application decreases with
the increase of the number of mobile nodes. The collision
delay should increase with node density, while results show
that the collision delay is negligible if we compare it with the
queuing delay. The results at 1 and 8 cores per host are very
close to each other at a small number of tasks per
application, at 4 tasks/application, since there is no effect of
the queuing delay. Noticeable differences between these
results and the others appear at a higher number of submitted
tasks/application equals 15, at a number of cores/host equals
8, due to the significant effect of the mobility of hosts. The
reason is that these tasks are assigned to more nodes in the
formed cloud, and this leads to increase in the
communication time until the primary node collects results
from the other nodes. These results show that the collision
delay is also negligible if we compare it with the
communication delay. Conversely, the average execution
time of an application decreases when the number of nodes

119Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

Figure 4. Average Execution Time of Applications Vs number of submitted
tasks at different number of hosts and Comm. Ranges.

Figure 5. Average Execution Time of Applications Vs number of hosts per
application at different number of applications.

Figure 3. Average Execution Time of Applications Vs number of
submitted tasks at different number of hosts.

increases from 4 to 8 at a number of tasks per application
equals 30, and at a number of cores/host equals 8. This is
because the more the number of hosts, the more cores to
execute these tasks. This reduces the queuing delay.

In the next experiments, we compare results of two cases:
Using ALSALAM algorithm, which is based on the
information obtained from GRPS, e.g. location and available
processors, in resource scheduling and assignment and the
random-based algorithm, which does not use this
information, where a random mobile nodes are selected to
execute the submitted application.

Let all 40 mobile nodes have a random number of cores,
heterogeneous resources, ranging from 1 to 8 cores. Fig. 3
shows that the average execution time of an application
when we consider one application is submitted to be
executed. Each node has a transmission range equals 0.4 km,
and its average speed equals 1.389 (m/sec). As expected, this
evaluation provides significant differences between results of
the two cases, with/without using the ALSALAM. The
results of this figure show that executing the application on a
smaller number of nodes, e.g. 8 hosts, has better performance
in terms of average execution time of an application than in
case of results at a larger number of hosts, i.e. 24 hosts. The
higher number of submitted tasks per application leads to
make some tasks waiting the previous ones in a waiting list
to be executed. The total delay becomes higher if these tasks
are distributed on a higher number of nodes, e.g. 24 hosts.
This is because the communication delay is dominant.

We repeat our evaluation at a different number of hosts
equals 4, 8 and 24 hosts, and at a different value of
transmission ranges equals 0.4, and 1 (km). Fig. 4 shows that
the average execution time of an application at a
transmission range equals 1 (km) almost has a better
performance than the case of a transmission range equals 0.4
(km) at the same number of hosts. Also, we can see that at a
small transmission range, e.g. 0.4 (km), and a large number
of hosts, e.g., 24 hosts, a worst performance is obtained.
While, it has a better performance, at a number of hosts
equals 8, than in case of a number of hosts equals 4. This
observation is quite obvious because at this large number of
tasks, greater than the total computing capabilities of the
selected 4 hosts, the queuing delay is dominant. On the other
hand, the larger the value of a number of hosts, at a high
transmission range equals 1 (km), the better average

execution time of an application is, e.g. at 24 hosts.
The results of Fig. 5 show that the smaller the number of

submitted applications, e.g. 7 applications, the better
performance is obtained. Applications arrive into the system
following a Poisson process with arrival rate 7. Also, the
results show that the execution of submitted applications on
a smaller number of hosts, e.g. 2 hosts/application, has a
worst performance than of executing them on larger number
of hosts, e.g. 8 hosts/application. This is because at a small
number of hosts, e.g. 2, the queuing delay is dominant. The
more the available number of hosts participated in the
formed cloud the more available cores to execute these tasks.
Consequently, the average execution time of an application
decreases with the increase of a number of mobile nodes, e.g.
8 hosts/application. On the other hand, the larger the value of
a number of hosts/application, the worst average execution
time of an application is, e.g. at 20 hosts/application. This is
because the communication delay is dominant.

D. Findings

Our findings can be summarized as follows.
1) There is a tradeoffbetween the communication delay

and the queuing delay as a number of hosts per submitted
application is varied.The higher number of hosts per an
application, the higher total computing capability within the
cloud is. Therefore, the queuing delay of a task is decreased.
While, this leads to increase the time until the primary node
collects results from other resource provider nodes, and
therefore this increases the communication delay.

120Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

Algorithm 1
Initial task scheduling and assignment based on

priorities
1:
2:
3:
4:

5:
6:
7:
8:
9:

10:
11:
12:
13:
14:
15:

16:

17:
18:

19:
20:
21:
22:
23:
24:

The EST of every task is calculated.
The LST of every task is calculated.
Empty list of tasks L and auxiliary stack S.
Push tasks of CN tree into stack S in decreasing order of
their LST.
while the stack S is not empty do

If there is unlisted predecessor of top(S) then
Push the predecessor with least LST first into stack S

else
enqueue top(S) to the list L

pop the top(S)
end if

end while
while the list L is not empty do
dequeue top(L).

Send task requests of top(L) to all participant nodes in
the list of hosts H which match the task requirements.
Receive the earliest resource available time responses
for top(L) from all responders.
Empty auxiliary responders stack RS.
Push IDs of hosts which respond to requests into
responders stack RS in increasing order according to
their CPUs in use.
while the host stack RS is not empty do

find the responder R with less CPUs in use.
assign task top(L) to responder R .
remove top(L) from the list L.

end while
end while

2) A better performance may be obtained, at a shorter
transmission range, if we select the smallest number of hosts
that have computing capabilities which minimize the
queuing delay to participate in a cloud. While at long
transmission range of nodes, where the communication
delay could be neglected, we have to select the highest
number of hosts to maximize the computing capability and
reduce the queuing delay.

3) The average execution time of an application is
impacted by the connectivity among hosts of a cloud, the
load of submitted applications, and the total resources,
computing capabilities, confined in these hosts. The major
factors affecting connectivity are hosts’ transmission range,
node mobility, and node density. The mobility is impacted
by the hosts’ speed and movement direction (relative to
primary nodes).

V. CONCLUSION AND FUTURE WORK

We presented CARMS, a distributed autonomic resource
management system to enable resilient dynamic resource
allocation and task scheduling for mobile cloud computing.
In addition, we proposed the GRPS-driven ALSALAM, an
adaptive scheduling and allocation algorithm implemented in
the resource manager of CARMS to enable efficient
selection of cloud participants and to provide a stable cloud
in a dynamic resource environment. Results have shown that
CARMS enables effective and efficient cloud formation and
maintenance over mobile devices.

Our ongoing research extends CARMS to enhance the
resilience and cost efficiency of cloud management by
considering the reliability and security aspects of mobile
resources in the selection of cloud nodes while minimizing
the execution and communication costs.

REFERENCES

[1] I. Chandrasekaran, “Mobile computing with cloud,”
Advancesin Parallel Distributed Computing, Communications
in Computer and Information Science, vol. 203, 2011, pp.
513–522.

[2] Y. Yuan and W. Liu, “Efficient resource management for
cloud computing,” International Conference on System
Science, Engineering Design and Manufacturing
Informatization (ICSEM), China, 2011, pp.233-236.

[3] Z. Liu, W. Tong, Z. Gong, J. Liu, Y. Hu, and S. Guo, “Cloud
Computing Model without Resource Management Center,”
International Conference on Cyber-Enabled Distributed
Computing and Knowledge Discovery, 2011, pp.442–446.

[4] G. Huerta-Canepa and D. Lee, “A virtual cloud computing
provider for mobile devices,” Proc. 1st ACM Workshop on
Mobile Cloud Computing & Services: Social Networks and
Beyond, California, USA, 2010, pp.1-5.

[5] N. Fernando, S.W. Loke, and W. Rahayu, “Dynamic mobile
cloud computing: Ad hoc and opportunistic job sharing,”
Fourth IEEE International Conference on Utility and Cloud
Computing (UCC), Australia, 2011, pp.281-286.

[6] E. Marinelli, “Hyrax: cloud computing on mobile devices
using MapReduce,” Master thesis, Carnegie Mellon
University, 2009.

[7] L. F. Bittencourt and E. R. M. Madeira, “HCOC: a cost
optimization algorithm for workflow scheduling in hybrid

clouds,” Journal of Internet Services and Applications, vol. 2,
Dec 2011, pp. 207–227.

[8] C. Lin, S. Lu, “Scheduling scientific workflows elastically for
cloud computing,” in IEEE 4th International Conference on
Cloud Computing, USA, 2011, pp. 746 - 747.

[9] K. Bessai, S. Youcef, A. Oulamara, C. Godart, and S. Nurcan,
“Bi-criteria workflow tasks allocation and scheduling in cloud
computing environments,” 5th International Conference on
Cloud Computing, USA, 2012, pp. 638-645.

[10] B. Yang, X. Xu, F. Tan, and D. H. Park, “An utility-based job
scheduling algorithm for cloud computing considering
reliability factor,” International Conference on Cloud and
Service Computing (CSC), Hong Kong, 2011, pp. 95-102.

[11] L. Wang, G. von Laszewski, J. Dayal, and F. Wang,
“Towards energy aware scheduling for precedence
constrained parallel tasks in a cluster with DVFS,” Proc. 10th
IEEE/ACM International Symposium on Cluster, Cloud and
Grid Computing, CCGRID’10, Australia, 2010, pp. 368–377.

[12] A. Khalifa, R. Hassan, and M. Eltoweissy, “Towards
ubiquitous computing clouds,” in The Third International
Conference on Future Computational Technologies and
Applications, Rome, Italy, September, 2011, pp. 52–56.

[13] A. Khalifa and M. Eltoweissy, “A global resource positioning
system for ubiquitous clouds,” in the Eighth International
Conference on Innovations in Information Technology (IIT),
UAE, March, 2012, pp. 145–150.

[14] S. K. Garg and R. Buyya, “NetworkCloudSim: modelling
parallel applications in cloud simulations,” Proc. 4th IEEE
International Conference on Utility and Cloud Computing
(UCC 2011), Melbourne, Australia, Dec. 2011, pp.105–113.

[15] M. Eltoweissy, S.Olariu, and M.Younis, “Towards
autonomous vehicular clouds,” Ad Hoc Networks, Lecture
Notes of the Institute for Computer Sciences, Social
Informatics and Telecommunications Engineering, vol.
49, 2010, pp 1-16.

APPENDIX

121Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

