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Abstract—Since the emergence of the Internet, and par-
ticularly with the outburst of cloud computing, the produc-
tion of reliable and scalable distributed applications is an
important area of research. Various middleware technolo-
gies were designed for that purpose, among which we find
Message-Oriented Middleware (MOM), which provides reli-
able asynchronous communication through message queueing
techniques. MOMs have been standardized using the AMQP
protocol, and in the Java world, with the JMS API.

In this paper, we extend a store and forward mechanism to
improve the scalability of an end-to-end reliable asynchronous
messaging infrastructure while remaining compliant to the
standard JMS API. We design a flow control based load
balancing policy that, on the one hand, reduces the risk of
consumer queues’ failures while maintaining a near optimal
throughput; and on the other hand, insures the scalability
of our load balancing mechanism on the producer’s side. We
report the evaluation of our solution deployed on a cloud com-
puting infrastructure and implemented within Joram, an open
source implementation of the JMS API and the AMQP queuing
protocol. This work is now part of the Joram distribution
available on the OW2 consortium.

Keywords-JMS; message queues; scalability; load balancing;
flow control

I. INTRODUCTION

Today’s applications often run on distributed resources.
One of the most commonly used ways to simply yet reliably
integrate the different components of a distributed software
system is through a message-oriented middleware (MOM).
MOMs use messages as the only structure to communicate,
coordinate and synchronize, thus allowing the components
to run asynchronously. MOMs offer two communication
paradigms: one-to-one, producers send messages to a queue
where they are stored till they are consumed by one and
only one consumer; and one-to-many or publish-subscribe,
a producer sends a message to a topic that broadcasts it to all
the subscribed consumers. Java, with a concern of providing
the community with a universal messaging interface has
standardized the Java Message Service API (JMS) [1]. This,
while making sure that all message-oriented applications
would be easily integrated, gives the developers the choice
of the implementation beneath depending on their specific
needs with regard to reliability and overall performance.

The most intuitive MOM configuration consists in hav-
ing one server, with the desired queue, generally on the
consumer’s side, thus rendering the distant communication
channel between the producer and the queue vulnerable in

the case of failures. Instead, a more reliable MOM ensures
a store and forward mechanism. This mechanism requires
a reliable communication model between producers and
queues based on the following properties:

• Asynchrony: the asynchronous property decouples pro-
ducers from queues. They do not need to be both ready
for execution at the same time. This property enables a
deferred access to queues and a loose coupling between
producers and consumers.

• Reliability: once a message is sent, it is guaranteed to
be delivered despite network failures or system crashes.

In this work, we consider the specific case of applications
with symmetric consumers, i.e., all the consumers process
the same tasks. We also position ourselves in the context
of cloud computing, where the consumers might belong
to different clouds and their performance varies depending
on the load of the cloud, since the virtual machines might
share the same physical resources thus affecting each other’s
performances. Taking this into consideration, we aim to
improve the scalability of the store and forward mechanism
with clustered queues: we propose a new load balancing
policy based on flow control, which dynamically adapts
the messages’ load on each of the cluster’s queues to its
consumption rate; this will be highlighted by comparing our
scalable store and forward solution to a static load balancing
policy such as round-robin. Load balancing is moreover done
on the producer’s side so as to allow intercloud consumers’
deployment. Last but not least, our solution includes a
failover mechanism in order to enhance its reliability.

We implemented and evaluated our solution using Joram,
for Java Open Reliable Asynchronous Messaging [2], de-
ployed on a cloud computing infrastructure. Joram is a pure
Java implementation of the JMS API. It also implements the
Advanced Message Queuing Protocol (AMQP) [3].

The rest of this paper is organized as follows: Section II
describes our store and forward mechanism and shows how
we improve its scalability; Section III formally describes the
scalability of queue messaging; in Section IV we detail the
proposed load balancing strategy, which we later evaluate in
Section V; then we present the related work in Section VI
before finally concluding this work in Section VII.

II. STORE AND FORWARD WITH LOAD BALANCING

To provide a store and forward mechanism, a MOM
must insure both the asynchrony between producers and the
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Figure 1. Alias queue’s principle

queues deployed on consumers’ side, and the communica-
tion reliability between them. For that purpose, a solution
is to use a special destination called an alias queue. An
alias queue is a special persistent queue that automatically
forwards the messages it is sent to another, generally distant,
persistent queue on the consumer’s side (see Figure 1). It is
set to write-only mode as the “real” destination is meant
to be the queue to whom the messages are forwarded. The
alias queue would thus be an intermediate destination on the
producer’s side where messages will be stored, and visible
(i.e., can be monitored), till they successfully reach their
final destination. This persistent pair of queues enforces the
asynchronous property. To enforce reliability, the forwarding
mechanism involves a distributed transaction between the
alias queue and the related queue. This transaction insures,
despite network or system failures, that a message is either
stored on the persistent alias queue on the producer’s side
or on the persistent queue on the consumer’s side.

The aim of this paper is to improve the scalability of
this store and forward mechanism. We propose a new
load balancing policy based on flow control described in
Section IV. To implement this policy, we extended the alias
queue mechanism to support load balancing. This extension
is based on a well-known load balancing pattern similar
to Web-based system (e.g., JK Apache Tomcat Connec-
tor [4]). Each producer is assigned to an alias queue that
would distribute the messages to a set of distant clustered
queues each corresponding to a set of local consumers (see
Figure 2). We also integrated a failover mechanism that
allows messages to be re-sent to another queue if their
initial destination is unavailable. Note that this pattern is
not exactly the same as the one used for Web systems
since: (i) load balancing is achieved on the producers’ side;
and (ii) both the producers’ and the consumers’ sides can
be controlled. Also, this is different from the one-to-many
messaging paradigm provided by topics, as one message will
be forwarded to one and only one of the cluster’s queues. We
will see in the following sections how this affects MOM’s
scalability and what the different strategies of distributing
messages between our multiple destinations are.

III. SCALABLE MESSAGING

In this section, we discuss the different factors that affect
the performance of a messaging system. First, we will
start with the case of a standard queue then generalize
our approach to clustered queues using an alias queue as
a forwarding mechanism.
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Figure 2. Scalable queueing with enhanced alias queues

A. Standard Queues

Let p be the production rate on the queue and c the
consumption rate. l being the length of the queue, i.e., the
number of waiting messages, we have:

∆l = p− c

Depending on the result, three cases can be identified:
• ∆l > 0: This means that the queue receives more

messages than it is asked to deliver. The number of
pending messages grows and we say that the queue is
unstable and flooded.

• ∆l < 0: In this case, the consumption rate is higher
than the potential reception rate and receivers are
blocked waiting for new messages to come. The queue
is still unstable and we say that it is draining. This
means that the queue’s ressources are underutilized.

• ∆l = 0: Here, the consumption rate matches the
reception rate and the queue is stable. This is the ideal
case that we aim to achieve.

The stability of a queue is thus defined by the equilibrium
between the messages’ production and consumption.

B. Clustered Queues

In this case, our alias queue, to which the messages are
sent, is wired to n queues, on which the messages are
received. Let p be the production rate on the alias queue, ci
the consumption rates on each of the consumers’ queues, and
li their respective lengths. The scalability of our distributed
system can be discussed on two different levels:

1) Global Scalability: Let L be the total number of
waiting messages in all the consumers’ queues. We have:

L =

n∑
i=1

li and ∆L = p−
n∑

i=1

ci (1)

The overall stability of our system is given by: ∆L = 0.
This shows that, globally, our system can handle the global
production load. However, it fails to guarantee that on each
consumer queue, the forwarded load is properly handled.
This will be guaranteed by local scalability.

2) Local Scalability: Depending on how we distribute the
messages between the different queues, each would receive
a ratio ri of the total messages produced on the alias queue.
Thus, for each i ∈ {1..n} we have:

∆li = ri.p− ci (2)
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Local scalability is then given by:

∀i ∈ {1..n}; ∆li = 0 (3)

Note that local scalability implies global scalability as:

∀i ∈ {1..n}; ∆li = 0⇒ ∆L = ∆

n∑
i=1

li =

n∑
i=1

∆li = 0

(4)
In the remaining of this paper, we will suppose that global
scalability is verified and try to achieve local scalability by
tuning our load balancing strategies.

IV. FLOW CONTROL POLICY

The main question that arises when forwarding messages
to different destinations is how to achieve load balanc-
ing, i.e., how to distribute the received messages over the
clustered destination queues. In this work, we propose a
dynamic load balancing strategy based on flow control, i.e.,
the consumption rates of our consumers. As a reference load
balancing strategy, we choose round-robin; we could also
have chosen random, which is statistically equivalent, and
would ultimately give the same results.

A. Round-Robin

The first implemented strategy is the simplest. It consists
in forwarding messages uniformly over our destinations: we
would forward the first message to the first queue, the second
to the next one etc. Till we are out of destinations, in which
case we go back to send to the first queue and so on.

If we take up the forwarding ratios introduced in the
previous section, this strategy can be described as follows:

∀i ∈ {1..n}; ri =
1

n
(5)

n being the number of queues wired to our alias queue.
While this strategy is straightforward to implement, and

can even be effective if all the consumer queues have the
same consumption rate; it can also result in local instability
if our queues have different consumption rates. Besides,
it is static, which makes it unable to follow the potential
variation of our distributed messaging system. Thus, a more
sophisticated adaptive strategy is needed.

P
C

AQ

Q1

CQ2

CQ3

.

.

.

Retrieves consumption rates

Controller

Updates forwarding ratios

AQ
Controller

P

Figure 3. Load balancing controller

Algorithm 1 Flow control’s algorithm
while TRUE do

for each consumer queue c do
rate[c] ← c.monitorConsumptionRate()
load[c] ← c.monitorLoad()

end for
for each consumer queue c do

weight[c] ← computeConsumerWeight(rate[])
if load[c] > MAX LOAD then

weight[c] ← weight[c]*9/10
end if

end for
p.updateWeights(weight[])
sleep(period)

end while

B. Flow Control Principle

Flow control is a dynamic strategy that allows a
consumption-aware message distribution. Its mechanism,
described by Figure 3, relies on a controller integrated with
our alias queues, which has a representation of their inter-
connections with the consumers’ queues. The controller’s
integration guarantees our solution’s scalability with regard
to producers since each alias queue has its own load balancer
instead of having one centralized load balancing controller.
It is also easy to use for an end-user as load balancing is
done transparently without any extra configuration.

Our controller periodically monitors the system, retrieving
particularly the consumption rates of the consumer queues,
i.e., the number of messages each of the cluster’s queues
has been asked to deliver over the last period. The decision
process can then be formally described as follows: let us say
that for the k-th period, we retrieved ci(k) as consumption
rates for our queues. In order to make sure that the more
a queue consumes messages, the more messages it will be
sent, the expression of our ri(k + 1) for the next period is:

∀i ∈ {1..n}; ri(k + 1) =
ci(k)∑n
i=1 ci(k)

(6)

As for the overload that might occur on a queue before
its forwarding ratio is regulated, we propose to define a
maximum load limit per queue, above which its forwarding
ratio will be artificially decreased so as it can handle part
of its pending messages.

Naturally, the controller executes its decision by replacing
the old ri(k) with the newly computed ri(k+1). Technically,
Algorithm 1 details the different steps that our controller
goes through, where computeConsumerWeight implements
ri(k + 1)’s expression. The weights used in our implemen-
tation are directly proportional to our forwarding ratios, they
represent the number of messages that will be forwarded to
the same queue before changing destinations.
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The only question left to be answered is how to determine
the period of our control loop. While having a shorter
loop increases the reactivity of our system, it also induces
a greater overhead as it involves exchanging monitoring
messages more frequently. The solution we propose aims at
maximizing the reactivity of our system while controlling its
induced overhead. We do not fix the period itself, but we fix
a tolerated overhead, i.e., the ratio of monitoring messages
to the produced throughput: at each iteration, we determine
the next period based on last period’s throughput so as to
stay within the tolerated overhead.

Our consumption-aware load balancing strategy takes into
consideration the differences between our consumer queues
in terms of consumption rates, which, a priori, vary with
time, and should improve the performance of our system.
The second part of the evaluation section verifies this
assumption.

V. EVALUATION

Now that our scalable distributed messaging system is
properly geared, we have to check its efficiency. To do so,
we started by evaluating the proper overhead of the alias
queue, and we went on to compare the performances of our
two load balancing strategies. Note that overhead always
refers to the effect of using an alias queue on performance.

For our evaluation we used virtual machine instances
of type m1.small as described by Amazon EC2 [5], i.e.,
2GB memory and 1 VCPU, provisioned on a private cloud
running racks with two 6 cores Intel(R) Xeon(R) CPU
E5645 @ 2.40GHz, 32GB RAM, 1GBps isolated LAN and
managed by OpenStack [6]. All our results are computed
over campaigns of 1, 000, 000 messages of 1kB each. Our
solution has been implemented and tested using Joram.

A. Alias Queue’s Overhead

In our first set of experiments, we want to evaluate
the maximum capacity of Joram with and without using
alias queue. Our metric here is the maximum throughput,
i.e., maximum number of consumed messages per second.
Figure 4 shows the results of these experiments, presented
in pairs: either using an alias queue or not.

The first two experiments put both the consumer and
producer on the same virtual machine, and use only one
Joram server. We can see that the general throughput slightly
decreases when using an alias queue as an intermediate
message, along with its acknowledgement, is added. This
overhead is however less than 4%, as intra-server commu-
nication is highly optimized in Joram.

The experiments 3 and 4, add a new Joram server, to eval-
uate the overhead when messages go through an intermediate
server instead of directly reach their final destination; this
corresponds to the reliable set-up discussed in the store and
forward, subsection of section II, even though both servers
are co-located on the same virtual machine. We can see that,

No Configuration msg/s

1 Q1P C 2291

2 AQ Q1P C 2211

3 P CQ1 2052

4 P CAQ Q1 2001

5 P CQ1 1944

6 P CAQ Q1 1918

7 P

C

AQ

Q1

CQ2

3678

Figure 4. Alias queue’s overhead evaluation

in this case the overhead is even smaller (2.5%), as extra
messages are needed for the forwarding even without the
alias queue.

In the scenario depicted by the experiments 5 and 6,
which is the most realistic since the communication is done
between two different virtual machines, we can see that the
alias queue’s overhead drops to about 1%. Moreover, in this
particular case, the virtual machines are co-located; should
we consider the latency as well, the alias queue’s overhead
can fairly be neglected.

Now that we have established that alias queues’ utilization
has almost no overhead, the 7th experiment of Figure 4
shows how this mechanism can be used to enhance the scal-
ability of our messaging system. The resulting throughput,
which is roughly two times the previous one (experiment 6),
shows that adding consumer queues to the alias queue
linearly increases the system’s performance.

In this particular case, the consumers were both identical,
as they were both running on maximum speed, on similar
virtual machine instances. Thus, the simple round-robin
strategy was enough. In the next part, we will see how flow
control is sometimes necessary for Joram to work properly.

B. Flow Control Evaluation

To evaluate our dynamic load balancing strategy, we
regulate the sending and receiving rates of our clients and
calculate the total time needed to receive the 1, 000, 000
sent messages. We also monitor the system, particularly the
queues load during the experiments. Based on the previously
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Figure 5. Consumer queues’ load evolution
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Figure 6. Consumer queues’ load evolution in flow control mode

computed maximum throughput (experiment 4, Figure 4),
the production rate used for the following experiments is:
2000msgs/s. The consumption rates of the queues are given
as a percentage of the production rate and varies as follows:

1) One producer and two identical consumers: The con-
figuration with 1 producer and 2 consumers is similar to the
one set for the 7th experiment of Figure 4. Our experiments
show that round-robin takes a total time of 500.0s, whereas
our flow control policy results in a total reception time of
500.5s. This is the ideal case where both consumers receive
messages at the same rate (50% of the produced load each),
round-robin is here the perfect solution. However, we see
that even when our flow control mechanism is activated, it
gives us about the same performance. The overhead is due
to expected side-effects in the computation of weights as we
had to settle for a level of granularity.

2) One producer and two unbalanced consumers: In this
case, our consumers have significantly different consumption
rates (70% and 30%). Round-robin is not at all suited for
such a configuration, it expectedly resulted in the time-out of
the slowest consumer: it couldn’t receive all the forwarded
messages in a reasonable time. This is mainly due to the
overload on the consumer’s queue, as on each round, it
keeps 20% of the forwarded messages, which later affects its
ability to respond to the consumer’s client requests. Figure 5
shows the evolution of the slow consumer’s queue load.

We can see that the number of waiting messages on the
slowest consumer’s queue is growing linearly, and while this
queue is flooded, the other is draining. This badly affects
the overall performance of the system. Flow control, on the
other hand, achieves a total reception time of 510s, which
is not very far from the ideal 500s. The delay is due to the
fact that the flow control loop’s initial period is 10s, which
means that it takes 10s for the first flow control regulation
to take place. Figure 6 shows that flow control regulated
the forwarded messages to insure a balanced load on both
consumers’ queues.

3) Two producers and two variable consumers: Figure 7
shows the configuration set up for this experiment, which

P CAQ Q1

CQ2P AQ

Figure 7. 2 producers, 2 consumers configuration

100 200 300 400 500
0

1000

2000

3000

4000

5000

6000

7000

Q1
Q2

Time (s)

N
u

m
b

e
r 

o
f 

p
e

n
d

in
g

 m
e

ss
a

g
e

s

Figure 8. Consumer queues’ loads with changing rates

is meant to prove two things: first, that our mechanism
can work with more than one producer (i.e., alias queue);
more importantly it shows that our flow control effectively
adapts to any consumption rates’ variation as we start with
consumers receiving with 70%-30% rates and invert them on
t = t0 + 250s to 30%-70%. Figure 8 describes the queues’
loads during this experiment.

As you can see in Figure 8, the queues’ loads are
stabilized throughout the experiment, which results in a
total reception time of 506s. This surely concludes the
effectiveness of the flow control mechanism.

VI. RELATED WORK

While in our present work, we apply load balancing
policies to message-oriented middleware, many previous
works have detailed different load balancing strategies, par-
ticularly for web-based applications [7], [8], [9], [10]. These
policies have been classified as content-blind or content-
aware based on whether they take into account requests
being forwarded. Round-robin and weighted round-robin
are obviously content-blind. Other content-blind policies are
random, which dispatches messages randomly between the
worker servers; least connection and least loaded, which
forward messages respectively to the server with the least
number of connections and the one with the least load,
with regard to the server’s capacity and current utilization.
Content-aware policies aim to achieve better efficiency by
taking into account for instance the sessions established
between the clients and servers and forward the packets
belonging to the same session to the same servers, these
are then called sticky sessions [11]. Another content-aware
policy consists in taking into account the locality of the
clients and forward their requests to the nearest servers.
While these policies in general aim at optimizing the perfor-
mance of the system, other studies [12], [13] focus on the
energy efficiency of such policies. Our flow control policy
is therefore content-blind, it also differs from the previous
policies by its integrated store-and-forward mechanism.
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Load balancing has also been widely addressed in the
context of high performance computing in grids or multi-
processor machines[14], [15], [16] where distributed load
balancing, which involves exchanging loads between neigh-
bor computing nodes is rather privileged.

Commercial message-oriented middlewares do also in-
tegrate load balancing, IBM’s WebSphere MQ [17], for
instance, provides a basic round-robin policy for its cluster
queues that can be enhanced by statically specifying weights
for queues in order to manage their priority. Another exam-
ple is HornetQ [18], which also distributes the loads over its
queue clusters on a round-robin basis, it excludes however
the queues with no connected consumer. Finally, Oracle’s
BEA WebLogic [19] JMS implementation also offers load
balancing with policies limited to round-robin and random.

In the specific case of Joram, a previous work [20]
has addressed scalability differently: producers are statically
affected each to a specific consumer queue; these consumer
queues are interconnected (clustered queues) in a way that
each draining queue will see if the the others have extra
messages and “steal” them, likewise, once a queue’s load
reach a certain limit it distributes, if possible, the extra load
over the other queues. Whereas this is a corrective policy that
handles problems when they occur, which results in extra
traffic on our system, as a message is first sent to a queue,
then it is potentially forwarded as many times as necessary;
our work is based on a predictive policy that tries to forward
the messages to the “right” queues in the first place.

VII. CONCLUSION

Message-oriented middlewares have proven to be an ef-
fective way to integrate the components of a distributed soft-
ware system, both guaranteeing asynchrony and end-to-end
reliability thanks to their store and forward mechanisms. In
this paper, we described and extended the store and forward
mechanism of a MOM infrastructure in order to improve
its scalability with regard to both the producers and the
consumers, while maintaining the JMS API compatibility.
Our extension includes the design of a flow control based
load balancing policy to insure the local stability of the
clustered queues. This has been done with the concern of
providing a scalable distributed mechanism that would be
totally transparent to the end-user. The evaluation of our
solution, carried out on a cloud computing infrastructure,
shows the effectiveness of our design compared to a basic
load balancing policy. As a future work, we intend to
enhance our solution to support the elasticity of message-
oriented middleware using the flexibility offered by cloud
computing infrastructures. We will thus go beyond the static
dimensioning the queues and develop a dynamic provision-
ing mechanism that would scale automatically the clustered
queues based on the total load of our system.
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