
Optimized Cloud Resources Management Based on Dynamic Scheduling Policies

and Elasticity Models

Nikolaos Chelmis, Dimosthenis Kyriazis, Marinos Themistocleous

Department of Digital Systems

University of Piraeus

Piraeus, Greece

e-mail: {helnik, dimos, mthemist}@unipi.gr

Abstract—Nowadays, the interest on Cloud Computing as a

technical and business best practice has grown to great length.

There is a huge pool of available cloud applications and

services offered to end users. As application requirements,

reflected to resources requirements (i.e., network, storage,

computing capacity), are set by the application provider, a key

issue relates to the resulting elasticity needs and their

modeling. In addition to elasticity needs, application providers

aim to maximize their customer base while considering the

associated costs. To this end, business models are needed in

order to attract customers while considering cost constraints.

Their aim is to optimize the performance of the “investment”

for resources compared to the expected number of customers.

Nevertheless, the latter is directly linked to the provided

quality of service and users’ quality of experience. To this

direction, in this paper, we present a mechanism that

dynamically maps scheduling policies with the planned and

estimated resources based on varying needs.

Keywords-Cloud Computing; Infrastructure as a Service

(IaaS); Elasticity; Monitoring; Scheduling Policy; Quality of

Service.

I. INTRODUCTION

Cloud computing as a whole has rapidly evolved and
became one of the most challenging paradigms of
Information Technology. It has gained popularity for its
ability to enable fast and effective access to large pools of
virtualized resources and services that are dynamically
provisioned to adjust to variable workloads and usage
optimization [1]. This pool of resources is typically exploited
by a pay-as-you-go [2] pricing model with the cost of using a
cloud asset depending on the resources consumed. To this
direction, cloud computing offers mechanisms to
automatically scale applications in order to meet user's
needs, thus making possible for them to rapidly adapt their
resources to the workload minimizing the cost of
overprovisioning.

 There are three main classes in the cloud services
stack which are generally agreed upon [1]: (i) Infrastructure
as a Service (IaaS) where the provider sells access to
computers upon which any software can run. The resources,
which are in most cases virtual, are expressed in terms of
processing power, memory, storage capacity, etc. (ii)
Platform as a Service (PaaS), where an environment for
application developers to deploy their code is offered. (iii)
Software as a Service (SaaS) where customers pay to use an
application that is hosted on a remote provider. The service
provider manages the software and the underlying
infrastructure. The main focus of this paper is the IaaS layer
since it has great potential in further revolutionizing the way
compute resources are provisioned and consumed.

While scalability enables smooth application execution
even when number of users grows, two approaches are
mainly used to make new resources available [2]: (i) Vertical
scalability (scale up/down) increases or decreases the
resources (commonly the CPU number, the memory or
bandwidth) of an element in the system. (ii) Horizontal
Scalability (scale in/out) replicates or removes instances of
system elements (usually Virtual Machines - VMs) to
balance the workload. Elasticity is the ability to scale an
infrastructure on demand within minutes (seconds in an
optimum case) to avoid under-utilization and over-utilization
of resources. Scalability is a prerequisite for elasticity, but it
does not take into consideration how fast or how often
scaling actions can be performed thus it is not directly
related to how well the actual resource demands are matched
by the provisioned resources an any point of time [4].

What is more, modern business trends highlight
opportunities for service provisioning via cloud
infrastructure to the end users. Three main models have
prevailed: (i) direct service provision to the end user (e.g.,
Dropbox), (ii) use of cloud infrastructure for an
organization’s internal purposes (e.g., internal network of a
bank) and (iii) use of cloud infrastructure to provide a service
to the end users.

The current paper focuses on the third model, which is
being exploited by application providers / owners - referred
as brokers. The service provided may be any software
system, consisting of one or more components. Its
architecture, in terms of components, interfaces and logic, is
considered to be known and can be precisely described by
the provider. As application requirements, regarding the
resources, are formulated by the aforementioned brokers, a
key issue relates to the resulting elasticity needs and their
modeling. Elasticity and requirements are dependent on the
following parameters: (i) application’s nature (i.e., use of
multiple processors), (ii) usage (i.e., variable exponential
growth of end-users) and (iii) infrastructure vendors (i.e.,
resource availability). In order to analyze elasticity
requirements, models that meet the above parameters and
allow use of the analysis results to provide resources based
on demand are required.

In addition to elasticity issues, application providers /
owners aim to maximize their customer base while
considering the cost. Towards this direction, dynamic
scheduling policies that suggest ways to attract customers are
required, with an ultimate goal to optimize the “investment”
made for resources compared to the foreseen number of
customers. Nevertheless, the expected number is directly
linked to the Quality of Service (QoS) provided and users’
Quality of Experience (QoE). For example, if provisioned

20Copyright (c) IARIA, 2015. ISBN: 978-1-61208-388-9

CLOUD COMPUTING 2015 : The Sixth International Conference on Cloud Computing, GRIDs, and Virtualization

resources follow demand, a number of users will have to
wait for resource’s availability and hence the use of service.

In economic terms, the overprovisioned resources are
easily measured but underprovisioned is way harder. End
users who were unable to use the application or experienced
performance degradation (lower levels of QoS) may never
become returning customers and discredit the service. Based
on the above, a dynamic model, efficient for business,
regarding both current users and expected ones compared to
elasticity needs, is required. Nonetheless, the efficiency of
scheduling policy needs to be linked to the required
resources that accommodate the users’ expectation regarding
QoS. The linkage / mapping should allow elasticity models
to be followed compared to different scheduling policies
(aggressive, passive, neutral) resulting in the optimal
resource management. Furthermore, scheduling policies
should be able to be switched a dynamic way during runtime.
In this paper, we present a mechanism (overview depicted in
Figure 1) enabling the latter, which has been developed and
validated in the framework of the PinCloud project [5] with
different stakeholders in the eHealth domain.

A mechanism, the overview of which is presented in
Figure 1, enabling the latter is presented in this paper.

Figure 1. Use of Mechanism

The added value of the proposed mechanism lies on the
incorporation of techno-economic factors for the
management of resources in cloud environments. The
mechanism enables the outcomes of a business - expressed
through the corresponding models - simulation process to be
considered during runtime in order to trigger resource
provisioning decisions. Runtime adaptation takes place based
on both the business goals of the application provider and the
emerging requirements from the end-users.

The remainder of this paper is structured as follows:
Section 2 presents the related work that solves the problem
of elasticity in cloud platforms. Section 3 proposes three
dynamic scheduling policies, while in Section 4 the
architecture of the proposed mechanism’s architecture is
being analyzed. In Section 5, mechanism is evaluated and the
results are discussed. Finally, Section 6 concludes our work
and discusses open areas.

II. RELATED WORK

Elasticity, a term originally defined in physics, is
considered one of the central attributes of the cloud. Cloud
providers use the term in advertisements and even in the

naming of products or services and implement it in different
degrees.

Amazon EC2 [6] allows VMs to scale vertically in order
to reciprocate with resource requirements. Customers can
change resource requirements; but, in order to achieve
horizontal scalability a cluster of VMs must be created and
configured according to needs. This is a manual process,
which does not include application configuration of a VM.
Amazon EC2 enables the preparation of the VM but not the
automatic configuration, which is a major requirement for an
elastic platform.

Microsoft’s Windows Azure [7] consists of three main
components providing a set of services to cloud users for
running applications and storing data. Azure offers specific
VM instances with predefined sizes (CPU, Memory).
Automatic scaling is offered through application rules via a
configuration file specified by users.

Google App Engine [8] is optimized for web
applications. It handles the deployment, monitoring and
launching of service instances making use of Google’s core
engine. Automatic scalability is transparent to the application
providers / owners with no option for the developer to write
his own scaling rules based on application’s specific needs.

Amazon offers a service called Spot Instances [9], an
elasticity solution based on cost. Spot Instances are virtual
servers sold per hour via an action. Based on bids and
available capacity Amazon determines a price (Spot Price)
and if the maximum bid price exceeds the current Spot Price
the request is fulfilled.

RightScale [10] is an application management platform
for clouds addressing the Infrastructure-as-a-Service (IaaS)
service model. RightScale provides control and elasticity
capabilities, assisting the user to design, deploy and manage
applications on a number of underlying clouds (i.e., Amazon,
Rackspace, private solutions like CloudStack, OpenStack
and others). Various monitoring metrics are used and users
can define alerts based on these metrics.

OnApp [11] is a software package for IaaS cloud
providers. It states that it enables replication and
redimensioning on VMs allowing changes manually or
automatically, based on rules defined by user and metrics
obtained by the monitoring mechanism. Lim et al. [12]
proposed an automatic mechanism based on a target range
for a specific system metric, rather than a threshold to trigger
actions. The key point is that the system reacts when the
defined metric is outside the range, reducing resources
allocations.

Internal provider resources management and use of
elasticity is addressed by Meng et al. [13]. According to the
authors, management tasks (like VM creation, migration,
etc.) are expensive in terms of computation and more likely
to occur in bursts. Lack of resources to handle this workload
will affect users’ applications performance. Based on this
observation, TIDE: a self-scaling framework for virtualized
data center management, was proposed. The main idea is to
treat management workload the way application workload
would be treated. When bursts in management workload are
encountered by TIDE, it powers up dynamically additional
server management instances. When burst subsides,
management instances’ physical resources can be used for
user application workloads.

Comparing to the approaches discussed above, the
proposed resource management mechanism addresses the

21Copyright (c) IARIA, 2015. ISBN: 978-1-61208-388-9

CLOUD COMPUTING 2015 : The Sixth International Conference on Cloud Computing, GRIDs, and Virtualization

issues of resource management from a broker’s perspective.
To take full advantage of elasticity, while an elastic
infrastructure provides the required functionality, business
adoption is constrained by the associated costs compared to
the actual and foreseen service usage. Applications should
have the ability to dynamically exploit the infrastructure
according to workload changes in a dynamic and cost-
efficient way. The presented mechanism proposes resource
management (in terms of resource requirements
specification) taking into consideration both the forecasted
elasticity needs of the service in relation with the scheduling
policy being followed by the service owner.

III. SCHEDULING POLICIES

Application providers / owners use different business
models in order to maximize their profit. Among other
parameters (like cost for supplies, man hours etc.) these
models also include scheduling policies which take into
consideration the resources that application needs to operate
inside the predefined QoS. Dynamic scheduling policies
reflect how the current and the forecasted number of users
relate to the application needs (and thus resource
requirements) for specific predefined QoS levels. Given that
the provided service can be charged based on different
models, three main policies are proposed (i) Aggressive, (ii)
Passive, and (iii) Neutral. Each model guarantees different
response time, therefore aims to different customer base size.
Concept of man hours, cost for supplies, and others are out
of the scope of this work; therefore, they are not taken into
consideration. The core set of parameters incorporated in the
considered scheduling policies follow:

1. Cloud Resources

(a) Type (CPU, Memory)
(b) Availability

2. Usage
(a) Number of users currently using

application
(b) Target users
(c) Number of acquired users

3. Cost
(a) Cost of acquiring resources
(b) Gain from users acquired

The above parameters are directly and dynamically
linked / related to each other. For instance, increase of users
means more revenue but it also means increase in response
time. In order for the response time to be maintained within
specific limits, additional resources may need to be acquired.
Accordingly, decrease in the number of users means lower
response time, reducing the need for resources.

In order to create the dynamic scheduling policies, the
concepts of minimum (t

L
) and maximum (t

U
) response time

are introduced. Response time should never exceed any of
these two limits. Another key element taken into
consideration, which can alter application’s response time, is
spin-up time [14]. The amount of time needed, since initial
acquisition request, for required resources to be ready for use
is called spin-up time. Weighting factors are included in the
scheduling policies in order to define the requested amount
or resources. All the attributes used for the creation of the
scheduling policies are summarized in Table 1.

TABLE 1. ATTRIBUTES USED FOR SCHEDULING POLICIES

Component Description

Goal Users Number of target Users

RΤ Response Time

tL Best – Minimum Response Time

tU Worst – Minimum Response Time

tSU Spin Up Time

initDep Initial Deployment

res Resources

a,b,c Weighting Factors

n Predifined amount of time

Based on the above, the following paragraphs present the

scheduling policies taken into account in the current work:
(i) Passive, (ii) Neutral, and (iii) Aggressive. For each one, a
mathematical equation describes how the new value for the
resources (f(x)) is calculated.

A. Passive Scheduling Policy

This model ensures that users do not experience violation
of the maximum response time but allows response times to
be close to the maximum ones. To achieve that the difference
between current response time and minimum response time
plus a predefined amount of time, referred as n, is examined
and if current response time is higher more resources are
requested. Bursting (i.e., extreme growth in user numbers) is
also taken into consideration as current response time is
contradicted to maximum response time. Spin-up time is not
taken into consideration at this model. Finally, to avoid
overprovisioning current response time is compared to
minimum response time and if it is less then all acquired
resources are released. This model is described in (1) and its
flowchart is illustrated in Figure 2.

𝑓(𝑥) = {

𝑎 ∗ 𝑟𝑒𝑠, 𝑅𝑇 > 𝑡𝐿 + 𝑛

𝑏 ∗ 𝑟𝑒𝑠, 𝑅𝑇 ≥ 𝑡𝑈

𝑖𝑛𝑖𝑡𝐷𝑒𝑝, 𝑅𝑇 < 𝑡𝐿
 (1)

Figure 2. Passive Scheduling Policy

22Copyright (c) IARIA, 2015. ISBN: 978-1-61208-388-9

CLOUD COMPUTING 2015 : The Sixth International Conference on Cloud Computing, GRIDs, and Virtualization

B. Neutral Scheduling Policy

This model’s target is to prevent users, even in bursting,
to come too close to maximum response time. It follows
same logic as the above model comparing current response
time with minimum and maximum. In contrast with passive
model, this one takes into consideration spin-up time in cases
of bursting. Spin-up time is subtracted from maximum
response time, ensuring that the requested resources will be
available before maximum response time is reached.
Furthermore, if the number of target users is reached more
resources are acquired as a bonus to users. Overprovisioning
is avoided the same way as in passive model. This model is
described in (2) and its flowchart is illustrated in Figure 3.

 

𝑓(𝑥) =

{

𝑎 ∗ 𝑟𝑒𝑠, 𝑅𝑇 > 𝑡𝐿 + 𝑛
𝑎 ∗ 𝑟𝑒𝑠, 𝑈𝑠𝑒𝑟𝑠 = 𝐺𝑜𝑎𝑙𝑈𝑠𝑒𝑟𝑠

𝑏 ∗ 𝑟𝑒𝑠, 𝑅𝑇 ≥ 𝑡𝑈 − 𝑡𝑆𝑈

𝑖𝑛𝑖𝑡𝐷𝑒𝑝, 𝑅𝑇 < 𝑡𝐿

 (2)



Figure 3. Neutral Scheduling Policy

C. Aggressive Scheduling Policy

This model makes sure users are as close as possible to
minimum response time. It is similar to Neutral model
although it’s weighting factors are bigger. Furthermore, a
predefined amount of time (n) is added to spin-up time,
ensuring that even in heavy bursts users will not reach close
to the maximum response time. Overprovisioning is again
avoided by comparing application’s response time with
minimum response time. This model is described in (3) and
its flowchart is illustrated in Figure 4.



 𝑓(𝑥) =

{

𝑎 ∗ 𝑟𝑒𝑠, 𝑈𝑠𝑒𝑟𝑠 = 𝐺𝑜𝑎𝑙𝑈𝑠𝑒𝑟𝑠

𝑏 ∗ 𝑟𝑒𝑠, 𝑅𝑇 ≥ 𝑡𝐿 + 𝑛

𝑐 ∗ 𝑟𝑒𝑠, 𝑅𝑇 ≥ 𝑡𝑈 − (𝑡𝑆𝑈 + 𝑛)

𝑖𝑛𝑖𝑡𝐷𝑒𝑝, 𝑅𝑇 < 𝑡𝐿

 (3)

Figure 4. Aggressive Scheduling Policy

The aforementioned policies are supposed to be part of
an application’s provider / owner business model. According
to what QoS application provider / owner promises on his
business model the corresponding policy should be followed.
Furthermore, weighting factors and the predefined amount of
time (n) are different in each policy. That means that
weighting factors and predefined amount of time of passive
scheduling policy are the lowest while aggressive one’s are
the bigger.

IV. RESOURCE MANAGEMENT MECHANISM

The goal of the mechanism is to make it completely
independent to the process of starting the application, thus
making it possible to start an application and join the
mechanism later if needed. Secondly, the mechanism should
allow application providers /owners to change / switch
between scheduling policies in a dynamic way during
runtime.

23Copyright (c) IARIA, 2015. ISBN: 978-1-61208-388-9

CLOUD COMPUTING 2015 : The Sixth International Conference on Cloud Computing, GRIDs, and Virtualization

Figure 5. Mechanism’s Components

As depicted in Figure 5, the proposed modular
architecture consists of four main building blocks / services:

1. Initiator: This service creates a connection with the
application and obtains its current requirements and current
usage (e.g., number of users, number of requests, etc.). After
relaying this information to the monitoring component it
pauses.

2. Monitoring: The goal of this service is to monitor
the application’s state in terms of both application-level (e.g.,
number of current users and current response time) and
resource-level (e.g., CPU usage) metrics. All the information
is passed to the algorithm.

3. Business Model Analyzer: The analyzer obtains
the current scheduling policy, contained in the business
model used by the provider and relays the information to the
algorithm. Furthermore, number of target users (referred as
goal users in the above section) is also relied to the
algorithm.

4. Algorithm: Mechanism’s logic which takes into
consideration both the forecasted elasticity needs of the
service and the scheduling policy which the service owner
follows. Based on the collected information from the
aforementioned components it estimates response time for
the acquired users. Since business models, thus scheduling
policies, can be changed by application provider / owner
during runtime number of target users can also be changed.
Each time number of target users is reached application
provider / owner can set a new goal number and the
mechanism will estimate the response time.

V. EVALUATION

The aim of experimentation is to evaluate the proposed
mechanism in a real environment. To this end, the
experiment was distributed across three different locations in
Europe: EPCC (Edinburgh), HLRS (Stuttgart) and PSNC
(Poznan) provided by the BonFire cloud infrastructure [15].
The connection between individual sites was over best effort
Internet (Cloud over Internet) besides the connection
between UK-EPCC and PL-PSNC sites. The latter was
established with GΈANT Bandwidth on Demand (BoD)
system (AutoBAHN BoD version 2.1.1[16]), which is a
service for dynamic bandwidth provisioning across multiple
networks (guaranteed bandwidth).

The experimentation infrastructure that had been used
consisted of in total of 30 VMs acting as servers (10 VMs
have been deployed in each of the following sites: Edinburg,
Stuttgart and Poznan). Given that the goal of the

epxerimenation was to obtain information with respect to
response times, the clients have been deployed in 60 VMs in
different sites so as to obtain information for cross-site
response times. The response time was measured through
Apache JMeter.

For the purposes of the experimentation, a simple Java
servlet-based Service Oriented Architecture (SOA) service
was developed. Upon receiving an HTTP GET request, the
service calculates a million random integers ranging from
zero to one thousand. Application does not store user state,
thus making easy the service requests to be spread among
servers running the same code. The only purpose of the
service is to represent highly parallelizable computation task.
Requests arrive at a load balancer node, which is included to
the deployment, to allocate them to servers. Application was
deployed in each client (side).

A. Evaluation Results

The aim of our evaluation was to validate the operation
and efficiency of the algorithm in different cases and for
different metrics. In the experiment presented below, a total
of 200 users were used, while policies of neutral scheduling
policy where applied with minimum response time set to 200
and maximum set to 15000 milliseconds.

The experimentation data that have been collected are
depicted in Figure 6. The information includes active users
during the experiment period, response time, CPU and
memory utilization. It can be observed that number of users
was increased linearly. Response time though was not
increasing with the same pattern since it is also dependent on
CPU and memory usage. The increase on number of users
entailed increase on resources; thus, the response time was
maintained steady. As number of users kept on increasing
response time started to increase leading to more CPU usage.
One should take into consideration application’s nature: It
requires computation power but not memory usage since it
requires no cashing. As observed in Figure 6 memory has an
increase at the beginning of the experiment, but then remains
steady, while CPU resources are increased, proving that
resource management was correct. Response time
contradicted, only with the number of users is illustrated in
Figure 7.

Figure 6. Collected Experimentation Data

24Copyright (c) IARIA, 2015. ISBN: 978-1-61208-388-9

CLOUD COMPUTING 2015 : The Sixth International Conference on Cloud Computing, GRIDs, and Virtualization

Figure 7. Response Time VS users

The distribution of response times during the evaluation
experiment is illustrated in Figure 8. With a closer
observation, one can notice that, regardless the linear growth
of users, the response time was not also growing linearly but
was maintained steady for an amount of time. Another
important observation is that the distribution of lower
response times (i.e., 300-900ms) is enough smaller. That is
easily explained: Since neutral’s model policies were applied
as long as users were closer to minimum response time no
resources were acquired so with number of users growing
response time also grew.

Figure 8. Response Time Distribution

Figure 9 presents a comparison between estimated and
actual response time. As illustrated in the figure, the
proposed mechanism delivers results very close to reality. As
a result, the mechanism identifies the forecasted number of
users in an accurate way as required to state the resources
required for the number of users.

Figure 9. Actual VS Estimated Repsonse Time

In order to illustrate more clearly whether the actual
coincides with the estimated response time in Figure 10, a
histogram of residuals resulting from the comparison
between them is illustrated.

Figure 10. Histogram of Residuals

As shown, the highest residues occur around zero, thus
proving the correctness of the prediction results. It is,
therefore evident that the mechanism determines the number
of users compared to the required resources modeled with
precision.

VI. CONCLUSION AND FUTURE WORK

The objective of this paper was to present a new
mechanism for the optimum cloud resources management
based on dynamic scheduling policies and elasticity needs.
Initially, dynamic scheduling policies regarding both current
users and expected ones compared to elasticity needs were
proposed. Application’s response time was compared to the
maximum and minimum accepted response time defined in
the QoS. Furthermore, a mechanism that maps current and
expected users with resource needs while taking into
consideration the scheduling policies was introduced. The
proposed mechanism is completely independent from the
application and can be deployed while an application is

25Copyright (c) IARIA, 2015. ISBN: 978-1-61208-388-9

CLOUD COMPUTING 2015 : The Sixth International Conference on Cloud Computing, GRIDs, and Virtualization

active. Service provider can change his scheduling policy
during runtime without affecting neither application’s nor
mechanism’s performance.

ACKNOWLEDGMENT

The research leading to the results presented in this paper
has received funding from the European Union and the
Greek National Strategic Reference Framework Programme
(NSRF 2007-2013), Project PinCloud under grant agreement
number “11SYN_6_1013_TPE”.

REFERENCES

[1] Grance, P.M.a.T., NIST Definition of Cloud Computing, Version 15.
2011, NIST: http://csrc.nist.gov/groups/SNS/cloud-computing.
[retrieved: January 2015]

[2] Suleiman, B., Sakr, S., Venugopal, S., and Sadiq, W. (2012), “Trade-
off analysis of elasticity approaches for cloud-based business
applications”, In Web Information Systems Engineering-WISE 2012
(pp. 468-482). Springer Berlin Heidelberg.

[3] Rimal, B. P., Choi, E., and Lumb, I. (2009, August), “A taxonomy
and survey of cloud computing systems”, In INC, IMS and IDC,
2009. NCM'09. Fifth International Joint Conference on (pp. 44-51).
Ieee.

[4] Herbst, N. R., Kounev, S., and Reussner, R. (2013, June), “Elasticity
in Cloud Computing: What It Is, and What It Is Not”, In ICAC (pp.
23-27).

[5] PinCloud Project. Available from: http://pincloud.med.auth.gr/en.
[retrieved: February 2015]

[6] Amazon. Amazon EC2. Available from: http://aws.amazon.com/ec2/.
[retrieved: January 2015]

[7] Microsoft Windows Azure. Available from:
http://azure.microsoft.com/enus/documentation/. [retrieved: January
2015]

[8] Google App Engine. Available from:
https://developers.google.com/appengine/?csw=1. [retrieved: January
2015]

[9] Amazon EC2 Spot Instances. Available from:
http://aws.amazon.com/ec2/purchasing-options/spot-instances/.
[retrieved: January 2015]

[10] RightScale. Available from: http://www.rightscale.com/. [retrieved:
January 2015]

[11] onApp. Available from: http://onapp.com/. [retrieved: January 2015]

[12] Lim, H. C., Babu, S., Chase, J. S., and Parekh, S. S. (2009, June),
“Automated control in cloud computing: challenges and
opportunities”, In Proceedings of the 1st workshop on Automated
control for datacenters and clouds (pp. 13-18). ACM.

[13] Meng, S., Liu, L., and Soundararajan, V. (2010, November), “Tide:
achieving self-scaling in virtualized datacenter management
middleware”, In Proceedings of the 11th International Middleware
Conference Industrial track (pp. 17-22). ACM.

[14] Brebner, P. C. (2012, April), “Is your cloud elastic enough?:
performance modelling the elasticity of infrastructure as a service
(iaas) cloud applications”, In Proceedings of the 3rd ACM/SPEC
International Conference on Performance Engineering (pp. 263-266).
ACM.

[15] Kavoussanakis, K., et al., “Bonfire: The clouds and services testbed”,
In Cloud Computing Technology and Science (CloudCom), 2013
IEEE 5th International Conference on (Vol. 2, pp. 321-326).

[16] Bonfire Documentation – Controlled Bandwidth with AutoBAHN.
Available from: http://doc.bonfire-
project.eu/R3.1/networking/autobahn.html. [retrieved: January 2015]

26Copyright (c) IARIA, 2015. ISBN: 978-1-61208-388-9

CLOUD COMPUTING 2015 : The Sixth International Conference on Cloud Computing, GRIDs, and Virtualization

http://csrc.nist.gov/groups/SNS/cloud-computing
http://pincloud.med.auth.gr/en
http://aws.amazon.com/ec2/
http://azure.microsoft.com/enus/documentation/
https://developers.google.com/appengine/?csw=1
http://aws.amazon.com/ec2/purchasing-options/spot-instances/
http://www.rightscale.com/
http://onapp.com/

