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Abstract—Cloud infrastructures imply virtual machines 

dynamic hosting. The distribution of resources is performed in 

dependence on the volume and a pattern of used resources. An 

estimation of current load and prediction of future load are 

mandatory for effective resources management. The statistical 

processing of internal counters of a guest operating system 

gives good prospects. The disadvantage of the method is the 

complexity of data collection and its processing. The large 

number of parameters and variance in their behavior in 

different operating systems and configurations introduce extra 

complexity for the virtualization case. The present research 

covers the estimation of  a virtual machine working set based 

on guest OS internal counters. The correction of the estimated 

value is done in accordance on the feedback of donor guest OS. 

Keywords-virtual machine; cloud computing; memory 

management; working set. 

I. INTRODUCTION 

Resources virtualization is one of the key topics in 
IT (Information Technology) industry due to resource 
optimization task. Most of the nowadays workloads on user 
resources come in peaks. That is, virtual machines mostly 
consume little resources; but, eventually, activity gets to a 
peak and the volume of required resources increases 
significantly. In this case, resources exhausting would bring 
a considerable performance loss. Virtualization is a popular 
solution to handle the issue and make the management more 
flexible. A widely used practice that increases the percentage 
of resources utilization is setting the size of virtual resources 
above the real hardware resources. This method is called 
overcommit or oversubscription. To make this mode 
effective a smart resources management is required. This 
management follows the principle “from each according to 
his ability, to each according to his needs” when resources 
are assigned basing on the real consumption level, not the 
assigned one. 

CPU (Central Processing Unit) and memory are the most 
common overcommitted resources as their utilization is not 
too high in usual workloads [13][14]. Modern operating 
systems (OS) behave differently when these resources are 
not fully utilized. For instance, when OS does not need CPU 
resource, it sends a halt signal (hlt instruction) to CPU to 
reduce power consumption. A virtualization system handles 
this event and thus, it determines that the CPU resource can 
be diverted to another consumer. At the same time, there is 
no instruction to signal about unused memory in Intel x86 
architecture. Thus, it is impossible to estimate real memory 
consumption by hardware means.  

We define a working set as a set of memory pages used 
by a consumer (a process or a virtual machine) in a given 
time frame [1]. The problem of virtual set size estimation is 
not new; it is discussed in [2]-[6]. There is an analogy with a 
process in an operating system. A virtual machine does not 
know that the address space is not continuous, similar to how 
a process does not know that its allocated space is not 
continuous. Accesses to unmapped memory are handled by a 
virtualization engine transparently to the guest operating 
system, similar to how a page miss is handled transparently 
to a process. Processes, usually, do not inform 
operating systems about the required volume of memory. 
Operating systems do not inform the virtual machine 
about  the required volume of memory as well.  

Although a working set topic is elaborately investigated 
(the fundamental work of Denning dates back to 1970 [7]), 
the virtualization adds a new dimension. While a process 
memory is definitely a black box for an operating system, a 
virtual machine can use a paravirtualization to obtain 
information on the guest resources management or even 
improve guest OS for better interaction with the 
virtualization module. The present article unveils a method 
that reflects changes inside a guest OS by the means of 
internal counters statistics. This statistics can be used to 
predict peak loads as well. 

There is a number of techniques to optimize RAM 
utilization: 

 Content-based page sharing  

 Ballooning  

 Memory compression  

 Page replacement algorithms  
The detailed description of these techniques can be found 

at [13][14]. Section II.A of the present article describes 
ballooning in more details. 

Each technique has its advantages and disadvantages, 
while most virtualization products use a combination of them 
[13] [14]. A content-based page sharing has an imperceptible 
performance impact on the host, but its memory utilization 
ability depends on the workload type. Memory compression 
decreases the cost of a page miss, but it doesn’t influence the 
number of misses. Page replacement algorithms often don’t 
satisfy an acceptable page miss rate due to so-called 
semantic gap. Ballooning dramatically decreases the page 
miss rate but in the case of overinflation it causes the guest 
OS lags and even falls.  
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Figure 1.  Balloon driver control diagram 

 
The ballooning technique is implemented in all 

virtualization products – VMWare, Xen, KVM [15], 
Parallels, Microsoft Hyper-V, Sun VirtualBox Guest 
ballooning driver is designed for Linux and Windows OSes. 
But all known balloon implementation has no idea on the 
best balloon size – they just process external inflate/deflate 
commands [16]. 

Luiz Capitulino discusses auto-ballooning in [21]. The 
proposed concept fits Linux hosts only. The idea is to use 
three memory pressure types, LOW, MEDIUM, and HIGH 
and use these states to automatically decide whether to 
inflate or deflate the balloon. 

Another technology used for autoballooning on KVM is 
Memory Overcommitment Manager (MOM) [22][23]. It 
also relies on the memory pressure state, same as for the 
previous technique. In contrast with the previous technique, 
this uses a set of scripts and the libvirt library [24], thus it 
does not require kernel modifications. But, MOM works 
only with Linux guests. A more detailed description of the 
MOM technique can be found in [23]. 

Both listed approaches share the same problems: the lack 
of adequate performance test sets [21] and the non-
predictive nature of the techniques [21]-[23]. The latter 
means that these techniques are unable to forecast future 
loads and prepare the environment for such loads.  

In this paper, we aim to build an effective working set 
size estimator and use it for an automatic balloon control 
algorithm. We present performance results for our algorithm 
as well. 

Section II introduces basic definitions such as virtual 
machine, hypervisor, ballooning and internal counters. 
Section III describes the architecture of the data collecting 
subsystem, the data collecting itself, an efficiency test and 
its configuration. Section IV covers data collection required 
for the analysis, and introduces the estimation of a working 
set size. Section V presents performance testing results and 

methods for performance improvements. Section VI, as a 
conclusion, lists briefly the obtained results, and proposes 
further research topics. 

II. BASIC DIFINITIONS 

Virtual machine (VM) is an emulation of a particular 
computer system. 

A hypervisor is a software, firmware, or hardware that 
creates and runs virtual machines. We use terms 
virtualization module, virtualization engine, engine to denote 
a hypervisor. 

A computer that runs a hypervisor, which maintains one 
or more virtual machines, is called a host machine.  

Each virtual machine is called a guest machine. 

A. Ballooning 

A ballooning is a technique of on-the-fly virtual machine 
random access memory size modification. Each guest OS 
gets an additional driver (balloon). The driver is managed by 
a virtualization engine. The engine issues commands of two 
types: increase the number of pages allocated by the driver 
(inflate balloon) or decrease this number (deflate balloon). 
The memory pages allocated by the driver are committed 
from the point of view of the guest OS and thus, they could 
not be allocated to other processes. The hypervisor on the 
host side gives the memory pages allocated by the balloon 
driver to other virtual machines running on the same host 
machine. This implements the principle “from each 
according to his ability, to each according to his needs”. 

B. Operating system internal counters 

Further, we present a description of operating system 
internal counters and how to use these counters. 

Operating systems of Microsoft Windows family use 
system internal counters such as TotalMemory [8] and  
CommitMemory for computer resources management and 
statistics collection. The system updates these counters 
automatically. User space and kernel space programs can 
fetch these counters at any time with proper requests. The 
requests to get values of the counters are fast as usually the 
data is simply copied from the kernel memory to the 
specified area. 

As shown in [9][10], even different versions of Microsoft 
Windows significantly vary in the policy of resources 
management. So, the existence of a single efficient resource 
management policy for the different OSes is unlikely. 

This article investigates counters of two OSes within a 
single family: Windows 7 and Windows 8. This choice is 
based on the popularity of Microsoft's operating systems 
family in general [17] and specifically Windows 7 and 
Windows 8 that still have a mainstream support [18]. 

The approach illustrated on Figure 1 can be applied to 
other operating systems such as Linux. However, the 
differences in system API (Application programming 
interface), counters, and resource management algorithms 
[19][20] make modifications to the VirtIO PCI  
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Figure 2.  Internal counters dynamics for Windows 7 and Windows 8 

operating systems. 

ballooning driver necessary as well as a search for counters 
similar to TotalMemory and CommitMemory. The analysis 
of memory management and swapping algorithms in Linux 
is another topic for further research. 

We deduce formulas (1)-(4) for the estimate of the 
working set size and test the efficiency of these estimates. 
The resulting value is applied by balloon means. That is we: 

1) Estimate the value with guest OS counters. 

2) Set balloon size to take away all potentially unused 

memory pages. 

3) Correct the value in accordance to guest OS counters 

value. 

III. THE DATA COLLECTING 

A. An architecture of the data collecting subsystem 

In order to minimize the cost of data acquisition, 
prototyping, and controlling the balloon driver we use the 
scheme from the Figure 1.  

We have modified the VirtIO balloon driver so that in 
addition to the main goal the driver gets internal counters' 
values and delivers them to a hypervisor. The hypervisor 
sends this data to the Control script that analyzes the data 
and makes decision. Control script can send commands to 
the VirtIO balloon driver through the hypervisor interfaces. 

B. Data collecting and efficiency test 

The dependencies between internal counters and the 
working set size are deduced using special tests that can put 
virtual machines under specific workloads. These tests 
should be  

 
Figure 3.  PCMart test results for different σ values in Windows 7 and 

Windows 8 operating systems. 

able to inflict different patterns of workload and measure the 
overall virtual machine’s performance. The main point is that 
improvements in memory management shouldn’t downgrade 
the performance.   

We have used PCMark [11] that gives an aggregated 
view and atomics that test separate functions of virtual 
machine. The atomics tests are describe in Table I. The 
atomics tests measure system performance in a wide variety 
of workloads: CPU workload, network, HDD, Java 
programs, 2D and 3D graphics, and so on. 

C. Test configuration 

Host machine has the following configuration: Intel Core 
i5-4570 3.2GHz x 4, 16Gb RAM, 1Tb HDD, Intel Haswell 
Desktop, Linux Ubuntu 13.04. 

Virtual machines have the following configuration: 
1CPU, 4Gb RAM, 256Mb Video, 64Gb HDD. The operating 
systems used are Windows 7 x64 and Windows 8 x64. 

Virtualization engine used is Parallels Desktop 10. 

IV. VIRTUAL MACHINE WORKING SET CALCULATION 

A. Collecting data for the analysis 

The first modification of the VirtIO balloon driver sent 
20 parameters to the hypervisor. During the experiments, 
some of the parameters turned out to be statistically 
irrelevant.  
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TABLE I.  PERFORMANCE TESTS 

Test 
Windows 7, 

1CPU, 4Gb 

Windows 8, 

1CPU, 4Gb 

busyloop_test -2.0% -2.0% 

system_syscall_test -0.1% -0.3% 

process_exec_test -2.0% -2.3% 

thread_create_test -2.0% -1.8% 

io_hdd_seq_rand_rd

_test 

-99.8% -99.2% 

virtalloc_test -1.1% -0.2% 

mem_read_test -1.5% -5.4% 

mem_write_test -1.6% -2.9% 

mem_pf_read_test -0.2% -10.0% 

mem_pf_write_test +0.4% -9.1% 

mem_copy_test -1.2% -1.6% 

 
The following parameters remained: 

 Physical total - the amount of actual physical 
memory. 

 Commit total - the number of pages currently 
committed by the system. 

 Working set size - current working set size. 

 Commit available - the number of pages currently 
available to the system. 

 Physical memory usage - the amount of physical 
memory currently in use.  

 Page file usage - the amount of page file currently in 
use. 

 Balloon size – the memory allocated by the VirtIO 
balloon driver 

Figure 2 demonstrates the collected data for Microsoft 
Windows 7 and Microsoft Windows 8. 

B. Working set size estimation – the first approximation 

Figure 2 demonstrates that the working set size has a 
lower bound equal to the Physical memory usage and an 
upper bound equal to the Commit total. 

The lack of random access memory causes memory 
swapping. Read/write operations become extremely slow, so 
underestimating the working set size leads to a significant 
drop in performance of the overall guest operating system. 
Thus, the Physical memory usage should not be estimated as 
its lower bound. 

We denote the estimate of the working set size by W. 
Evidently, the Commit Total value can not be less than 

the working set size as it includes the volume of used page 
file pages plus the volume of memory allocated in the RAM. 
So, it is greater than or equal o the size of a working set. 

When the VirtIO balloon driver is disabled, the Commit 
total contains all the memory pages allocated by the system, 
hence 

W=CommitTotal (1) 

TABLE II.  PERFORMANCE RESULTS FOR CACHE SIZES, VARYING FROM 

256МB TO 768MB. WINDOWS 7 OS 

Test 

Windows 7, 

Compared to a 

VM with no 

memory 

management 

Windows 7, 

Compared to the 

VM with 

memory 

management 

without cache 

control 

busyloop_test +1.1% +3.2% 

system_syscall_test -1.0% -0.9% 

process_exec_test -3.3% -1.4% 

thread_create_test +3.1% +5.0% 

io_hdd_seq_rand_rd

_test 

-99.8% +32.0% 

virtalloc_test -0.4% +0.7% 

mem_read_test -2.4% -0.9% 

mem_write_test -2.4% -0.8% 

mem_pf_read_test -0.3% -0.0% 

mem_pf_write_test -0.1% -0.6% 

mem_copy_test -0.9% +0.3% 

 
When VirtIO balloon driver is enabled, the Commit total 

is increased by the size of the balloon. So, 

W=CommitTotal-BalloonSize (2) 

C. Working set size estimation – the second approximation  

The working set size as we calculated it in (2) does not 

take into account the size of system caches. This raw result 

would drop the system performance since on disk cache 

exhausting the number of actual I/O operations increases. 

Thus, it is reasonable to provide additional memory for OS 

caches. 

We denote the cache memory estimate by O and effective 

working set size as E, so 

E=W+O (3) 

We assume that O depends on the total physical RAM of a 

virtual machine, hence 

O=σ∙PhysicalTotal (4) 

According to [9][10] policies of memory managements 

vary, so σ is a constant defined by the operating system 

version. 

The constant σ from (4) is evaluated as follows: 

1) Modify the Control Script. In addition to the data 

collection it calculates the E in accordance to the formula 

(3). 

2) The Control Script sends inflate/deflate balloon 

commands to the balloon driver via the hypervisor interface. 

The size is set to PhysicalTotal-E where PhysicalTotal is 

the total size of the assigned random access memory. 
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TABLE III.  PERFORMANCE RESULTS FOR CACHE SIZES, VARYING FROM 

256МB TO 768MB. WINDOWS 8 OS 

Test 

Windows 8, 

Compared to a 

VM with no 

memory 

management 

Windows 8, 

Compared to the 

VM with 

memory 

management 

without cache 

control 

busyloop_test -1.6% +0.4 

system_syscall_test +1.1% +1.4% 

process_exec_test +2.7% +5.1% 

thread_create_test +3.1% +5.0% 

io_hdd_seq_rand_rd

_test 

-98.8% +53.1% 

virtalloc_test +0.2% +0.4% 

mem_read_test -0.2% +5.5% 

mem_write_test +6.1% +9.2% 

mem_pf_read_test -4.9% +5.7% 

mem_pf_write_test -4.0% +5.7% 

mem_copy_test +7.7% +9.4% 

3) The guest machine runs PCMark tests with different 

values of  σ. 

A considerable decrease of performance (more than by k 

percent) can be observed for Windows 7 operating system 

when σ<0.2. 
In case of Windows 8, the performance drops by more 

than k percent when σ<0.15. 
The testing results are presented in Figure 3. 

V. PERFORMANCE EVALUATION 

We used the special tests described in Section III-B to 
test the performance of our estimation. The results are 
provided in Table II. 

Performance changes significantly in tests: 

io_hdd_seq_rand_rd_test, for Windows 7 and 

io_hdd_seq_rand_rd_test, mem_pf_read_test, 

mem_pf_write_test  for Windows 8. 

A. Improving VM performance with the required memory 

size estimates 

Operating systems use free memory for file caches, and it 
is the main cause for the performance downgrade analyzed in 
Section IV-C. All free memory is occupied by the VirtIO 
balloon driver, so no memory is left for caches. The 
following techniques can be used to circumvent this 
problem: 

1) Enable LargeCacheFile to change the cache control 

policy [12]. 

2) Set the limits on the file cache using system calls. 
The file cache size must be chosen individually, 

depending on user's needs. Tables III and IV contain 
performance results for cache sizes varying from 256Mb to 
768Mb. 

A considerable increase of performance in the case of 

controlled cache file size opposed to the uncontrolled cache 

size with the same estimate is obvious. Still, a significant 

drop of performance compared to a virtual machine with no 

memory management persists. But the resource gain on the 

system is significant – about 25% of memory in case of 

Windows 7 and about 30% of memory in case of Windows 

8 were retained, assuming that the declared memory size in 

a VM was 4096Mb. 

VI. CONCLUSION AND FUTURE WORK 

We have obtained estimates on the working set size of 
virtual machines. These estimates were modified to include 
cache size in order to gain back the performance. Such an 
approach gave an acceptable performance while achieving 
the significant resource economy. Unfortunately, the current 
approach considers recalculation of the value for each 
operating system. 

We propose a possible solution of this problem. One can 
collect lots of statistical data for different guest operating 
systems and build a predicting system such as an 
autoregressive model and/or a neural network. These 
systems are promising in terms of forecasting operating 
system working sets. Additional research in this area is 
required to make this idea practical, including the analysis of 
statistical properties of the memory utilization and internal 
counters time series. 

As further research topics we propose improvements to 
the obtained estimate and a more elaborate search for 
dependencies between the working set size and internal 
counters. 
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