
An Approach to Assure QoS of Machine Translation System on Cloud

Pawan Kumar
Expert Software Consultants Ltd

New Delhi, India
hawahawai@gmail.com

B. D. Chaudhary
Motilal Nehru National Institute of Technology

Allahabad, India
bdc@mnnit.ac.in

Rashid Ahmad
LTRC, International Institute of Information Technology

Hyderabad, India
rashid.ahmed@research.iiit.ac.in

Mukul K Sinha
Expert Software Consultants Ltd

New Delhi, India
mukulksinha@gmail.com

Abstract—Transfer based Machine Translation (MT) System is
a large complex functional application. When these MT
systems are deployed with increasing translation load the
Quality of Service (QoS) degrades (namely, job completion time
increases, system throughput decreases, and system
performance does not scale with increase in provision of
resources). To improve QoS of the MT system MapReduce
framework for distributed processing was explored. MT
application, which has very large code size (order of 100 MB)
of computation, transferring it across the data nodes of the
cluster would be totally antithetical to the basic goal of
throughput enhancement. To utilize the benefit of parallelism
provided by Hadoop, a very large complex MT application has
adopted a distinct approach to overcome this difficulty with no
time penalty. This paper presents an engineering approach to
delude MapReduce framework for parallelization of machine
translation tasks on a large cluster of machines to assure QoS
of MT system. This paper reports the initial results of the
experiments done in our laboratory by running MT System
under cluster of virtual machines in private cloud. Further this
paper asserts that, with the availability of elastic computing
resources in cloud environment, the job completion time for
any translation, irrespective of its size, can be assured to be
within a fixed time limit.

Keywords-Quality of Service; Machine Translation; Virtual
Appliance; Natural Language Processing.

I. INTRODUCTION
Sampark is a machine translation (MT) system that

applies transfer based approach to translate text documents
among nine pairs of Indian languages [1]. Sampark system
was deployed and released for public use at Sampark website
for interactive as well as batch usage in 2008 [27]. The
overview of this MT system comparing its transfer based
approach (comprising three steps, viz., analyze, transfer, and
generate) of machine translation to that of statistical based
approach, followed by Google and Microsoft has been
briefly reported in [2]. As the system was not designed a
priori for scaling, its performance, with the increase in
number of translation job requests, degrades sharply.
Provisioning of additional computing resources, and

employing load balancer, did not improve the overall system
performance incrementally. With increase in number of jobs
there is either degradation, or absence of improvement in the
Quality of Service (QoS) of the system, mainly in three
dimensions, viz.

a) Job completion time (solution time) increases fast
b) System throughput decreases (number of sentences

translated per unit time) and
c) System performance (with provision of additional

computing resources) does not scale linearly.
An MT system is a very complex application with a large

code size of the order of 100 MB. It is a functional
application where one sentence in the source language is
translated into one sentence in the target language. To
explain further, all the modules of a MT system produce
same result given same input text, output does not depend on
any hidden information or state as the program execution
proceeds or between different executions of the program. An
MT system treats its input text data as a list of sentences.
Translation of each sentence is done independently, and has
no effect either from its preceding or from following
sentences. Further, it is also a compute intensive application
as it takes quite a long time to translate a sentence. On an
Intel(R) Core(TM)2 Quad CPU Q8300 @ 2.50GHz, L2
Cache 2048 KB, translating a sentence (average sentence
size 10 words) takes approximately 3 seconds. As the
compute cost is the product of number of compute resources
and its utilization time to execute a job, the compute cost to
translate a single sentence is 3 seconds.

An MT system like Sampark that translates a text
document from a source language to a target language may
have jobs that have large variance in their input data size
(workload). On one end there may be a job to translate a
single sentence, to other translating a newspaper of 30 pages,
or yet another job translating a book of 500 pages. In spite of
provisioning of additional computing resources, the
completion time of a large job cannot be reduced. A large job
does not get advantage of available and unused computing
resources as a load balancer assigns each job, irrespective of
size of its workload, to a distinct computing resource. This
limitation caused due to the specific nature of MT

179Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

application forced us to explore the applicability of
MapReduce [3] parallelization framework to reduce the
completion time of large machine translation jobs.

The Map Reduce framework is suitable for functional
applications as it is able to split a large job into multiple job
partitions, and each job partition can run on different
computing nodes in parallel. This approach of parallel
execution of job partitions not only reduces a job’s
completion time, it also facilitates the better utilization of
available computing resources. The MapReduce
programming model has been designed for applications that
expect provisioning of on-demand service model for
computing resources. The Cloud computing platform
comprising large clusters of machines provides, on-demand,
availability of computing resources of desired size and
number that can be scaled up/down incrementally [4].

This paper presents an engineering approach, utilizing
Hadoop [5], the open source implementation of Map Reduce
framework, to partition each large MT job into multiple job
partitions, to run them, in parallel, on a given cluster of
virtual machines provided by private Eucalyptus Cloud [6]
set up in our laboratory. This parallel execution of the job
partitions reduces the job completion time, and also enhances
utilization of the given compute resources.

In the cloud computing environment, in addition to the
reduction in job completion time, there is need to enhance
the system throughput, as well. Then only it ensures the best
utilization of computing resources, resulting in increase in
the overall system performance, giving us the cost benefit of
cloud computing environment.

The set of three experiments that we conducted show
that:

a) for a large job of any size, the job completion time
can be reduced with increase in computing resources,

b) there is an optimum job partition size (described in
Section V, Experiment Two) that ensures nearly the best
system throughput (i.e., number of sentences translated per
unit time), and

c) the optimum job partition size also ensures best
utilization of available computing resources, resulting in
completion of each job with least computation cost,
assuring, in turn, very high overall system performance.

In this way, our approach assures all the three dimensions
of the QoS of the MT system. MT system is an example of
class of Natural Language Processing (NLP) applications
that are functional in nature. This engineering approach to
assure QoS can be applied to other similar applications like,
text-to-speech, speech-recognition, and text-summarization,
etc.

In Section II, an overview of the Map Reduce
Framework is given, including its strengths and limitations
while the Section III lists related works, its adaptation for
various types of applications, and also for various types of
platforms. In Section IV, our approach to employ Map
Reduce techniques is discussed that assures the QoS for the
Sampark MT system, and Section V gives the details of our
experimental results. And finally, Section VI presents our
conclusion.

II. HADOOP MAP-REDUCE FRAMEWORK: OVERVIEW,
STRENGTHS AND LIMITATIONS

A. MapReduce: An Overview
MapReduce has become the most used parallelization

framework in the data centers comprising of commodity
computers [7]. MapReduce is mostly suited for functional
applications, and its two functions that is map and reduce are
inspired from LISP, the functional programming language
[8].

The Hadoop Framework, the open source variant of Map
Reduce, is composed of Hadoop MapReduce, and Hadoop
Distributed File System (HDFS). HDFS is used to store both
input data to the map step and the output data from the
reduce step. A Hadoop installation is comprised of a cluster
of nodes, consisting of a master node, called the JobTracker,
and several worker nodes. The JobTracker is responsible for
accepting the jobs from the clients, and splitting each job
into multiple job partitions, and assigning those job partitions
to be executed by different worker nodes. Each worker node
runs a TaskTracker that executes currently assigned task to
it, and on its completion, informs the same to the
JobTracker. By communicating with each TaskTracker, the
JobTracker keeps track of all the running job partitions, and
also schedules of new job partitions to worker nodes that are
free.

In Hadoop, the input data of a job gets distributed on the
worker nodes of the cluster while it is being loaded. The
Hadoop Distributed File System (HDFS) splits the input data
into chunks, and each chunk is loaded on different nodes of
the cluster, well before the application gets initiated.

 When the JobTracker assigns a job partition to a worker
node it sends the program code to that node. It is presumed
that the time spent in transferring the program code to the
worker node is relatively very small in comparison to the
execution time of the job partition.

B. Strengths
The main advantage of MapReduce programming model

is its simplicity. The user has to specify his algorithm as a
pair of map and reduce tasks that conform to the
programming model. A functional application whose input
data can be represented as a list can always be modeled in
MapReduce framework. The rest of the details, like,
workload partitioning, distributed execution, network
communication, coordination, and fault tolerance, etc., are all
handled by the MapReduce framework itself.

This model of Map-Reduce is very efficient primarily for
batch jobs, and also for those functional applications that
have relatively smaller code sizes and operates on extremely
large input data sizes.

C. Limitations
The intrinsic limitation of MapReduce is its one-way

scalability of its design, i.e., to scale up to process very large
data sets [9]. Again, it handles large data sets that are at rest,
but is unable to handle large data in motion that can come as
stream [10].

180Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

In the present implementation of MapReduce in Hadoop,
the program code gets transmitted across the worker nodes
of the cluster. And hence, for an application that has very
large code size transferring it across the worker nodes would
completely drain its job completion time enhancement due
to parallel processing of its job partitions. Thus, the main
limitation of Hadoop MapReduce is that it is completely
unsuitable for jobs with large code size.

To utilize the benefit of parallelism provided by Hadoop,
a functional application with large code size is required to
evolve a distinct approach to overcome this difficulty with
no transfer time penalty.

III. RELATED WORK
The MapReduce framework that was originally proposed

by Google is being utilized by it to process more than 10
petabytes of data per day [3]. After the release of Hadoop
implementation of the MapReduce framework more than
hundred organizations, including large companies and
academia are using it for various types of applications. This
has also resulted intense research and development activities
in various directions [11]. Some researchers have developed
of many distinct MapReduce algorithms for processing of
different types of massive data [12, 13], some have simulated
well known parallel processing algorithm in MapReduce
framework [14], while some others are involved in
developing schemes for implementing MapReduce
framework in distinct types of physical platforms [15, 16],
and in optimizing the scheduling problem in its context [17].

The quality of output of Statistical Machine Translation
(SMT) Systems increases with the increase in amount of
their training data [18, 19]. Good SMT systems usually train
their translation engines on 5-10 million sentences pair
corpora, and to train engine on such massive volume of data,
even on good processing platforms, takes couple of days to
even a week. And hence, many efforts are being pursued to
use MapReduce framework to execute such training module
over large corpora on a large distributed systems, bringing
down the training time within couple of hours [20]. Hadoop
MapReduce framework has been used to study throughput
improvement of SMT system [18, 19, 20, 21]. Open source
toolkits capable of training phrase based SMT models on
Hadoop cluster [22] and grammar based SMT on Hadoop
cluster [23] have been reported.

IV. TO ASSURE QOS OF SAMPARK MT SYSTEM: AN
ENGINEERING APPROACH

First, we have tried to abstract those distinguishing
features of our application, viz., the transfer based MT
system Sampark, that makes it an attractive application for
MapReduce framework, and they are:

 A transfer based MT system is a functional
application, and hence, MapReduce framework
would be applicable to it,

 Any text document file that is required to be
translated, i.e., data input to the MT system, can
always be abstracted as a list of paragraphs, or a set
of sentences of any required size, and hence, it can

be easily parallelized and executed on large cluster
of machines [24],

 The incremental scaling up of computing resources
on-demand is integral part of any MapReduce
framework, whether it is a cluster of multi-core
physical machines, or large set of virtual machines in
the cloud [4]. And hence, we would be able to assure
all the three dimensions of QoS (discussed in the
Section I: Introduction) of MT system.

A. Hurdle: To Run Application with Large Code Size on
Hadoop
The Hadoop uses strategy of moving computation to the

data site, instead of moving the data to the computation site.
This strategy allows Hadoop to achieve high data locality
which, in turn, results in high performance.

As discussed earlier, the Sampark MT system is a very
large and complex application with large code size of
approx. 220 MB. This code comprises of around 100,000+
lines of code (in various programming languages), including
the lexical resources, the rule base, and the machine learned
data, each is of very large size, required by its various
modules to perform their functionality. Transferring such a
large code to each worker node would create large
communication load draining completely the advantages
achieved by parallel processing of job partitions.

B. Solution: Sampark MT System as a Virtual Appliance
To circumvent the above problem of transferring large

code size to each worker node, the Sampark MT system is
packaged as Virtual Appliance [25]. An MT virtual
appliance is a full application stack containing the Just
enough Operating System (JeOS), the Sampark MT system,
the Hadoop system, their required dependencies, and the
configuration and data files required to run the MT system.
Everything is pre-integrated, pre-installed, and pre-
configured to run on a virtual machine.

Whenever a new VM is provisioned from cloud, an
image of the Sampark virtual appliance is actually
instantiated on the new VM. For a dedicated application
environment, this engineering approach completely avoids
the need of transferring the MT computation code to worker
nodes at run time. This technique facilitates new nodes to be
added on demand.

C. Implementation: To run Sampark MT System with
Large Code Size under Hadoop
To circumvent this problem for running MT System on a

Hadoop, we have taken following three steps:
 We have developed a program, called mtclient that

runs on the Hadoop master node. Traditional
implementation of MapReduce expects data to be
partitioned well before the MapReduce job is
executed. This mtclient partitions the workload and
submits the job for translation to the Hadoop master

 mtmap is another program that is invoked by
Hadoop master for each of the workload partition.
The code of mtmap is transported to each worker
node for execution of the map tasks.

181Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

 mtmap in turn calls mtmain, which is part of the
Sampark virtual appliance. mtmain is the main
translation system that takes list of sentences as input
and produces a list of sentences as translated output.

Once all the map tasks are over, Hadoop master calls
mtreduce to collate the output translation. In this way, we
have deluded Hadoop to run a large machine translation job
as set of parallel map tasks in a dedicated application
scenario.

V. THE EXPERIMENTAL SETUP, SET OF EXPERIMENTS,
AND THER RESULTS

The experiment has been done on Hindi to Punjabi
Sampark MT system to measure the various QoS dimensions
of the system. The Sampark MT system (program codes
along with lexical resources, rule bases, and machine learned
data) is packaged as a virtual appliance [25]. The Sampark
MT virtual appliance that we used for performing our
experiments was based on CentOS-5.7 as host OS, with Xen
as virtualization layer, along with Hadoop 0.20.2 as
middleware for work load partitioning.

All the experiments are performed on similar virtual
machines in the Eucalyptus cloud. Each of the virtual
machines in the cloud are 2 CPUs, 1GB RAM with CentOS-
5.3 (64-bit) as guest OS. For our experiments we had
allocated 10 worker nodes in the cloud. On each worker
node, the Sampark MT virtual appliance was pre-installed as
a part of the setup.

We conducted three different types of experiments with
different number of compute resources, and different data
sets as it was required by the experiments (for experiment
one 1500 sentences, for experiment two 3000 sentences, and
for experiment three the data set varies from 200 to 25600
sentences). As the virtual compute resources are
homogeneous in nature, and to make the data sets
homogeneous in nature, we have replicated a set of 10
sentences (with average size of 8.5 words) repeatedly, to get
the required size of experimental data sets.

A. Experiment One: To Investigate the Relation of Job
Completion Time with respect to the Amount of Compute
Resources
In this set of experiments, each experiment was done, for

a given number of virtual nodes in the cloud, and with the
fixed job size of 1500 sentences with increasing number of
job partitions (also called task). The job partition sizes used
in experiments are 5, 10, 15, 20, 25, 50, 75, 100, and 150
sentences each.

The same experiment was repeated with increasing the
number of virtual nodes in the cloud, viz., node clusters of 2,
4, 8, and 10.

The same experiment was earlier performed on a
standalone system with same virtual machine configuration
in the cloud but without Hadoop.

When we have small job partition size, for a given job
the number of job partitions would be large. And hence, for a
given number of virtual nodes, to run all job partitions (to
complete the job), it would take multiple cycles of run. In

comparison to a job partition (task) execution time, the inter-
cycle run overhead would be negligible.

Table I shows the job completion time with increasing
number of virtual nodes, and with increasing size of job
partition. From this set of experiments we conclude:

 For a given job, the job completion time
reduces with the increase in computing
resources,

 The reduction in job completion time is linear in
the beginning, but starts saturating beyond a
certain point

TABLE I. SHOWING JOB COMPLETION TIME IN SECONDS FOR 1500
SENTENCES

Partition Size
(Sentences per

Task)

Job Completion Time (in Seconds)
10

Nodes
8

Nodes
4

Nodes
2

Nodes 1 Nodes*

5 258 302 583 1150 2704
10 173 215 402 798 1979
15 139 176 312 631 1704
20 137 167 285 566 1803
25 130 171 305 528 1487
50 119 134 284 433 1275
75 152 104 174 363 1193

100 151 119 211 362 1412
150 152 194 397 324 1385

* This experiment was done on a single virtual machine without Hadoop

Figure 1. Job Completion time vs. No. of Nodes

B. Experiment Two: To Investigate the Relation of Job
Partition Size with respect to Throughput.
In this set of experiments, we increased the size of data

set to 3000 sentences, mainly to reduce the influence of
inter-cycle run overhead on the throughput. Larger is the job
completion time lesser would be the influence of inter-cycle
run overhead. Each set of experiment the job partition sizes
used were 5, 10, 15, 20, 25, 50, 75, 100, and 150 sentences
each. This variation in job partition size is the same as in
Experiment One.

Again, to focus our attention on throughput we have
conducted only two sets of experiments on two compute
resource configurations, viz., 5 and 10 virtual nodes.

Again, to focus our attention on throughput we have
conducted only two sets of experiments on two compute
resource configurations, viz., 5 and 10 virtual nodes.

Table II enumerates the results of the two sets of
experiments. The result shows that, for a given job the best

182Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

throughput is achieved at a particular job partition size,
irrespective of number of compute resources utilized. By
increasing job partition size, the improvement in throughput
is not very significant. As we have reached the rim of the
best throughput, we call this job partition size as the
optimum job partition size.

TABLE II. SHOWS COMPUTATION COST VS PARTITION SIZE FOR 3000
SENTENCES

No of Tasks Partition Size
(Sentences per Task) 10 Nodes 5 Nodes

600 5 35 37
300 10 49 53
200 15 59 64
150 20 63 69
120 25 68 72
60 50 86 90
40 75 93 97
30 100 82 104
20 150 101 107

Figure 2. Throughput vs partition size of task in term of number of

sentences

C. Experiment Three: To Investigate the Relation between
Job Partition Size and Throughput.
In this case, we have conducted 3 sets of experiments,

each with the same compute resource configuration of 5
virtual nodes.

As we are varying the job partition size to observe that
where the throughput is the maximum, in each set of
experiment we have maintained a fixed number of job
partitions (tasks). To keep fixed number of partitions while
varying the job partition size, we have to increase the job
size i.e., number of sentences. The 3 sets of experiments
have 40 tasks, 60 tasks and 80 tasks respectively. Figure 3
shows throughput verses partition size of task.

Table III enumerates the results of the three sets of
experiments done. These results show that for a given job the
best throughput is achieved at a particular job partition size.
It also shows that by changing the job size (i.e., the number
of sentences) hardly changes the optimum job partition size.
Increasing the partition size beyond the optimum job
partition size does not enhance the throughput significantly.
We see that, in this range, if the partition size is doubled, the
throughput increases by less than 5%.

TABLE III. SHOWS TIME TO TRANSLATE A GIVEN TASK FOR VARIOUS
PARTITION SIZES ON A 5 NODE CLUSTER FOR 25600 SENTENCES

No of
Tasks

Partiti
on Size

Total
Sentences

Total Compute
Time in seconds

Throughput
per minute

80 10 800 1055 45
80 20 1600 1475 65
80 40 3200 2340 82
80 50 4000 2620 92
80 80 6400 3750 102
80 100 8000 4455 108
80 160 12800 6665 115
80 200 16000 8240 117
80 320 25600 12920 119
60 10 600 800 45
60 20 1200 1025 70
60 40 2400 1715 84
60 50 3000 2005 90
60 80 4800 2830 102
60 100 6000 3320 108
60 160 9600 5055 114
60 200 12000 6140 117
60 320 19200 9990 115
40 10 400 570 42
40 20 800 855 56
40 40 1600 1165 82
40 50 2000 1355 89
40 80 3200 2115 91
40 100 4000 2275 105
40 160 6400 3435 112
40 200 8000 4175 115
40 320 12800 6430 119

TABLE IV. SHOWS THROUGHPUT VARIATIONS FOR VARIOUS
PARTITION SIZES

Partition Size
(Sentences per Task) 80 Task 60 Task 40 Task

10 45 45 42
20 65 70 56
40 82 84 82
50 92 90 89
80 102 102 91
100 108 108 105
160 115 114 112
200 117 117 115
320 119 115 119

VI. CONCLUSION AND FUTURE TASKS VISUALIZED
This paper presents the engineering approach that we

have developed to run a functional application like MT
system with a large code size as a dedicated application in
MapReduce Framework, to get enhanced QoS utilizing its
list homomorphism characteristics [24] for parallel

183Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

execution. This approach to assure QoS can be applied to a
large group of NLP applications.

We have also developed a scheme to delude Hadoop
MapReduce framework to load the MT system with large
code size (by packaging MT as a virtual appliance), a priori
on all worker nodes, to overcome the transfer cost at run
time.

Contribution of our work is threefold:
 Completion time for any large job can be reduced

with increase in computing resources,
 There exists an optimum size of job partition for

which the best system throughput is achieved,
 The minimum completion time along with the best

system throughput would incur the minimum
compute cost in the cloud environment.

In this way, our approach assures all the three dimensions
of the QoS of the MT system. In future we plan to extend
this approach to other NLP applications that exhibit list
homomorphism and can be partitioned for distributed
computing.

ACKNOWLEDGMENT
We would like to thank Prof. Rajeev Sangal for his help to
setup the experiments in their laboratory.

Figure 3. Throughput vs. partition size of task

REFERENCES
[1] R. Sangal, “Project proposal to develop Indian language to Indian

language Machine Translation System”, IIIT Hyderabad, TDIL
Group, Dept. of IT, Govt. of India, (2006).

[2] G. Anthes, “Automated Translation of Indian Languages,” CACM,
vol. 53 (1), Jan. 2010, pp. 24-26, doi: 10.1145/1629175.1629184.

[3] J. Dean and S. Ghemawat, “MapReduce: A Flexible Data Processing
Tool,” In Proc. of OSDI'04: Sixth Symp. on Operating System Design
and Implementation, pp. 137-149, Dec. 2004.

[4] M. Armbrust, A. Fox, R. Griffith, “Above the Clouds: A Berkeley
View on Cloud Computing,” Technical Report No. UCB/EECS-
2009-28, Univ. of California, Berkeley, Feb. 10, 2009.

[5] The Apache Software Foundation, “Hadoop: MapReduce
Framework” http://hadoop.apache.org [retrieved: February, 2013]

[6] D. Nurmi, et al., “The Eucalyptus Open Source Cloud Computing
System,” In Proc. of 9th IEEE/ACM Intl. Symp. on Cluster
Computing and Grid”, pp. 124-131, 2009.

[7] L. Barroso, J. Dean, and U. Hoelzle, “Web search for a planet: The
Google cluster architecture,” IEEE Micro, vol. 23, no. 2, pp. 22-28,
2003.

[8] R. S. Bird, “An Introduction to the Theory of Lists,” Oxford
University Technical Monograph PRG-S6, 1986.

[9] Z. Ma and L. Gu, "The Limitation of MapReduce: A Probing Case
and a Lightweight Solution," In Proc. of the 1st Intl. Conf. on Cloud
Computing, GRIDs, and Virtualization (CLOUD COMPUTING
2010). Nov. 21-26, 2010.

[10] V. Kumar, H. Andrade, Bugra Gedik, and K. Lung Wu, “DEDUCE:
At the Intersection of MapReduce and Stream Processing,” In Proc.
of the 13th Intl. Conf. on Extending Database Technology, pp. 657-
662

[11] J. Lin and C. Dyer, “Data-Intensive Text Processing with
MapReduce,” University of Maryland, USA, April 2010.

[12] B. He, W. Fang, Q. Luo, N.K. Govindarajan, and T. Wang “Mars: A
MapReduce Frameworks on Graphics Processing,” In Proc. of 17th
Conf. on Parallel Architecture & Compilation Techniques, pp. 260-
268, 2008.

[13] M.de Kruijf and K. Sankarlingam, “MapReduce for the Cell B.E.
Architecture”, University of Wisconsin, Comp. Sc., Tech. Report:
CS-TR-2007-1625, 2007.

[14] H. Karloff, S. Suri, and S. Varrilvitski, “A Model of Computation for
MapReduce,” In Proc. of 21st Annual ACM-SIAM Symp. on
Discrete Algorithm, 2010.

[15] G. Ananthnarayanan et al., “Reining in the Outliers in Map-Reduce
Cluster using Manti,” In Proc. of USENIX OSDI, 2010.

[16] C. Ranger, R. Raghuraman, A. Penmetsa, G. Bradski, and C.
Kozyrakis, “Evaluating MapReduce for Multi-core & Multi-processor
systems,” In Proc. of the IEEE 13th Intl. Sym. on High Performance
Computer Architecture, pp. 13-24. Phoenix, Arizona, 2007.

[17] H. Chang et al., “Scheduling in MapReduce like System for Fast
Completion Time”, Bell Labs Alcatel-Lucent, Purdue University,
2011.

[18] M. Banko and E Brill, “Scaling very very Large Corpora for Natural
Language Disambiguation,” In Proc. of 39th Annual Meeting of
Assoc. of Computational Linguistics (ACL 2001), pp. 26-33,
Toulouse, France, 2001.

[19] C. Collism-Burch, C. Bannard, and J Schroeder, “Scaling Phrase-
based Statistical Translation to Larger Corpora and Larger Phrases,”
In Proc. 43rd Annual Meeting of Assoc. of Computational Linguistics
ACL, pp. 255-262, Ann Arbor, Michigan, USA, 2005.

[20] C. Dyer, A. Cordora, A. Mont, and J. Lin, “Fast, Easy & Cheap:
Construction of Statistical Machine Translation Model with
MapReduce,” In Proc. of 3rd Workshop on Statistical MT at ACL,
University of Marytal, Columns, Ohio, 2008.

[21] R.M.Yoo, A. Romano, and C. Kozyrakis, “Phoenix Rebirth: Scalable
MapReduce on a Large Scale Shared Memory System,” Stanford
University, Computer System Laboratory, CA, USA, 2009.

[22] Q. Goa and S. Vogel, “Training Phrase-based Machine Translation
Models on the Clouds: Open Source Machine Translation Toolkit
Chanki,” The Prague Bulletin of Mathematical Linguistics, 93: pp.
37-16, 2010.

[23] V. Ashish and A. Zollnam, “Grammar Based Statistical MT on
Hadoop.An end-to-end Toolkit for Large Scale PSCFG based MT”,
The Prague Bulletin of Mathematical Linguistics (91), pp. 67-78,
2009.

[24] M.Cole, “Parallel Programming with List Homomaphism”, Parallel
Processing Letters vol. 5, No. 2, pp. 191-203, 1995.

[25] P. Kumar, R. Ahmad, B. D. Chaudhary, R. Sangal, “Machine
Translation System as a Virtual Appliance: For Scalable Service
Deployment on Cloud,” In Proc. of IEEE 7th Intl. Symp. on Service
Oriented System Engineering (SOSE 2013), pp. 304-308, 2013.

[26] R. Ahmad, et al., “Enhancing Throughput of a Machine Translation
System using MapReduce Framework: An Engineering Approach,”
In Proc. of 9th International Conference on Natural Language
Processing (ICON-2011), pp. 200-206, 2011.

[27] Sampark: Machine translation system among Indian languages,
http://sampark.org.in [retrieved: January, 2013]

184Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

