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Abstract—Different mechanisms, such as checkpointing, task
replication, alternative tasks execution or task migration among
different resources, for instance, have been traditionally applied
in (heterogeneous) grid environments for fault-tolerance. Cloud
based resources can easily improve both availability and reliabil-
ity of a given system when used for recovering faulty tasks. In
this paper we present how cloud resources have been includedin
a framework for the execution of scientific workflows and how
this has helped in improving the framework in two different
aspects: making it more scalable and more reliable, facilitating
the application of very effective fault recovery policies.

Keywords–Fault tolerance; Scalability; Cloud computing;Het-
erogeneous computing infrastructures; Resource management
frameworks.

I. I NTRODUCTION

Grid systems are prone to faults [1][2][3]. Different fault-
tolerance mechanisms (checkpointing, task replication, alter-
native tasks, or task migration, for instance) have been tra-
ditionally integrated into Grid middlewares and management
systems in order to handle and minimize the impact of
these faults [4][5]. Nevertheless, these mechanisms do not
prevent end-users jobs from experiencing high failure rates
when they are executed in this type of distributed computing
infrastructures [6]. For that reason, users must play a vital
role in the course of detecting these faults: checking execution
logs and job outputs, for instance [1]. Undesirable behaviour
is then notified to Grid administrators so that they can adopt
the necessary steps to restore the Grid.

In the last years, the Grid computing community has con-
centrated its research efforts on integrating several heteroge-
neous Grids in order to generate more powerful computing
infrastructures. Resource management frameworks have been
developed to provide a transparent and easy-to-use access to
the set of integrated computing infrastructures. Consequently,
these heterogeneous infrastructures are viewed as a whole from
the end-users’ point of view. Some relevant examples of these
solutions are GJMF [7], P-GRADE [8], SWAMP [9], Grid-
Way [10], eNANOS [11], EMPEROR [12], or GMBS [13].
Obviously, this new model of solution requires new fault-
tolerance mechanisms at the global level because frameworks

consist of internal services (schedulers, state monitors,re-
source registries, etc.) that are also prone to faults. These
mechanisms must be compatible with the ones integrated into
each local Grid. Currently, resource management frameworks
use the monitoring and notification capabilities of their mid-
dlewares to detect faults. Then, resubmission techniques are
integrated into their fault management components to recover
the execution of failed jobs.

In [14], authors proposed an open framework for the flexible
deployment of scientific workflows in heterogeneous Grid
environments. From an architectural point of view, the frame-
work was organized as a set of components connected through
a central bus, which was used by the components as the mean
to send and receive messages. At the beginning, the fault
management was very simple and consisted of re-submitting
the faulty task (either to the same computing resource or to an
alternative one). In this paper, we try to improve framework
availability and reliability by using cloud-based resources. The
experience gained by solving complex computational problems
has also allowed us to understand a wide variety of faults
suffered by this type of distributed computing infrastructures.
The use of cloud resources can help solve some of these faults
or at least reduce their effects.

The paper is organized as follows. Section II briefly de-
scribes the architecture of the proposed framework for scien-
tific workflows execution. The description is mainly focused
on the components involved in fault management. Section III
introduces the suggested fault classification and a discussion
about their corresponding effects. Sections IV and V present
two cloud-based solutions for solving availability and relia-
bility problems. We have concentrated on situations caused
by a large performance degradation of computing resources
and bottlenecks in the common bus. Section VI describes the
main related work. Finally, Section VII summarizes the main
contributions of the paper.

II. BACKGROUND

As it was mentioned earlier, we proposed a framework
for the flexible deployment and execution of scientific work-
flows. The flexibility has been achieved at different levels:

230Copyright (c) IARIA, 2013.     ISBN:  978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization



from a computing point of view, the framework is able to
integrate heterogeneous computing infrastructures to create
more powerful execution environments; from a programming
point of view, workflows can be programmed independently
of the computing infrastructures where related jobs will be
executed and using different high-level languages widely ac-
cepted by the scientific community; and, finally, from a config-
uration point of view, new functionalities can be dynamically
added/removed to the framework in order to meet the different
needs of each application and user.

An integration model based on amessage busis key
to achieve the flexibility of the proposed solution. More
specifically, the cornerstone of the proposal is a bus inspired
by the Linda coordination model [15]. This component pro-
vides an application interface (API) for sending and receiving
messages in an asynchronous way, coding them as Linda
tuples. The rest of system components offer their capabilities
through the common bus, and collaborate by exchanging
messages using the bus as the communication channel. This
integration model has several advantages compared to other
more traditional approaches: (1) a bus reduces the coupling
between system components (they are connected by making
use of an asynchronous message passing mechanism); (2)
components can be dynamically added or removed without
disturbing the execution of other existing ones (to adopt new
functionalities, for example); (3) a bus favours the scalability
and distribution of the solution; and, finally, (4) a bus supports
complex message exchange patterns (publish and subscribe
mechanism, content-based message routing, etc.) that facilitate
more flexible integration strategies.

In this communication model, framework components are
not aware of other components connected to the message
bus. Each message is assigned an exclusive tag to identify
the receiver and each component identifies the messages
addressed to it with that tag. Thus, management components
and mediators can be easily replicated to improve framework
performance and reliability. Replicated components compete
for the same messages and the message bus decides which
mediator gets each message. As a consequence, components
can be easily replaced to adopt new functionalities, change
them or fix bugs.

Figure 1 shows the high-level system architecture which
is composed of three different layers. At the top, theUser
interface layeris composed of the different programming tools
that can be used to program scientific workflows (Taverna,
Triana, Kepler, Pegasus, etc.). Resulting workflows are sub-
mitted to the framework for their execution. The components
of theExecution layerare responsible to manage the workflow
execution life-cycle. Internally, this layer is composed of
the message busand the components that provide the core
functionalities. In order to provide this functionality, two
types of components have been connected through the bus:
management componentsand mediators. The first ones offer
extra functionalities to enhance workflows, task life-cycle
and framework capabilities (meta-scheduling, fault-tolerance,
monitoring, etc.). On the other hand, mediators encapsulate

Figure 1: Architecture of the proposed framework for the
execution of scientific workflows in multiple heterogeneous
computing infrastructures.

the heterogeneity of each specific computing infrastructure to
facilitate its integration into the framework (in more detail,
a mediator must interact with a specific infrastructure to
submit jobs, move input/output data, monitor job executions,
detect undesirable states, etc.). Finally, at the bottom ofthe
architecture, theComputing infrastructures layeris formed
by different and heterogeneous computing infrastructures. At
the beginning, three computing environments were integrated:
the HERMES cluster hosted by the Aragón Institute of En-
gineering Research (I3A) [16], which is managed by the
HTCondor middleware [17]; and two research and production
grids managed by the gLite middleware [18] and hosted by
the Institute for Biocomputation and Physics of Complex
Systems (BIFI) [19], namely AraGrid [20] and PireGrid [21].
A more detailed description of the architecture can be found
in [14][22].

In the first implementation of the framework, availability
and reliability issues were deliberately ignored. In this paper,
we propose the use of Cloud computing to add these require-
ments. In this Cloud-based approach the selected integration
model plays a relevant role as it will be shown in the following
sections.

III. I NTEGRATION OF FAULT HANDLING MECHANISMS

INTO THE FRAMEWORK

As we have already discussed, grids and computing clusters
are prone to faults. In this section, we present various types
of faults that can locally occur in these infrastructures and
the techniques usually used to detect and handle them. Our
discussion focuses on the user perspective and considers the
effects produced by these faults in terms of availability (the
ability of the system to be ready for successful job submission)
and reliability (the ability of the system to successfully execute
jobs even in the presence of failures during job execution).
Other fault classifications can be found in [1][2][3].

231Copyright (c) IARIA, 2013.     ISBN:  978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization



Additionally, the proposed execution framework could also
be affected by faults. The message bus is the most critical
component of the architecture: if the bus fails, the whole
system fails. Besides, the bus can become a bottleneck and,
as a consequence, degrade performance (for instance, when
a large number of application jobs are being executed by
the framework). For this reason, mechanisms that improve
the reliability and scalability of the framework must also be
integrated.

Let us briefly describe the faults that can affect computing
resources and introduce solution mechanisms. A more detailed
description will be presented in the two following sections.

A. Faults at the computing infrastructures level

In this work, we have considered the followinf set of faults,
identified from our experience in scientific workflows solving:

• Computing resource failures: A computing resource may
suffer hardware, network or operating system faults that
affect the jobs that are being executed on it. These
faults are not critical because they only involve individual
resources and can be easily repaired.

• Hardware upgrades and maintenance: These actions typ-
ically require shutting down the computing infrastructure
causing unavailability periods. They involve the failure
or cancellation of all jobs submitted to the infrastructure.

• Software upgrades and maintenance: Depending on the
nature of the software upgrade, it may be transparent, it
may cause some resources to be unavailable and some
job failures, or it may cause total unavailability and the
failure of all jobs. Also, it may affect only certain users.
Additionally, these actions often lead to periods when the
infrastructure is unreliable due to misconfiguration.

• Environmental failures: These faults are provoked by
causes external to the computing infrastructure (power
outages or cooling issues, for instance). The affected
computing infrastructure can become totally unavailable
and all running jobs may fail.

• Deployment and configuration of new software: The ex-
ecution of some applications may need to install and
configure new software and services. These operations
must be performed by administrators and may take a large
amount of time. Although this situation does not strictly
involve any failure, it prevents users from executing jobs
due to the deployment of new software and potential
misconfiguration. During this period, the user views the
computing infrastructure as totally unavailable.

• Application-dependant problems: When a service re-
quired for the execution of an application fails or is not
available, administrators are responsible for restartingthe
service (users do not have the required privileges [1]).
While the failure is being fixed, applications using the
broken service fail. As a consequence, the resource is
seen as unavailable for some users, while others remain
unaffected.

• Middleware failures: Due to the distributed nature of grid
middlewares, failures can involve different components

and their effects may vary. A failure in key components,
which represent a single point of failure, may cause
total unavailability and the failure of all executing jobs,
whereas a failure in a secondary component may have no
effect on users. In our particular case, since the frame-
work could be seen as a meta-middleware, these failures
may appear at the framework level and the computing
infrastructures level.

The previous faults involve different availability problems
ranging from situations where less resources are availableto
states where the complete infrastructure becomes unavailable.
From the reliability point of view, there could be no effect
at all or failures in all executing jobs. To detect and repair
some of these faults, grid middlewares integrate differentfault-
tolerant mechanisms. In general, they are only able to detect
the most simple ones (computing resource failures) and they
cannot recover from all detected faults [3]. Additionally,some
middlewares provide techniques to mitigate the effect of faults,
such as checkpointing [5] or over-provisioning [23][24]. In
any case, these techniques are only useful to recover from
computing resource failures where some resource becomes un-
available and a few jobs fail. More critical problems involving
total unavailability and unreliability are much more difficult to
manage. These problems lead to situations where users cannot
execute any job and lose a valuable time waiting for the fault
to be fixed.

B. A hierarchical strategy for handling grid/cluster faults

Once the effects caused by these faults are understood, a
strategy to handle them can be implemented and integrated.
We propose a solution based on the hierarchical management
of faults. Firstly, when the execution of a job fails, the fault
is locally managed by the computing infrastructure where the
job was being executed (a kind of local strategy). The local
fault tolerance mechanisms are responsible for detecting and
handling this kind of failures. In some cases, these mechanisms
can collaborate with the mediator component that manages the
access to the infrastructure in order to react to the fault: for
instance, if the execution of a job has failed, the mediator can
locally submit it to a different computing resource of the same
infrastructure.

If the fault persists after taking corrective actions at the
level of the computing infrastructure, it is dispatched to the
execution layer. More specifically, the mediator of the faulty
infrastructure sends a fault message to the message bus. A new
management component for fault handling has been integrated
into the framework execution layer. This component is respon-
sible for catching fault messages and guarantees the successful
execution of jobs using reliable computing resources. In our
approach, the job could be submitted to another computing
infrastructure or, as a last option, cloud computing resources
could be used by the component to execute the job.

Therefore, for these types of faults the proposed solution
consists of two levels of fault handling: firstly, at the specific
computing infrastructure level, and, secondly, at the execution
framework level.
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C. Improving the framework reliability and scalability

The architecture of the proposed framework favours the
management of faults at the software components level (medi-
ators, management components and the message bus). When a
mediator or a management component fails, its functionality is
disabled. In the case of a mediator, the access to the computing
infrastructure managed by it is closed; whereas in the case of
a management component, the capabilities of the framework
(scheduling, data movement, fault tolerance, etc.) are reduced.
Both situations can be solved using the same solution: in-
tegrating into the framework multiple instances of the same
component. Let us remember that in the proposed solution
components can be added or removed without disturbing the
execution of other existing ones and multiple instances can
work together without interfering with each other.

On the other hand, the message bus is the core component of
the framework. How can we make this component reliable and
scalable? In order to deal with the first issue, the message bus
has been deployed in a virtual machine provided by Amazon
EC2 [25]. For the scalability issue, a new version of the
message bus has been implemented. Now, the bus is distributed
through several computing nodes (virtual machines) and new
elastic capabilities (inspired by cloud behaviour) have been
integrated into it. The bus is able to monitor its internal
state (number of messages, response time, throughput, etc.)
and predict when its performances or capabilities might be
compromised. When some of these undesired states is de-
tected, new computing nodes can be dynamically added to
host message exchanges.

In the following sections, we go deeper into these aspects.

IV. M ANAGEMENT OF AVAILABILITY AND RELIABILITY

ISSUES

The characterization presented in Section III shows that, in
large-scale distributed computing infrastructures, there are a
lot of problems leading to temporal or permanent unavail-
ability states and job failures due to reliability issues. As
a result, users experience severe delays in both submission
and termination of their jobs and unexpected end statuses.
To tackle this problem, we have extended the mediators
with monitoring capabilities. A hierarchical fault management
mechanism is proposed, enabling the framework to manage
faults at different levels using several fault recovery policies.
This reduces the overhead of the message bus and the time
required to handle failures. We also propose the use of public
clouds as reliable computing infrastructures for the execution
of jobs that systematically fail in the integrated computing
infrastructures.

A. Solution design

Mediators have been extended with anInfrastructure Mon-
itor and aLocal Fault Manager. Figure 2 shows the mediator
architecture for this approach. TheJob Submissionprocess and
its related components have been simplified (for more details
about the job submission, please refer to [14]), as we will
focus on monitoring and fault management.

Figure 2: Simplified Architectural design of a generic mediator
to lead with unavailability and failure events.

Let us briefly depict the process carried out in the media-
tor. First, theJob Submitterreceives job execution requests,
retrieves the input data required for the job execution (if
necessary) and commands its execution to the computing
infrastructure. After that, the job description and job identifier
provided by the infrastructure are stored in theJobs Pool.
When a job finishes its execution, theJob End Monitor
fetches the job description from theJobs Poolusing the job
identifier. Then, it checks the log and error stream files as
well as the existence of the output files defined in the job
description. If an error is detected or the output have not been
generated, the information about the error is passed to the
Local Fault Manager. Otherwise, the output data are moved to
the destination specified in the job description and the results
are sent to the message bus.

The mediator can detect failures and unexpected job ter-
minations. However, in order to avoid such situations, the
Infrastructure Monitorperiodically checks the status for re-
source availability. With this information, it updates theRe-
source Registryand notifies theLocal Fault Managerif any
availability problem is detected. TheLocal Fault Manager
is the component responsible for taking decisions when a
job fails or an unavailability state is detected. Its designis
similar to theGlobal Fault Managerpresented in [14]. A rule-
based engine is used as the decision maker. The set of rules
can be modified at runtime, providing adaptation capabilities
for specific scenarios. Therefore, different policies can be
used depending on the underlying computing infrastructures,
execution traces or system load, for instance.

When a job fails or an unavailable state is detected, the
Local Fault Manager can decide to either re-execute the
involved jobs or notify theGlobal Fault Manager. In the first
case, the re-execution process remains internal to the mediator.
This approach reduces the overhead of the message bus and the
time required to handle the failure. In the last case, a message
with error information and the job description is sent to the
Global Fault Manager(via the message bus).
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Finally, theGlobal Fault Manager(namelyFault Manager
in Figure 1) retrieves messages with information about faulty
jobs and chooses a computing infrastructure to re-execute them
on or notifies to the user if the fault is not recoverable (for
example, because the server hosting input data is down). In
case of a recoverable fault, the following approach is used:if it
is the first failure, another computing infrastructure is selected;
if it is the second failure, a reliable infrastructure is selected;
finally, if the third failure is reached, the error is propagated
and the user is notified.

We propose the use of public cloud resources as reliable in-
frastructures because they provide the opportunity of executing
jobs in a well controlled and previously defined environment.
Cloud resources are less sensitive to resource failures through
virtualization and migration techniques. Clouds also provide
high availability and reliability, and they supply ”infinite” on-
demand resources in a pay-per-use model.

B. Evaluation

In collaboration with the Intelligent Systems Group of the
University of Santiago de Compostela (Spain), we have solved
a computing-intensive problem in the field of linked data.
The problem consists of extracting a set of significant terms
from learning units. Each set of terms must be semantically
annotated with relevant contextual information extractedfrom
the DBPedia [26]. This problem requires the execution of
about 20000 jobs for a whole week. As a consequence, it
is very sensitive to faults. We have used this experiment as
a benchmark for the proposed hierarchical fault management
system.

Figure 3 shows the failure rates obtained using different
policies in the local fault manager (no fault recovery, one
resubmission and two resubmissions) and the global fault
manager (no fault recovery, resubmission on an alternative
computing infrastructure, resubmission on an Amazon EC2
resource and a combination of the two last ones). As it can be
observed, using public cloud resources allows us to recover
from any failure (except failures due to unreachable input
data or bad definition of jobs). Otherwise, if we only use
the integrated local infrastructures, there are some jobs that
still fail after several executions due to unavailability and
unreliability states of computing infrastructures.

Besides, the hierarchical approach presented reduces both
the message bus overhead and the time required to handle the
fault. In the experiments, we have observed that the average
time required to handle a fault with our previous design was
1071.23 milliseconds, and the hierarchical design reducesthis
time to 143.21 milliseconds. When a job fails for the first
time in the hierarchical approach, its management remains
internal to the mediator. In the previous (non-hierarchical)
design, a message was introduced into the message bus and
then retrieved by the Global Fault Manager, which would take
the decision of resubmitting the job to the same infrastructure
(so a new message was written in the message bus and then
retrieved by the corresponding mediator in order to submit the
job again).

Figure 3: Failure rate for different fault management policies.

The percentage of faults detected by the mediator with
respect to the number of total job failures has been also
measured. Without infrastructure monitoring, some failures
were not detected because the management middleware did
not notify them, the middleware itself failed or the computing
infrastructure was down. Currently, the Infrastructure Monitor
is able to detect these situations and help mediator handle all
failures. As a result, the percentage of job failures detected
has increased from a 91.92% to a 99.99%.

V. I MPROVING FRAMEWORK SCALABILITY THROUGH AN

ELASTIC MESSAGE BUS

Scalability is one of the main challenges of any distributed
system. In cluster and grid computing, scalability focuses
on the number of computing resources available as well
as the flexibility to integrate new ones. The scalability of
the management system plays a very important role in the
improvement of the quality of service experienced by end-
users in terms of response times and system crashes.

The message bus is the backbone of the proposed architec-
ture. In order to make the system more scalable, we propose
an elastic design, taking advantage of the dynamic scaling
provided by cloud systems. As it will be shown, with respect
to the previous message bus version, the use of a cloud-based
solution improves both scalability and reliability.

A. Solution design

To deal with scalability issues, we have extended the
original design of DRLinda, a distributed message bus based
on the Linda coordination model [27]. The main idea behind
DRLinda is the use of several nodes implementing message
repositories to host messages in a distributed way. We have
extended this approach to dynamically scale the number of
nodes depending on the number of messages and message
access frequency when the system is running.

The previous implementation of DRLinda could dynami-
cally vary the number of nodes used to lead with bursts of
requests. However, these changes must be performed man-
ually and only local resources can be used. A cloud-based
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Figure 4: Message bus architecture overview.

elastic design allows self-configuration and auto-scalingof the
number of nodes used at any moment. The new architectural
message bus design is sketched in Figure 4. The approach
includes two new components in addition to the existingLoad
Balancer[27]: a Performance Monitorand aNode Manager.

ThePerformance Monitoris a component that receives and
processes information on client requests and collects metrics
such as number of requests, response time or throughput,
averaged for the last requests. The results of these metrics
and time conditions (for example, time since the last scaling
request) can then be used to define the scaling conditions.
When a condition is satisfied (scaling up/scaling down), this
component communicates with the Node Manager to deploy
or release a node.

The Node Manageris responsible for allocating new re-
sources and releasing unnecessary ones. When a new resource
is requested, the Node Manager looks for a new local resource
that becomes a DRLinda node. If there are no available local
resources, it gets a cloud instance. In this way, physical local
resources and virtualized cloud resources can be used at the
same time to provide good quality of service. Also, when a
resource must be released, the component selects the most
appropriate one and manages message transfer between the
involved nodes, via the Load Balancer. To reduce costs, cloud
resources are only released when they are about to fulfil an
entire hour of use (due to the hourly billing model of the cloud
provider we have used). Consequently, if there is a pending
release request when a cloud resource is going to complete an
entire hour, that resource is released. Also, if a cloud resource
can be released but there is no request, a local resource (if
available) is used to replace it.

B. Evaluation

To measure the efficiency and scalability of both archi-
tectural designs, we have used the methodology proposed
in [27][28]. In these experiments, a set of clients access the
message bus. Every client warms-up the message bus by insert-
ing a random number of messages (between 1500 and 5000)
and then iterates 2000 times through the following sequence
of operations: first, it executes anout operation (send a new
message), then waits for a random time (Tdelay ∈ [200, 250]
ms), and then retrieves the same message (operationin). When
completed, the client terminates. A detailed justificationof
the parameters used for the experiment can be found in [28].
The size of the messages has been set accordingly to the
problem we are managing. JSDL messages extracted from
the experiments presented in [22] have been used, which an
average size of 63 Kbytes.

Figure 5a shows the average response time observed both in
the original DRLinda implementation and the new elastic de-
sign. In both cases, we have used m1.medium Amazon Elastic
Compute Cloud (Amazon EC2) [25] instances as resources to
host message bus components. For the experiments, the former
DRLinda was deployed over 25 nodes. On the other hand, in
the case of the elastic solution, only two nodes were initially
used, and then new nodes were added under request (up to 70
nodes were registered during the experiment). Obviously, the
dynamic scalability introduces an overhead as the message
space must be redistributed. However, the overhead is not
significant compared to the response time and the throughput
in terms of Input/Output Operations Per Second (IOPS). As
it can be seen in Figure 5a, the response time improves very
significantly when using the cloud-based solution. This is due
to a more efficient load balancing in every node. While in the
case of the former DRLinda the nodes have to support a higher
load, the use of an elastic approach allows to keep nodes at
optimum levels of occupation and CPU and memory loads.

On the other hand, the results in Figure 5b depict the
throughput in terms of IOPS. As shown, the use of a cloud-
based elastic approach reports several benefits. First, the
number of concurrent clients supported by the bus scales with
no problem over the maximum number of clients. Moreover,
the IOPS only decrease because of the overhead of space dis-
tribution, but remain in the range of [1100,1200] milliseconds
for a huge number of simultaneous clients.

The experiments have also shown how the use of an
elastic solution allows to extend the number of concurrent
clients without suffering severe delays or service interruptions.
Therefore, it is a successful mechanism to avoid bottlenecks
in the message bus.

VI. RELATED WORK

There are several works seeking to improve understanding
of failures in Grid environments. However, none of these
studies analyse failure impact on end users. In [2], a tax-
onomy for the classification of Grid faults is proposed. The
taxonomy presents several perspectives for the classification
of Grid failures (origin, duration, consequences, etc.) but
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(a) Performance comparison (b) Throughput comparison

Figure 5: Performance comparison between former DRLinda and elastic DRLinda message bus in terms of: (a) response time
and (b) Input/Output Operations Per Second.

it lacks an analysis of causes and effects that could help
in handling failures. In [1] and [3], different surveys about
Grid failures are presented. On the one hand, in [1], failures
are classified as configuration, middleware, application and
hardware failures. The main concerns and problems regarding
fault management are studied showing that end users are
highly involved in fault detection and recovery, failures are
mostly due to misconfiguration and recovery mechanisms are
application-dependant. On the other hand, in [3], hardware,
operating system, middleware, task, workflow and user related
failures are identified. Also, detection, prevention and recov-
ering capabilities of several workflow management systems
are analysed concluding that current systems are not able to
properly manage faults.

With regard to scalability and dynamic autoscaling of re-
sources, [29] analyses existing mechanisms to dynamically
scale applications in clouds at three different levels: server,
network and platform. [30] shows a technique to dynamically
scale cloud resources up and down considering performance
and budget information. This technique is based on acquiring
enough instances to met application deadlines and shutting
down unnecessary instances when an hour is going to be
fulfilled. In [31], look-ahead optimizations are used to predict
future workloads and scaling applications while cost remains
low. However, results are limited to scenarios with few re-
sources and accurate predictions. On the contrary, in [32],
profiles are used to provide just-in-time scalability for cloud
applications in environments with unpredictable workloads.
Profiles capture application characteristics, architecture and
topology, scaling conditions and mechanisms to automate the
deployment and release of new resources.

Finally, different proposals use public Cloud resources to
improve job completion rates and to meet the deadline of QoS-
constrained jobs. In [33], a rescheduling algorithm is used

to deal with grid performance fluctuations. When a job ends
after its estimated finish time, a job waiting for execution in
the same Grid resource is selected to be executed in a cloud
resource. Meanwhile, in [23], task replication is used to reduce
the makespan and cost of workflows executed in Grids and
Clouds. An unreliable pool of resources is used to execute
jobs in first instance, while reliable resources (formed by
public Cloud instances and own resources) are used to execute
replicated jobs in the tail phase of BoTs (Bag of Tasks). A
similar approach is used in [24], where jobs are first scheduled
in clusters and Grids, then some jobs are replicated to increase
their success probability and finally public cloud resources are
used as backup if additional replication is required.

VII. C ONCLUSION AND FUTURE WORK

In this paper, we have identified and analysed several avail-
ability and reliability problems from the users’ point of view
in the context of a framework to execute scientific workflows
in heterogeneous computing environments. This analysis has
allowed us to identify common situations where job fails and
users cannot execute any job.

To increase framework availability and reliability, two
cloud-based solutions have been proposed: an elastic design
of the message bus and a hierarchical fault management. On
the one hand, the elastic design of the message bus allows
the framework to deal with bursts of requests providing high
quality of service at a low cost. On the other hand, managing
faults hierarchically results in a better treatment of faults
by applying different policies at different levels, fasterfault-
recovery and less overhead in the framework. Also, using
public clouds as reliable computing infrastructures allows the
framework to execute jobs even in total unavailability and total
unreliability situations, reducing the failure rate experienced
by end-users.
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As future work, we will study techniques to reduce the
cost of the proposed solutions without decreasing the quality
of service and job completion rates. Also, we will define
reliable scheduling policies to increase the number of jobs
successfully completed in their first execution. Finally, we will
explore the use of Amazon Simple Queue Service (Amazon
SQS) [34] in replacement of the Linda-based message bus
to improve performance, availability and reliability of the
proposed framework.
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Why are they so bad and what can be done about it?” inProceedings
of the 4th International Workshop on Grid Computing, ser. GRID ’03,
vol. 0, 2003, pp. 18–24.

[2] J. Hofer and T. Fahringer, “A multi-perspective taxonomy for systematic
classification of grid faults,” inProceedings of the 16th Euromicro
Conference on Parallel, Distributed and Network-Based Processing, ser.
PDP ’08, 2008, pp. 126–130.

[3] K. Plankensteiner, R. Prodan, T. Fahringer, A. Kertész, and P. Kacsuk,
“Fault-tolerant behavior in state-of-the-art grid workflow management
systems.” CoreGrid, Tech. Rep. TR-0091, 2008.

[4] C. Dabrowski, “Reliability in grid computing systems,”Concurrency
and Computation: Practice and Experience, vol. 21, no. 8, pp. 927–
959, 2009.

[5] J. Yu and R. Buyya, “A taxonomy of workflow management systems for
grid computing,”J. Grid Comput., vol. 3, no. 3-4, pp. 171–200, 2005.

[6] O. Khalili, J. He, C. Olschanowsky, A. Snavely, and H. Casanova,
“Measuring the performance and reliability of production computational
grids,” in Proceedings of the 7th IEEE/ACM International Conference
on Grid Computing (GRID 2006), 2006, pp. 293–300.
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