
CLOUD COMPUTING 2015 : The Sixth International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2015. ISBN: 978-1-61208-388-9 33

Estimating Working Set Size by Guest OS Performance Counters Means

Anna Melekhova

Parallels

Moscow, Russia

email: annam@parallels.com

Larisa Markeeva

Innopolis University

Kazan, Russia

email: l.markeeva@innopolis.ru

Abstract—Cloud infrastructures imply virtual machines

dynamic hosting. The distribution of resources is performed in

dependence on the volume and a pattern of used resources. An

estimation of current load and prediction of future load are

mandatory for effective resources management. The statistical

processing of internal counters of a guest operating system

gives good prospects. The disadvantage of the method is the

complexity of data collection and its processing. The large

number of parameters and variance in their behavior in

different operating systems and configurations introduce extra

complexity for the virtualization case. The present research

covers the estimation of a virtual machine working set based

on guest OS internal counters. The correction of the estimated

value is done in accordance on the feedback of donor guest OS.

Keywords-virtual machine; cloud computing; memory

management; working set.

I. INTRODUCTION

Resources virtualization is one of the key topics in
IT (Information Technology) industry due to resource
optimization task. Most of the nowadays workloads on user
resources come in peaks. That is, virtual machines mostly
consume little resources; but, eventually, activity gets to a
peak and the volume of required resources increases
significantly. In this case, resources exhausting would bring
a considerable performance loss. Virtualization is a popular
solution to handle the issue and make the management more
flexible. A widely used practice that increases the percentage
of resources utilization is setting the size of virtual resources
above the real hardware resources. This method is called
overcommit or oversubscription. To make this mode
effective a smart resources management is required. This
management follows the principle “from each according to
his ability, to each according to his needs” when resources
are assigned basing on the real consumption level, not the
assigned one.

CPU (Central Processing Unit) and memory are the most
common overcommitted resources as their utilization is not
too high in usual workloads [13][14]. Modern operating
systems (OS) behave differently when these resources are
not fully utilized. For instance, when OS does not need CPU
resource, it sends a halt signal (hlt instruction) to CPU to
reduce power consumption. A virtualization system handles
this event and thus, it determines that the CPU resource can
be diverted to another consumer. At the same time, there is
no instruction to signal about unused memory in Intel x86
architecture. Thus, it is impossible to estimate real memory
consumption by hardware means.

We define a working set as a set of memory pages used
by a consumer (a process or a virtual machine) in a given
time frame [1]. The problem of virtual set size estimation is
not new; it is discussed in [2]-[6]. There is an analogy with a
process in an operating system. A virtual machine does not
know that the address space is not continuous, similar to how
a process does not know that its allocated space is not
continuous. Accesses to unmapped memory are handled by a
virtualization engine transparently to the guest operating
system, similar to how a page miss is handled transparently
to a process. Processes, usually, do not inform
operating systems about the required volume of memory.
Operating systems do not inform the virtual machine
about the required volume of memory as well.

Although a working set topic is elaborately investigated
(the fundamental work of Denning dates back to 1970 [7]),
the virtualization adds a new dimension. While a process
memory is definitely a black box for an operating system, a
virtual machine can use a paravirtualization to obtain
information on the guest resources management or even
improve guest OS for better interaction with the
virtualization module. The present article unveils a method
that reflects changes inside a guest OS by the means of
internal counters statistics. This statistics can be used to
predict peak loads as well.

There is a number of techniques to optimize RAM
utilization:

 Content-based page sharing

 Ballooning

 Memory compression

 Page replacement algorithms
The detailed description of these techniques can be found

at [13][14]. Section II.A of the present article describes
ballooning in more details.

Each technique has its advantages and disadvantages,
while most virtualization products use a combination of them
[13] [14]. A content-based page sharing has an imperceptible
performance impact on the host, but its memory utilization
ability depends on the workload type. Memory compression
decreases the cost of a page miss, but it doesn’t influence the
number of misses. Page replacement algorithms often don’t
satisfy an acceptable page miss rate due to so-called
semantic gap. Ballooning dramatically decreases the page
miss rate but in the case of overinflation it causes the guest
OS lags and even falls.

CLOUD COMPUTING 2015 : The Sixth International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2015. ISBN: 978-1-61208-388-9 34

Figure 1. Balloon driver control diagram

The ballooning technique is implemented in all

virtualization products – VMWare, Xen, KVM [15],
Parallels, Microsoft Hyper-V, Sun VirtualBox Guest
ballooning driver is designed for Linux and Windows OSes.
But all known balloon implementation has no idea on the
best balloon size – they just process external inflate/deflate
commands [16].

Luiz Capitulino discusses auto-ballooning in [21]. The
proposed concept fits Linux hosts only. The idea is to use
three memory pressure types, LOW, MEDIUM, and HIGH
and use these states to automatically decide whether to
inflate or deflate the balloon.

Another technology used for autoballooning on KVM is
Memory Overcommitment Manager (MOM) [22][23]. It
also relies on the memory pressure state, same as for the
previous technique. In contrast with the previous technique,
this uses a set of scripts and the libvirt library [24], thus it
does not require kernel modifications. But, MOM works
only with Linux guests. A more detailed description of the
MOM technique can be found in [23].

Both listed approaches share the same problems: the lack
of adequate performance test sets [21] and the non-
predictive nature of the techniques [21]-[23]. The latter
means that these techniques are unable to forecast future
loads and prepare the environment for such loads.

In this paper, we aim to build an effective working set
size estimator and use it for an automatic balloon control
algorithm. We present performance results for our algorithm
as well.

Section II introduces basic definitions such as virtual
machine, hypervisor, ballooning and internal counters.
Section III describes the architecture of the data collecting
subsystem, the data collecting itself, an efficiency test and
its configuration. Section IV covers data collection required
for the analysis, and introduces the estimation of a working
set size. Section V presents performance testing results and

methods for performance improvements. Section VI, as a
conclusion, lists briefly the obtained results, and proposes
further research topics.

II. BASIC DIFINITIONS

Virtual machine (VM) is an emulation of a particular
computer system.

A hypervisor is a software, firmware, or hardware that
creates and runs virtual machines. We use terms
virtualization module, virtualization engine, engine to denote
a hypervisor.

A computer that runs a hypervisor, which maintains one
or more virtual machines, is called a host machine.

Each virtual machine is called a guest machine.

A. Ballooning

A ballooning is a technique of on-the-fly virtual machine
random access memory size modification. Each guest OS
gets an additional driver (balloon). The driver is managed by
a virtualization engine. The engine issues commands of two
types: increase the number of pages allocated by the driver
(inflate balloon) or decrease this number (deflate balloon).
The memory pages allocated by the driver are committed
from the point of view of the guest OS and thus, they could
not be allocated to other processes. The hypervisor on the
host side gives the memory pages allocated by the balloon
driver to other virtual machines running on the same host
machine. This implements the principle “from each
according to his ability, to each according to his needs”.

B. Operating system internal counters

Further, we present a description of operating system
internal counters and how to use these counters.

Operating systems of Microsoft Windows family use
system internal counters such as TotalMemory [8] and
CommitMemory for computer resources management and
statistics collection. The system updates these counters
automatically. User space and kernel space programs can
fetch these counters at any time with proper requests. The
requests to get values of the counters are fast as usually the
data is simply copied from the kernel memory to the
specified area.

As shown in [9][10], even different versions of Microsoft
Windows significantly vary in the policy of resources
management. So, the existence of a single efficient resource
management policy for the different OSes is unlikely.

This article investigates counters of two OSes within a
single family: Windows 7 and Windows 8. This choice is
based on the popularity of Microsoft's operating systems
family in general [17] and specifically Windows 7 and
Windows 8 that still have a mainstream support [18].

The approach illustrated on Figure 1 can be applied to
other operating systems such as Linux. However, the
differences in system API (Application programming
interface), counters, and resource management algorithms
[19][20] make modifications to the VirtIO PCI

CLOUD COMPUTING 2015 : The Sixth International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2015. ISBN: 978-1-61208-388-9 35

Figure 2. Internal counters dynamics for Windows 7 and Windows 8

operating systems.

ballooning driver necessary as well as a search for counters
similar to TotalMemory and CommitMemory. The analysis
of memory management and swapping algorithms in Linux
is another topic for further research.

We deduce formulas (1)-(4) for the estimate of the
working set size and test the efficiency of these estimates.
The resulting value is applied by balloon means. That is we:

1) Estimate the value with guest OS counters.

2) Set balloon size to take away all potentially unused

memory pages.

3) Correct the value in accordance to guest OS counters

value.

III. THE DATA COLLECTING

A. An architecture of the data collecting subsystem

In order to minimize the cost of data acquisition,
prototyping, and controlling the balloon driver we use the
scheme from the Figure 1.

We have modified the VirtIO balloon driver so that in
addition to the main goal the driver gets internal counters'
values and delivers them to a hypervisor. The hypervisor
sends this data to the Control script that analyzes the data
and makes decision. Control script can send commands to
the VirtIO balloon driver through the hypervisor interfaces.

B. Data collecting and efficiency test

The dependencies between internal counters and the
working set size are deduced using special tests that can put
virtual machines under specific workloads. These tests
should be

Figure 3. PCMart test results for different σ values in Windows 7 and

Windows 8 operating systems.

able to inflict different patterns of workload and measure the
overall virtual machine’s performance. The main point is that
improvements in memory management shouldn’t downgrade
the performance.

We have used PCMark [11] that gives an aggregated
view and atomics that test separate functions of virtual
machine. The atomics tests are describe in Table I. The
atomics tests measure system performance in a wide variety
of workloads: CPU workload, network, HDD, Java
programs, 2D and 3D graphics, and so on.

C. Test configuration

Host machine has the following configuration: Intel Core
i5-4570 3.2GHz x 4, 16Gb RAM, 1Tb HDD, Intel Haswell
Desktop, Linux Ubuntu 13.04.

Virtual machines have the following configuration:
1CPU, 4Gb RAM, 256Mb Video, 64Gb HDD. The operating
systems used are Windows 7 x64 and Windows 8 x64.

Virtualization engine used is Parallels Desktop 10.

IV. VIRTUAL MACHINE WORKING SET CALCULATION

A. Collecting data for the analysis

The first modification of the VirtIO balloon driver sent
20 parameters to the hypervisor. During the experiments,
some of the parameters turned out to be statistically
irrelevant.

CLOUD COMPUTING 2015 : The Sixth International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2015. ISBN: 978-1-61208-388-9 36

TABLE I. PERFORMANCE TESTS

Test
Windows 7,

1CPU, 4Gb

Windows 8,

1CPU, 4Gb

busyloop_test -2.0% -2.0%

system_syscall_test -0.1% -0.3%

process_exec_test -2.0% -2.3%

thread_create_test -2.0% -1.8%

io_hdd_seq_rand_rd

_test

-99.8% -99.2%

virtalloc_test -1.1% -0.2%

mem_read_test -1.5% -5.4%

mem_write_test -1.6% -2.9%

mem_pf_read_test -0.2% -10.0%

mem_pf_write_test +0.4% -9.1%

mem_copy_test -1.2% -1.6%

The following parameters remained:

 Physical total - the amount of actual physical
memory.

 Commit total - the number of pages currently
committed by the system.

 Working set size - current working set size.

 Commit available - the number of pages currently
available to the system.

 Physical memory usage - the amount of physical
memory currently in use.

 Page file usage - the amount of page file currently in
use.

 Balloon size – the memory allocated by the VirtIO
balloon driver

Figure 2 demonstrates the collected data for Microsoft
Windows 7 and Microsoft Windows 8.

B. Working set size estimation – the first approximation

Figure 2 demonstrates that the working set size has a
lower bound equal to the Physical memory usage and an
upper bound equal to the Commit total.

The lack of random access memory causes memory
swapping. Read/write operations become extremely slow, so
underestimating the working set size leads to a significant
drop in performance of the overall guest operating system.
Thus, the Physical memory usage should not be estimated as
its lower bound.

We denote the estimate of the working set size by W.
Evidently, the Commit Total value can not be less than

the working set size as it includes the volume of used page
file pages plus the volume of memory allocated in the RAM.
So, it is greater than or equal o the size of a working set.

When the VirtIO balloon driver is disabled, the Commit
total contains all the memory pages allocated by the system,
hence

W=CommitTotal (1)

TABLE II. PERFORMANCE RESULTS FOR CACHE SIZES, VARYING FROM

256МB TO 768MB. WINDOWS 7 OS

Test

Windows 7,

Compared to a

VM with no

memory

management

Windows 7,

Compared to the

VM with

memory

management

without cache

control

busyloop_test +1.1% +3.2%

system_syscall_test -1.0% -0.9%

process_exec_test -3.3% -1.4%

thread_create_test +3.1% +5.0%

io_hdd_seq_rand_rd

_test

-99.8% +32.0%

virtalloc_test -0.4% +0.7%

mem_read_test -2.4% -0.9%

mem_write_test -2.4% -0.8%

mem_pf_read_test -0.3% -0.0%

mem_pf_write_test -0.1% -0.6%

mem_copy_test -0.9% +0.3%

When VirtIO balloon driver is enabled, the Commit total

is increased by the size of the balloon. So,

W=CommitTotal-BalloonSize (2)

C. Working set size estimation – the second approximation

The working set size as we calculated it in (2) does not

take into account the size of system caches. This raw result

would drop the system performance since on disk cache

exhausting the number of actual I/O operations increases.

Thus, it is reasonable to provide additional memory for OS

caches.

We denote the cache memory estimate by O and effective

working set size as E, so

E=W+O (3)

We assume that O depends on the total physical RAM of a

virtual machine, hence

O=σ∙PhysicalTotal (4)

According to [9][10] policies of memory managements

vary, so σ is a constant defined by the operating system

version.

The constant σ from (4) is evaluated as follows:

1) Modify the Control Script. In addition to the data

collection it calculates the E in accordance to the formula

(3).

2) The Control Script sends inflate/deflate balloon

commands to the balloon driver via the hypervisor interface.

The size is set to PhysicalTotal-E where PhysicalTotal is

the total size of the assigned random access memory.

CLOUD COMPUTING 2015 : The Sixth International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2015. ISBN: 978-1-61208-388-9 37

TABLE III. PERFORMANCE RESULTS FOR CACHE SIZES, VARYING FROM

256МB TO 768MB. WINDOWS 8 OS

Test

Windows 8,

Compared to a

VM with no

memory

management

Windows 8,

Compared to the

VM with

memory

management

without cache

control

busyloop_test -1.6% +0.4

system_syscall_test +1.1% +1.4%

process_exec_test +2.7% +5.1%

thread_create_test +3.1% +5.0%

io_hdd_seq_rand_rd

_test

-98.8% +53.1%

virtalloc_test +0.2% +0.4%

mem_read_test -0.2% +5.5%

mem_write_test +6.1% +9.2%

mem_pf_read_test -4.9% +5.7%

mem_pf_write_test -4.0% +5.7%

mem_copy_test +7.7% +9.4%

3) The guest machine runs PCMark tests with different

values of σ.

A considerable decrease of performance (more than by k

percent) can be observed for Windows 7 operating system

when σ<0.2.
In case of Windows 8, the performance drops by more

than k percent when σ<0.15.
The testing results are presented in Figure 3.

V. PERFORMANCE EVALUATION

We used the special tests described in Section III-B to
test the performance of our estimation. The results are
provided in Table II.

Performance changes significantly in tests:

io_hdd_seq_rand_rd_test, for Windows 7 and

io_hdd_seq_rand_rd_test, mem_pf_read_test,

mem_pf_write_test for Windows 8.

A. Improving VM performance with the required memory

size estimates

Operating systems use free memory for file caches, and it
is the main cause for the performance downgrade analyzed in
Section IV-C. All free memory is occupied by the VirtIO
balloon driver, so no memory is left for caches. The
following techniques can be used to circumvent this
problem:

1) Enable LargeCacheFile to change the cache control

policy [12].

2) Set the limits on the file cache using system calls.
The file cache size must be chosen individually,

depending on user's needs. Tables III and IV contain
performance results for cache sizes varying from 256Mb to
768Mb.

A considerable increase of performance in the case of

controlled cache file size opposed to the uncontrolled cache

size with the same estimate is obvious. Still, a significant

drop of performance compared to a virtual machine with no

memory management persists. But the resource gain on the

system is significant – about 25% of memory in case of

Windows 7 and about 30% of memory in case of Windows

8 were retained, assuming that the declared memory size in

a VM was 4096Mb.

VI. CONCLUSION AND FUTURE WORK

We have obtained estimates on the working set size of
virtual machines. These estimates were modified to include
cache size in order to gain back the performance. Such an
approach gave an acceptable performance while achieving
the significant resource economy. Unfortunately, the current
approach considers recalculation of the value for each
operating system.

We propose a possible solution of this problem. One can
collect lots of statistical data for different guest operating
systems and build a predicting system such as an
autoregressive model and/or a neural network. These
systems are promising in terms of forecasting operating
system working sets. Additional research in this area is
required to make this idea practical, including the analysis of
statistical properties of the memory utilization and internal
counters time series.

As further research topics we propose improvements to
the obtained estimate and a more elaborate search for
dependencies between the working set size and internal
counters.

ACKNOWLEDGMENT

This work has been supported by the Russian Ministry of
education and science with the project "Development of new
generation of cloud technologies of storage and data control
with the integrated security system and the guaranteed level
of access and fault tolerance" (agreement: 14.612.21.0001,
ID: RFMEFI61214X0001).

REFERENCES

[1] A. Tanenbaum, Modern Operating Systems Third Edition, pp. 209 –

210, 2009.

[2] P. J. Denning, “The working set model for program behavior”,
Commun. ACM 11, 5 May 1968.

[3] P. J. Denning, “Working Sets Past and Present”, IEEE Trans. Softw.
Eng. 6, 1, 1980, pp. 64-84,.

[4] Weiming Zhao, Xinxin Jin, Zhenlin Wang, Xiaolin Wang, Yingwei
Luo, and Xiaoming Li, “Low cost working set size tracking”. In
Proceedings of the 2011 USENIX conference on USENIX annual
technical conference (USENIXATC’11). USENIX Association,
Berkeley, CA, USA, 2011, pp. 17-17,.

[5] Working set, [retrieved: January, 2015], from
http://msdn.microsoft.com/enus/library/windows/desktop/cc441804(v
=vs.85).aspx.

[6] D. R. Slutz, I. L. Traiger, “A note on the calculation of average
working set size”. Commun. ACM 17, 10, 1974, pp. 563-565.

[7] P. J. Denning, “Virtual Memory”, ACM Comput. Surv. 2, 3, 1970,
pp. 153-189.

CLOUD COMPUTING 2015 : The Sixth International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2015. ISBN: 978-1-61208-388-9 38

[8] Performance_information structure, [retrieved: January, 2015], from
http://msdn.microsoft.com/en-
us/library/windows/desktop/ms684824(v=vs.85).aspx.

[9] L. B. Markeeva, A. L. Melekhova, A. G. Tormasov, “Odnorodnost’
virtualizacionnih sobytij, porojdennyh razlichnymi operacionnymi
sistemami”, Trudi MFTI, vol. 6, N3(23), 2014, pp. 57-64 [in
Russian].

[10] S. Sinofsky, Reducing runtime memory in Windows. [retrieved:
January, 2015], from
http://blogs.msdn.com/b/b8/archive/2011/10/07/reducing-runtime-
memory-in-windows-8.aspx.

[11] PCMark. [retrieved: January, 2015], from
http://www.futuremark.com/benchmarks/pcmark8.

[12] M. Friedman, O. Pentakalos, Windows 2000 Performance Guide, pp.
280-293, 2002.

[13] S. D. Lowe, Best Practices for Oversubscription of CPU, Memory
and Storage in vSphere Virtual Environments, pp. 3-10.

[14] A. Melekhova, “Machine Learning in Virtualization: Estimate a
Virtual Machine's Working Set Size”, Cloud Computing (CLOUD),
2013 IEEE Sixth International Conference, June 28 2013-July 03
2013.

[15] Main Page - KVM, [retrieved: January, 2015], from
http://www.linux-kvm.org/page/Main_Page.

[16] Projects/auto-ballooning – KVM, [retrieved: January, 2015], from
http://www.linux-kvm.org/page/Projects/auto-ballooning.

[17] Usage share of operating systems, [retrieved: January, 2015], from
http://www.netmarketshare.com/operating-system-market-
share.aspx?qprid=10&qpcustomd=0.

[18] Windows lifecycle fact sheet, [retrieved: January, 2015], from
http://windows.microsoft.com/en-us/windows/lifecycle.

[19] R. Love, Linux Kernel Development Third Edition, pp. 231-260,
2010.

[20] M. E. Russinovich, D. A. Solomon, and A. Ionescu,
Windows Internals, Part 2: Covering Windows Server® 2008 R2 and
Windows 7, Sixth Edition, pp. 233-402, 2012.

[21] L. Capitulino, Automatic ballooning, [retrieved: January, 2015], from
http://www.linux-kvm.org/wiki/images/f/f6/Automatic-ballooning-
slides.pdf.

[22] Memory Overcommitment Manager, [retrieved: January, 2015], from
https://github.com/aglitke/mom.

[23] A. Litke, Automatic Memory Ballooning with MOM, [retrieved:
January, 2015], from
https://aglitke.wordpress.com/2011/03/03/automatic-memory-
ballooning-with-mom/

[24] Libvirt virtualizetion API, [retrived: January, 2015], from
http://libvirt.org

