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Abstract—Different mechanisms, such as checkpointing, task consist of internal services (schedulers, state monitas,
replication, alternative tasks execution or task migratim among source registries, etc.) that are also prone to faults. &hes
different resources, for instance, have been traditionall applied mechanisms must be compatible with the ones integrated into

in (heterogeneous) grid environments for fault-tolerance Cloud hi | Grid. C fl tf K
based resources can easily improve both availability and f&bil- each local Grid. Lurrently, resource management iramesvor

ity of a given system when used for recovering faulty tasks.ni  US€ the monitoring and notification capabilities of theidmi
this paper we present how cloud resources have been includéd dlewares to detect faults. Then, resubmission techniqtes a

a framework for the execution of scientific workflows and how integrated into their fault management components to cov

this has helpgd !n improving the framework in two diffgrgnt the execution of failed jobs.

aspects: making it more scalable and more reliable, facildting In (14 h d f k for the flexibl

the application of very effective fault recovery policies. n [14], authors Proposead an open framewor or the Tlexi e

deployment of scientific workflows in heterogeneous Grid

Keywords—Fault tolerance; Scalability; Cloud computingiet-  environments. From an architectural point of view, the feam

erogeneous  computing infrastructures; Resource manageme . \was organized as a set of components connected through

frameworks. .

a central bus, which was used by the components as the mean
to send and receive messages. At the beginning, the fault
management was very simple and consisted of re-submitting

Grid systems are prone to faults [1][2][3]. Different fault the faulty task (either to the same computing resource onto a
tolerance mechanisms (checkpointing, task replicatitter-a alternative one). In this paper, we try to improve framework
native tasks, or task migration, for instance) have been t@vailability and reliability by using cloud-based res@scThe
ditionally integrated into Grid middlewares and managetmeexperience gained by solving complex computational proble
systems in order to handle and minimize the impact ¢fas also allowed us to understand a wide variety of faults
these faults [4][5]. Nevertheless, these mechanisms do Baftfered by this type of distributed computing infrastures.
prevent end-users jobs from experiencing high failuresrat&he use of cloud resources can help solve some of these faults
when they are executed in this type of distributed computing at least reduce their effects.
infrastructures [6]. For that reason, users must play d vita The paper is organized as follows. Section Il briefly de-
role in the course of detecting these faults: checking ei@tu scribes the architecture of the proposed framework fomscie
logs and job outputs, for instance [1]. Undesirable behaviotific workflows execution. The description is mainly focused
is then notified to Grid administrators so that they can adoph the components involved in fault management. Section IlI
the necessary steps to restore the Grid. introduces the suggested fault classification and a dimruss

In the last years, the Grid computing community has coabout their corresponding effects. Sections IV and V priesen
centrated its research efforts on integrating severalrbgée two cloud-based solutions for solving availability andiael
neous Grids in order to generate more powerful computimglity problems. We have concentrated on situations caused
infrastructures. Resource management frameworks have bbg a large performance degradation of computing resources
developed to provide a transparent and easy-to-use aaresand bottlenecks in the common bus. Section VI describes the
the set of integrated computing infrastructures. Consetfijye main related work. Finally, Section VIl summarizes the main
these heterogeneous infrastructures are viewed as a whoie fcontributions of the paper.
the end-users’ point of view. Some relevant examples ofethes
solutions are GJMF [7], P-GRADE [8], SWAMP [9], Grid- Il. BACKGROUND
Way [10], eNANOS [11], EMPEROR [12], or GMBS [13]. As it was mentioned earlier, we proposed a framework
Obviously, this new model of solution requires new faultfor the flexible deployment and execution of scientific work-
tolerance mechanisms at the global level because framewdtlws. The flexibility has been achieved at different levels:

I. INTRODUCTION
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from a computing point of view, the framework is able tc User Interface Layer
integrate heterogeneous computing infrastructures taterei|Applications
more powerful execution environments; from a programmir;

‘ Workflows H Bag of Tasks | ‘ MPI || Master / Worker H MapReduce ‘ }
I

point of view, workflows can be programmed independent]tangusges and Tools ypier %f H® |
of the computing infrastructures where related jobs will b ® [OTRIANA = begkos i ;
executed and using different high-level languages widely & =i oo
. . . . . || Management components [

cepted by the scientific community; and, finally, from a config | | Data Movement :
uration point of view, new functionalities can be dynamiigal || [ et scheder l bl i
. . L Fault M. t !

added/removed to the framework in order to meet the diftere — 3 :
needs of each application and user. oo veTaes .
An IntEQI‘atIOH mOdEI based on message buss key i ‘ Hermes Mediator H AraGrid Mediator | ‘ PireGrid Mediator | I Amazon EC2 Mediator ‘i
to achieve the flexibility of the proposed solution. Mor¢ 1 Exscution [aver |
S A - -L(111 1] 1 yer _!

specifically, the cornerstone of the proposal is a bus |de|r|
Cluster Hermes | | AraGrid I | PireGrid I@.

by the Linda coordination model [15]. This component prc:
vides an application interface (API) for sending and reiogjv
messages in an asynchronous way, coding them as Lirklgure 1: Architecture of the proposed framework for the
tuples. The rest of system components offer their capasilit execution of scientific workflows in multiple heterogeneous
through the common bus, and collaborate by exchangibgmputing infrastructures.

messages using the bus as the communication channel. This

integration model has several advantages compared to other

more traditional approaches: (1) a bus reduces the coupliig heterogeneity of each specific computing infrastrectar
between system components (they are connected by makiagiiitate its integration into the framework (in more déta
use of an asynchronous message passing mechanism);a(Zhediator must interact with a specific infrastructure to
components can be dynamically added or removed withoy{ibmit jobs, move input/output data, monitor job exectgjon
disturbing the execution of other existing ones (to adopt nejetect undesirable states, etc.). Finally, at the bottorthef
functionalities, for example); (3) a bus favours the sciditgh  architecture, theComputing infrastructures layeis formed
and distribution of the solution; and, finally, (4) a bus sot® py different and heterogeneous computing infrastructubés
complex message exchange patterns (publish and subscgfeepeginning, three computing environments were integrat
mechanism, content-based message routing, etc.) thétefci the HERMES cluster hosted by the Aragon Institute of En-
more flexible integration strategies. gineering Research (I3A) [16], which is managed by the
In this communication model, framework components ai§TCondor middleware [17]; and two research and production
not aware of other components connected to the messa@ils managed by the gLite middleware [18] and hosted by
bus. Each message is assigned an exclusive tag to idengify |nstitute for Biocomputation and Physics of Complex
the receiver and each component identifies the messaggstems (BIFI) [19], namely AraGrid [20] and PireGrid [21].
addressed to it with that tag. Thus, management componeRtgore detailed description of the architecture can be found
and mediators can be easily replicated to improve framequ<[14][22],
performance and reliability. Replicated components cdepe | the first implementation of the framework, availability
for the same messages and the message bus decides Whighreliability issues were deliberately ignored. In thiger,
mediator gets each message. As a consequence, COMPOREAtsropose the use of Cloud computing to add these require-

can be easily replaced to adopt new functionalities, changfants, In this Cloud-based approach the selected integrati

them or fix bugs. _ _ “model plays a relevant role as it will be shown in the follogvin
Figure 1 shows the high-level system architecture whiclyctions.

is composed of three different layers. At the top, thser
interface layeris composed of the different programming tools |,
that can be used to program scientific workflows (Taverna,
Triana, Kepler, Pegasus, etc.). Resulting workflows are sub
mitted to the framework for their execution. The components As we have already discussed, grids and computing clusters
of the Execution layeare responsible to manage the workflovare prone to faults. In this section, we present varioussype
execution life-cycle. Internally, this layer is compose#l oof faults that can locally occur in these infrastructuresl an
the message busnd the components that provide the corthe techniques usually used to detect and handle them. Our
functionalities. In order to provide this functionalitywa discussion focuses on the user perspective and considers th
types of components have been connected through the beffects produced by these faults in terms of availabilitye(t
management componerdad mediators The first ones offer ability of the system to be ready for successful job subrigsi
extra functionalities to enhance workflows, task life-eycland reliability (the ability of the system to successfutkeeute

and framework capabilities (meta-scheduling, fault#fee, jobs even in the presence of failures during job execution).
monitoring, etc.). On the other hand, mediators encapsul@ther fault classifications can be found in [1][2][3].

Computing Infrastructures Layer |

| NTEGRATION OF FAULT HANDLING MECHANISMS
INTO THE FRAMEWORK
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Additionally, the proposed execution framework could also  and their effects may vary. A failure in key components,
be affected by faults. The message bus is the most critical which represent a single point of failure, may cause
component of the architecture: if the bus fails, the whole total unavailability and the failure of all executing jobs,
system fails. Besides, the bus can become a bottleneck and, whereas a failure in a secondary component may have no
as a consequence, degrade performance (for instance, when effect on users. In our particular case, since the frame-
a large number of application jobs are being executed by work could be seen as a meta-middleware, these failures
the framework). For this reason, mechanisms that improve may appear at the framework level and the computing
the reliability and scalability of the framework must alse b infrastructures level.

integrated. The previous faults involve different availability probis
Let us briefly describe the faults that can affect computinginging from situations where less resources are avaitable
resources and introduce solution mechanisms. A more détaitates where the complete infrastructure becomes unbleila
description will be presented in the two following sections From the reliability point of view, there could be no effect
at all or failures in all executing jobs. To detect and repair
) ] ) some of these faults, grid middlewares integrate diffefaumit-
In this work, we have considered the followinf set of faultsg|erant mechanisms. In general, they are only able to tetec
identified from our experience in scientific workflows solyin o most simple ones (computing resource failures) and they
« Computing resource failureg\ computing resource may cannot recover from all detected faults [3]. Additionatigme
suffer hardware, network or operating system faults thaiddlewares provide techniques to mitigate the effect oft§a
affect the jobs that are being executed on it. Thesgch as checkpointing [5] or over-provisioning [23][24h |
faults are not critical because they only involve indiViUuaa_ny case, these techniques are only useful to recover from
resources and can be easily repaired. computing resource failures where some resource becomes un
« Hardware upgrades and maintenandéese actions typ- available and a few jobs fail. More critical problems invioly
ically require shutting down the computing infrastructurgstal unavailability and unreliability are much more ditfitto
causing unavailability periods. They involve the failurgnanage. These problems lead to situations where userstcanno

or cancellation of all jobs submitted to the infrastructuresxecute any job and lose a valuable time waiting for the fault
« Software upgrades and maintenan@epending on the tg pe fixed.

nature of the software upgrade, it may be transparent, it ] ) ) ]
may cause some resources to be unavailable and sdine? hierarchical strategy for handling grid/cluster fasilt
job failures, or it may cause total unavailability and the Once the effects caused by these faults are understood, a
failure of all jobs. Also, it may affect only certain usersstrategy to handle them can be implemented and integrated.
Additionally, these actions often lead to periods when th&ke propose a solution based on the hierarchical management
infrastructure is unreliable due to misconfiguration.  of faults. Firstly, when the execution of a job fails, the lfau

« Environmental failures These faults are provoked byis locally managed by the computing infrastructure wheee th
causes external to the computing infrastructure (powgh was being executed (a kind of local strategy). The local
outages or cooling issues, for instance). The affectéallt tolerance mechanisms are responsible for detectiay a
computing infrastructure can become totally unavailableandling this kind of failures. In some cases, these meshai
and all running jobs may fail. can collaborate with the mediator component that manages th

« Deployment and configuration of new softwafde ex- access to the infrastructure in order to react to the faatt: f
ecution of some applications may need to install aridstance, if the execution of a job has failed, the mediator ¢
configure new software and services. These operatidosally submit it to a different computing resource of thenea
must be performed by administrators and may take a larirastructure.
amount of time. Although this situation does not strictly If the fault persists after taking corrective actions at the
involve any failure, it prevents users from executing joblgvel of the computing infrastructure, it is dispatched he t
due to the deployment of new software and potentiakecution layer. More specifically, the mediator of the fiaul
misconfiguration. During this period, the user views thmfrastructure sends a fault message to the message busv A ne
computing infrastructure as totally unavailable. management component for fault handling has been intayrate

« Application-dependant problemdVhen a service re- into the framework execution layer. This component is respo
quired for the execution of an application fails or is nosible for catching fault messages and guarantees the sfigces
available, administrators are responsible for restattieg execution of jobs using reliable computing resources. In ou
service (users do not have the required privileges [1Bpproach, the job could be submitted to another computing
While the failure is being fixed, applications using thénfrastructure or, as a last option, cloud computing resesir
broken service fail. As a consequence, the resourcecisuld be used by the component to execute the job.
seen as unavailable for some users, while others remairTherefore, for these types of faults the proposed solution
unaffected. consists of two levels of fault handling: firstly, at the sifiec

« Middleware failures Due to the distributed nature of gridcomputing infrastructure level, and, secondly, at the afien
middlewares, failures can involve different componenfsamework level.

A. Faults at the computing infrastructures level
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C. Improving the framework reliability and scalability Message Bus

The architecture of the proposed framework favours tt moesssansl et
management of faults at the software components level fme
ators, management components and the message bus). WH |
mediator or a management component fails, its functionagit
disabled. In the case of a mediator, the access to the camgpu
infrastructure managed by it is closed; whereas in the chse
a management component, the capabilities of the framew
(scheduling, data movement, fault tolerance, etc.) areasdl

Broker Interface '—
Mediator Job results Tlab error

Job execution | [}ob resubmission
request

Local Fault
Get Job i Manager

ob info,

H or
Job Submitter |.2°2/2]
Data Ut Infrastructure
request H status
G Yesn status

e 1
Data discovery Cellob!

request |

Data Movement

H
Job End Monitor [ Infrastructure

Both situations can be solved using the same solution: . paine Monitor
tegrating into the framework multiple instances of the san B

component. Let us remember that in the proposed soluti n Computing Infrastructure Interface
components can be added or removed without disturbing 1 Tt !

execution of other existing ones and multiple instances c

work together without interfering with each other.

On the other hand, the message bus is the core componertigtire 2: Simplified Architectural design of a generic meatia
the framework. How can we make this component reliable affllead with unavailability and failure events.
scalable? In order to deal with the first issue, the message bu

has been deployed in a virtual machine provided by Amazon ) ) _ ) _
EC2 [25]. For the scalability issue, a new version of the Let us briefly depict the process carried out in the media-
message bus has been implemented. Now, the bus is disttib@- First, theJob Submittereceives job execution requests,
through several computing nodes (virtual machines) and négirieves the input data required for the job execution (if
elastic capabilities (inspired by cloud behaviour) haverbeNecessary) and commands its execution to the computing
integrated into it. The bus is able to monitor its interndnfrastructure. After that, the job description and jobritger
state (number of messages, response time, throughpyt, dEovided by the infrastructure are stored in thebs Pool
and predict when its performances or capabilities might J¥hen a job finishes its execution, thieb End Monitor
compromised. When some of these undesired states is ffdches the job description from thiebs Poolusing the job
tected, new computing nodes can be dynamically added iggntifier. Then_, it checks the log an(_:i error stream flles_as
host message exchanges. well as _the existence _of the output files defined in the job
In the following sections, we go deeper into these aspecge_scnpnon. If an error is detected or the output have nehbe
generated, the information about the error is passed to the
IV. M ANAGEMENT OF AVAILABILITY AND RELIABILITY Local Fault ManagerOtherwise, the output data are moved to
ISSUES the destination specified in the job description and thelt®su

The characterization presented in Section Ill shows tnat, @re sent to the message bus.
large-scale distributed computing infrastructures, éhare a ~ The mediator can detect failures and unexpected job ter-
lot of problems leading to temporal or permanent unavaiRinations. However, in order to avoid such situations, the
ability states and job failures due to reliability issuess Alnfrastructure Monitorperiodically checks the status for re-
a result, users experience severe delays in both submissigHrce availability. With this information, it updates tRe-
and termination of their jobs and unexpected end statuseégurce Registryand notifies theLocal Fault Managerif any
To tackle this problem, we have extended the mediatciyailability problem is detected. Theocal Fault Manager
with monitoring capabilities. A hierarchical fault managent is the component responsible for taking decisions when a
mechanism is proposed, enabling the framework to mandge fails or an unavailability state is detected. Its design
faults at different levels using several fault recoveryigies. Similar to theGlobal Fault Managempresented in [14]. A rule-
This reduces the overhead of the message bus and the tifaged engine is used as the decision maker. The set of rules
required to handle failures. We also propose the use of pubtian be modified at runtime, providing adaptation capabditi
clouds as reliable computing infrastructures for the etienu for specific scenarios. Therefore, different policies can b
of jobs that systematically fail in the integrated compgtinused depending on the underlying computing infrastrusture

infrastructures. execution traces or system load, for instance.
) ) When a job fails or an unavailable state is detected, the
A. Solution design Local Fault Managercan decide to either re-execute the

Mediators have been extended with lafrastructure Mon- involved jobs or notify theGlobal Fault Manager In the first
itor and alLocal Fault Manager Figure 2 shows the mediatorcase, the re-execution process remains internal to theatoedi
architecture for this approach. Theb Submissioprocess and This approach reduces the overhead of the message bus and the
its related components have been simplified (for more detdilme required to handle the failure. In the last case, a ngessa
about the job submission, please refer to [14]), as we willith error information and the job description is sent to the
focus on monitoring and fault management. Global Fault Manager(via the message bus).
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. ,50%
Finally, the Global Fault Manager(namelyFault Manager 220 20,08%

in Figure 1) retrieves messages with information abouttjaul ~ 2%%*
jobs and chooses a computing infrastructure to re-exekats t 17,50% -
on or notifies to the user if the fault is not recoverable (fc  1s00% -
example, because the server hosting input data is down).
case of a recoverable fault, the following approach is uétd:
is the first failure, another computing infrastructure iested,;
if it is the second failure, a reliable infrastructure isesséd;
finally, if the third failure is reached, the error is proptagh 5,00% ~ .

12,50% -

9,79%

10,00% |

Failure rate (%

7,50% -

2,91%

and the user is notified. 2,50% s

We propose the use of public cloud resources as reliable 0,00% | [ ] ooo%
frastructures because they provide the opportunity of wxeg No fault 1 2 Alternative 1 resub. +alt. 1 resub. + alt.
jObS in a We” Controlled and preViOUSIy defined enVironmer recovery  resubmission resubmissions infrastructure Infrastructure Infrastructure

. + cloud

Cloud resources are less sensitive to resource failuresighr Local and Global Fault Management Policies
virtualization and migration techniques. Clouds also mev Figure 3: Failure rate for different fault management gekc
high availability and reliability, and they supply "infiit on-
demand resources in a pay-per-use model.

The percentage of faults detected by the mediator with
respect to the number of total job failures has been also
In collaboration with the Intelligent Systems Group of theneasured. Without infrastructure monitoring, some faiur
University of Santiago de Compostela (Spain), we have solverere not detected because the management middleware did

a computing-intensive problem in the field of linked datanot notify them, the middleware itself failed or the compagti
The problem consists of extracting a set of significant terndrastructure was down. Currently, the Infrastructurenriitor
from learning units. Each set of terms must be semanticallyable to detect these situations and help mediator hatidle a
annotated with relevant contextual information extradtedh failures. As a result, the percentage of job failures detkct
the DBPedia [26]. This problem requires the execution ¢fas increased from a 91.92% to a 99.99%.
about 20000 jobs for a whole week. As a consequence, it
is very sensitive to faults. We have used this experiment a¥ |MPROVING FRAMEWORK SCALABILITY THROUGH AN
a benchmark for the proposed hierarchical fault management ELASTIC MESSAGE BUS
system. Scalability is one of the main challenges of any distributed

Figure 3 shows the failure rates obtained using differeaystem. In cluster and grid computing, scalability focuses
policies in the local fault manager (no fault recovery, onen the number of computing resources available as well
resubmission and two resubmissions) and the global faak the flexibility to integrate new ones. The scalability of
manager (no fault recovery, resubmission on an alternatile® management system plays a very important role in the
computing infrastructure, resubmission on an Amazon EQ@2provement of the quality of service experienced by end-
resource and a combination of the two last ones). As it can bsers in terms of response times and system crashes.
observed, using public cloud resources allows us to recoveThe message bus is the backbone of the proposed architec-
from any failure (except failures due to unreachable inpuaire. In order to make the system more scalable, we propose
data or bad definition of jobs). Otherwise, if we only usan elastic design, taking advantage of the dynamic scaling
the integrated local infrastructures, there are some jbbs tprovided by cloud systems. As it will be shown, with respect
still fail after several executions due to unavailabilitpda to the previous message bus version, the use of a cloud-based
unreliability states of computing infrastructures. solution improves both scalability and reliability.

Besides, the hierarchical approach presented reduces both i )
the message bus overhead and the time required to handle/the>0lution design
fault. In the experiments, we have observed that the averagdo deal with scalability issues, we have extended the
time required to handle a fault with our previous design wasiginal design of DRLinda, a distributed message bus based
1071.23 milliseconds, and the hierarchical design redtiies on the Linda coordination model [27]. The main idea behind
time to 143.21 milliseconds. When a job fails for the firsDRLinda is the use of several nodes implementing message
time in the hierarchical approach, its management remairepositories to host messages in a distributed way. We have
internal to the mediator. In the previous (non-hierarchicaextended this approach to dynamically scale the number of
design, a message was introduced into the message bus raodes depending on the number of messages and message
then retrieved by the Global Fault Manager, which would takeccess frequency when the system is running.
the decision of resubmitting the job to the same infrastmect  The previous implementation of DRLinda could dynami-
(so a new message was written in the message bus and tbally vary the number of nodes used to lead with bursts of
retrieved by the corresponding mediator in order to subineit trequests. However, these changes must be performed man-
job again). ually and only local resources can be used. A cloud-based

B. Evaluation
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‘ Client ‘ B. Evaluation
S S To measure the efficiency and scalability of both archi-
Elastic DRLinda tectural designs, we have used the methodology proposed

in [27][28]. In these experiments, a set of clients access th
| message bus. Every client warms-up the message bus by insert
i ing a random number of messages (between 1500 and 5000)
: and then iterates 2000 times through the following sequence
of operations: first, it executes amut operation (send a new
message), then waits for a random tin¥%g(.,, € [200, 250]
ms), and then retrieves the same message (operajioivhen

LEk * i completed, the client terminates. A detailed justificatimin

_‘ Client Web Services Interface

Operation DRLinda Manager
(in/out/rd) L

Performance
Monitor

Load
Balancer

=== 1 | Node update

nodes ; request

Marager the parameters used for the experiment can be found in [28].
The size of the messages has been set accordingly to the
problem we are managing. JSDL messages extracted from
the experiments presented in [22] have been used, which an
average size of 63 Kbytes.

Figure 5a shows the average response time observed both in

Recolocate tuples
Operation

(in/out/rd) § Get tuples

Node Web Services Interface l—

E Node l Node

P Localresources . ________ Cloudresources. ________ the original DRLinda implementation and the new elastic de-
_ _ _ sign. In both cases, we have used m1.medium Amazon Elastic
Figure 4: Message bus architecture overview. Compute Cloud (Amazon EC2) [25] instances as resources to

host message bus components. For the experiments, therforme
DRLinda was deployed over 25 nodes. On the other hand, in
the case of the elastic solution, only two nodes were ihjtial
elastic design allows self-configuration and auto-scatifithe used, and then new nodeslwere added gnder reque_st (upto 70
- norjes were registered during the experiment). Obviouséy, t
number of nodes used at any moment. The new architectuta : YO

o A dXHam'C scalability introduces an overhead as the message
message bus design is sketched in Figure 4. The approa

. . " o space must be redistributed. However, the overhead is not
includes two new components in addition to the existiogd significant compared to the response time and the throughput
Balancer[27]: a Performance Monitomnd aNode Manager 9 P P gnp

in terms of Input/Output Operations Per Second (IOPS). As
The Performance Monitois a component that receives andt can be seen in Figure 5a, the response time improves very
processes information on client requests and collectsigaetrsignificantly when using the cloud-based solution. Thisue d
such as number of requests, response time or throughp@ta more efficient load balancing in every node. While in the
averaged for the last requests. The results of these metgase of the former DRLinda the nodes have to support a higher
and time conditions (for example, time since the last sgalinoad, the use of an elastic approach allows to keep nodes at
request) can then be used to define the scaling conditioBBtimum levels of occupation and CPU and memory loads.
When a condition is satisfied (scaling up/scaling down)s thi On the other hand, the results in Figure 5b depict the

component communicates with the Node Manager to depltyoughput in terms of IOPS. As shown, the use of a cloud-
or release a node. based elastic approach reports several benefits. First, the

. ) . number of concurrent clients supported by the bus scalds wit
The Node Manageris responsible for allocating new re-no problem over the maximum number of clients. Moreover,
sources and releasing unnecessary ones. When a new resayeeoPS only decrease because of the overhead of space dis-
is requested, the Node Manager looks for a new local resougggution, but remain in the range of [1100,1200] milliseds
that becomes a DRLinda node. If there are no available logg} 5 huge number of simultaneous clients.
resources, it gets a cloud instance. In this way, physi@@llo The experiments have also shown how the use of an
same time to provide good quality of service. Also, when @ients without suffering severe delays or service intetions.

resource must be released, the component selects the Megirefore, it is a successful mechanism to avoid bottlemeck
appropriate one and manages message transfer betweenyfhge message bus.

involved nodes, via the Load Balancer. To reduce costsdclou

resources are only released when they are about to fulfil an VI. RELATED WORK

entire hour of use (due to the hourly billing model of the dou There are several works seeking to improve understanding
provider we have used). Consequently, if there is a pendiof failures in Grid environments. However, none of these
release request when a cloud resource is going to completestudies analyse failure impact on end users. In [2], a tax-
entire hour, that resource is released. Also, if a cloudues onomy for the classification of Grid faults is proposed. The
can be released but there is no request, a local resourcetgifonomy presents several perspectives for the classificat
available) is used to replace it. of Grid failures (origin, duration, consequences, etc.} bu
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Figure 5: Performance comparison between former DRLindbedastic DRLinda message bus in terms of: (a) response time
and (b) Input/Output Operations Per Second.

it lacks an analysis of causes and effects that could hdtpdeal with grid performance fluctuations. When a job ends
in handling failures. In [1] and [3], different surveys albouafter its estimated finish time, a job waiting for execution i
Grid failures are presented. On the one hand, in [1], fasluréhe same Grid resource is selected to be executed in a cloud
are classified as configuration, middleware, applicatiod aresource. Meanwhile, in [23], task replication is used ttuce
hardware failures. The main concerns and problems regardthe makespan and cost of workflows executed in Grids and
fault management are studied showing that end users @&leuds. An unreliable pool of resources is used to execute
highly involved in fault detection and recovery, failuree a jobs in first instance, while reliable resources (formed by
mostly due to misconfiguration and recovery mechanisms gmeblic Cloud instances and own resources) are used to execut
application-dependant. On the other hand, in [3], hardwareplicated jobs in the tail phase of BoTs (Bag of Tasks). A
operating system, middleware, task, workflow and usere@latsimilar approach is used in [24], where jobs are first schestiul
failures are identified. Also, detection, prevention ancbxe in clusters and Grids, then some jobs are replicated toasere
ering capabilities of several workflow management systertteeir success probability and finally public cloud resosraee

are analysed concluding that current systems are not ableugsed as backup if additional replication is required.

properly manage faults.

With regard to scalability and dynamic autoscaling of re-
sources, [29] analyses existing mechanisms to dynamicallyin this paper, we have identified and analysed several avail-
scale applications in clouds at three different levelsveser apility and reliability problems from the users’ point ofevi
network and platform. [30] shows a technique to dynamically the context of a framework to execute scientific workflows
scale cloud resources up and down considering performangeeterogeneous computing environments. This analysis ha
and budget information. This technique is based on acairigliowed us to identify common situations where job fails and
enough instances to met application deadlines and shuttipgrs cannot execute any job.
down unnecessary instances when an hour is going to beyg increase framework availability and reliability, two
fulfilled. In [31], look-ahead optimizations are used todio®  ¢|oud-based solutions have been proposed: an elasticrdesig
future workloads and scaling applications while cost rersai gf the message bus and a hierarchical fault management. On
low. However, results are limited to scenarios with few rehe one hand, the elastic design of the message bus allows
sources and accurate predictions. On the contrary, in [3g]e framework to deal with bursts of requests providing high
profiles are used to provide just-in-time scalability fooud quality of service at a low cost. On the other hand, managing
applications in environments with unpredictable workleadsayits hierarchically results in a better treatment of f&ul
Profiles capture application characteristics, archirectand by applying different policies at different levels, fasfault-
topology, scaling conditions and mechanisms to automate #acovery and less overhead in the framework. Also, using
deployment and release of new resources. public clouds as reliable computing infrastructures afidive

Finally, different proposals use public Cloud resources foamework to execute jobs even in total unavailability amizhit
improve job completion rates and to meet the deadline of Qo&@areliability situations, reducing the failure rate expaced
constrained jobs. In [33], a rescheduling algorithm is usdxy end-users.

VII. CONCLUSION AND FUTURE WORK
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As future work, we will study techniques to reduce th@7]

cost of the proposed solutions without decreasing the tyualj
. ) . X . ]18]

of service and job completion rates. Also, we will defingg
reliable scheduling policies to increase the number of jobs
successfully completed in their first execution. Finallg will 20
explore the use of Amazon Simple Queue Service (Amaz[)zr%]
SQS) [34] in replacement of the Linda-based message hes
to improve performance, availability and reliability ofeth
proposed framework.
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