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Abstract—The first market release of Advanced RISC Machines
(ARM) v8 System on Chips (SoCs) has created big expectations
from smart devices, servers and network equipment vendors, who
see compelling advantages in integrating them into their systems.
As a consequence software stack deployments for ARMv8 plat-
forms translate market requirements to support OpenStack, Net-
work Functions Virtualization (NFV), Mobile Edge Computing
(MEC), In-Vehicle Infotainment (IVI) automotive functions. At
the same time, ARMv8 will empower Internet of Things (IoT), Cy-
ber Physical Systems (CPS) and user convergence devices. In this
context, virtualization is a key feature to enable the cloud delivery
model, to implement multitenancy, to isolate different execution
environments and to improve hardware/software standardization
and consolidation. Since guaranteeing a strict ownership of both
the data and the code executed in Virtual Machines (VMs), which
belong to governments, companies, telecom operators and private
users, counts more than ever, the security of the hypervisor and
its guests has become dramatically important. In this paper,
Trusted Kernel-based Virtual Machine (T-KVM), a novel security
architecture for the KVM-on-ARM hypervisor, is proposed to
satisfy the current market trend. T-KVM integrates software
and hardware components to secure guest Operating Systems
(OSes) and enable Trusted Computing in ARM virtual machines.
The proposed architecture combines four isolation layers: ARM
Virtualization and Security Extensions (also known as ARM VE
and TrustZone), GlobalPlatform Trusted Execution Environment
(TEE) APIs and SELinux Mandatory Access Control (MAC)
security policy. The T-KVM architecture can be implemented
on platforms based on ARM v7 and v8 architectures, without
requiring additional custom hardware extensions, since, starting
from Cortex-A15 (ARM v7 architecture) released in 2012, both
the ARM VE and TrustZone are made available. In this paper
the T-KVM architecture is described in details, as well as its key
implementation challenges and system security considerations.
Lastly, a performance evaluation of the proposed solution is
presented.

Keywords–Trusted KVM, KVM Security, ARMv8 Trusted Com-
puting, KVM TrustZone, ARM Virtualization, SELinux, TEE, ARM
VMs Security.

I. INTRODUCTION

The use of virtualization in ARM platforms is rapidly
increasing due to the deployment of SoCs based on this archi-
tecture in different environments such as: servers, Cloud and
High Performance Computing (HPC), NFV, MEC, IoT, CPS,
smart devices, etc. This technology enables multiple OSes to
run unmodified on the same hardware, thus sharing system’s
resources such as memory, CPUs, disks and other devices.
These resources are frequently target of specific virtualized
environment attacks (e.g., CPU cache [1], memory bus [2] and
VM’s devices [3] [4]). For this reason, the security of the virtu-
alized systems is critical. Historically, isolation has been used

to enhance the security of these systems [5], because it reduces
the propagation risks in compromised environments [6].

The aim of this paper is to propose T-KVM, a novel
security architecture for virtualized systems based on four
isolation layers: KVM, ARM TrustZone, GlobalPlatform TEE
API and SELinux. The former is considered the most popular
hypervisor deployed in OpenStack [7], which is a key solution
for Cloud, NFV and HPC computing. KVM for ARM is
part of the Linux kernel starting from the version 3.9; it is
the Linux component that, exploiting the ARM Virtualiza-
tion Extension, allows to create a fully-featured virtualization
environment providing hardware isolation for CPU, memory,
interrupts and timers [8]. TrustZone is an hardware security
extension for ARM processors and Advanced Microcontroller
Bus Architecture (AMBA) devices [9] designed to drastically
improve security inside the ARM ecosystem. The extension
starts from the assumption that a system, in order to deliver
secure services, has to decouple the resources used for general
purpose applications from those that handle security assets. To
this end, TrustZone creates two hardware isolated partitions
in the system: the Secure and the Non Secure World. While
the Non Secure World runs a standard OS with optionally a
hypervisor, the Secure World contains, handles and protects all
the sensitive data of the system. These two worlds are linked
together through the GlobalPlatform TEE API [10] [11], a set
of specifications for a secure Remote Procedure Call (RPC)
mechanism between the trusted and non-trusted compartment
of the system. At the time of writing, these specifications don’t
support virtualization, preventing the use of TPM services
inside virtual machines. This work addresses this limitation
proposing a design of a set of virtualization extensions to
enable the guest operating systems to make use of TPM
services provided by the TrustZone Secure World. The latter
T-KVM isolation layer is Security-Enhanced Linux (SELinux),
a Mandatory Access Control (MAC) solution which brings
type enforcement, role-based access control and Multi-Level
Security (MLS) to the Linux kernel [12]. By means of these,
SELinux confines processes in security domains, where the
interaction with other processes and files is permitted only if
there is a specific SELinux policy rule which allows it.

In T-KVM, the above technologies are combined and
adapted to work together, providing a high security level to
the guest applications, without the need of specific hardware
or software. As a matter of fact, the proposed architecture
relies on open source (KVM and SELinux) components, public
specifications (GlobalPlatform TEE Internal and Client APIs)
and available hardware features (ARM TrustZone and VE).
For these reasons, T-KVM can be easily ported to currently
available ARM platforms and Cloud Infrastructure systems
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such as OpenStack.
The remaining part of this paper is organized as follows:

Section II provides more details about the main security
components of the proposed architecture. Section III contains
details about the T-KVM architecture, its implementation and
security considerations while Section IV present a performance
analysis of the overhead introduced by the proposed solution.
The related work is presented in Section V and Section VI
concludes the paper.

II. THE SECURITY COMPONENTS

In this section, the isolation layers which characterize the
T-KVM architecture are described.

A. KVM hypervisor
A hypervisor is a software layer which is able to cre-

ate virtual instances of hardware resources such as CPUs,
memory, devices, etc. in order to enable the execution of
multiple operating systems on the same hardware. Different
implementation approaches lead to different hypervisor types:
a type 1 hypervisor, is a bare metal hypervisor which runs
directly on the hardware (XEN or VMWare ESX). A type
2 hypervisor is, on the other hand, a hypervisor which runs
inside an operating system (Oracle VirtualBox or VMWare
Workstation) at the application layer. Usually, the latter is used
in less critical applications [13] because of its dependency from
the underlying operating system.

KVM is a hypervisor included in the Linux kernel and
available for ARM, x86 and s390 architectures. It is neither
a type 2 hypervisor because it does not run as a normal
program inside Linux, nor is a typical type 1 hypervisor,
because it relies on the Linux kernel infrastructure to run.
KVM exploits the CPU Virtualization Extensions to execute
guest’s instructions directly on the host processor and to
provide VMs with an execution environment almost identical
to the real hardware. Each guest is run in a different instance of
this execution environment, thus isolating the guest operating
system. For this reason, this isolation has been used for security
purposes [14] [15] [16] [17] in many scientific works. In the
ARM architecture, the KVM isolation involves CPU, Memory,
Interrupts and timers [8].

B. TrustZone
ARM TrustZone is a set of hardware security extensions

for ARM processors and AMBA devices. With TrustZone, the
hardware platform is split in two parts, the Secure and the Non
Secure Worlds. In order to isolate these two compartments,
TrustZone requires: CPU with ARM Security Extensions (SE)
along with TrustZone compliant MMU, AMBA system bus,
interrupt and cache controllers. Hence the isolation provided by
TrustZone includes CPU, AMBA devices, interrupts, memory
and caches.

The Secure World is considered trusted, and is responsible
for the boot and the configuration of the entire system. In fact,
the CPU has banked registers for each World, and security
specific configurations can be performed in Secure World
mode only. This compartment contains the root of trust of
the system and protects sensitive data. The access to AMBA
peripherals such as fingerprint readers, cryptoghrapic engines,
etc. can be restricted only to the Secure World, thus protecting
security devices.

On the other hand, the Non Secure World is intended to be
the user’s World. In this untrusted compartment, a standard
operating system (i.e., Android or Linux) is run. Secure
operations such as the access to a secret or the execution
of a security algorithm are provided to the user’s application
running in this compartment by the services run in the Secure
World.

These two compartments interact with each other through
a specific CPU mode, namely the Monitor Mode. It typically
runs a secure context switch routine and is capable of routing
interrupts, depending on the configuration, either to the Secure
or Non Secure World.

Moreover, the use of the ARM VE Extensions, and conse-
quently of KVM, is possible only in the Non Secure World.

ARM TrustZone is compliant with the GlobalPlatform
TEE System Architecture specification [18], which defines the
attributes that the hardware must have to properly execute a
TEE.

C. GlobalPlatform TEE
GlobalPlatform defines the TEE as an execution envi-

ronment, which provides security features such as isolated
execution, integrity of Trusted Applications (i.e., applications
run in the TEE) along with confidentiality of their assets [18].
This isolation protects Trusted Applications (TA) and their data
from the Rich Execution Environment (REE), the environment
where a standard operating system such as Linux or Android
is run. Figure 1 depicts the standard architecture of a Glob-
alPlatform TEE compliant system.

Figure 1. Standard TEE architecture

In order to isolate the TEE from the REE, GlobalPlatform
provides a set of specifications which include the following
software components [10] [11]:

• The Trusted Core Framework is a common abstraction
layer which provides to the TEE Internal API OS-
like functions, such as memory management, entry
points for TAs, panic and cancellation handling, TA
properties access, etc.

• The TEE Client API is an Inter Process Communi-
cation (IPC) API that deals with the communication
between the REE and the TEE. It allows the appli-
cations in the REE (Client Applications or CAs) to
leverage the services offered by the TEE.

40Copyright (c) IARIA, 2015.     ISBN:  978-1-61208-388-9

CLOUD COMPUTING 2015 : The Sixth International Conference on Cloud Computing, GRIDs, and Virtualization



• The (TEE and REE) communication agents provide
support for messaging between the CAs and the TEE.
They interact with the Monitor mode to request a
context switch between the two Worlds.

• The TEE Internal API allows the TAs to leverage the
services offered by the TEE through the following
APIs: Trusted Storage for Data and Keys, TEE Cryp-
tographic Operations, Time, and TEE Arithmetical.

Lastly, it is worth to mention that the deployment of a
GlobalPlatform compliant solution enables the use of existing
TA and CA applications. This is a very important factor,
especially in an environment such as the embedded trusted
computing, where by tradition the security solutions were
developed each time from scratch to address new device
families.

D. SELinux
SELinux is a software implementation of the MAC secu-

rity policy available in the Linux kernel as Linux Security
Module (LSM). The key feature of MAC is that the access
control decisions are not at discretion of individual users, root
included [12]. Thus, once the system security policies have
been defined and loaded at boot time in the kernel, they can
not be modified. In this way, the subject (e.g., a process) access
to objects (e.g., file, socket, etc.) is enforced in the system.

The very same concept can be applied to virtual machines
using sVirt, which is a feature of the libvirt library. sVirt
installs a set of virtualization specific security policies and
automatically tags VMs and their resources in order to isolate
guest systems. This isolation prevent any access to VM’s
resources (disk/kernel files, shared memory, etc.) from external
subjects (other VMs, the root user, etc.).

For this and for performance reasons [19], the use of
SELinux in virtualized systems is encouraged.

III. THE TRUSTED HYPERVISOR: T-KVM
T-KVM is a secure hypervisor architecture based on KVM,

which combines a Trusted Computing solution such as Trust-
Zone with GlobalPlatform TEE and SELinux. In Figure 2, all
the components described in Section II are shown together,
composing the T-KVM architecture.

In T-KVM, the GlobalPlatform TEE and REE are re-
spectively implemented inside the TrustZone Secure and Non
Secure Worlds. For this reason in the remaining part of this
paper, Secure World/TEE and Non Secure World/REE are used
as synonyms. These two hardware-isolated environments are
linked together with a virtualization-enabled implementation
of the GlobalPlatform TEE specifications. The virtualization
provided by KVM further isolates the user’s applications,
enabling the use of different operating systems. This eases
multitenancy in server and Cloud environments, and enables
Bring Your Own Device (BYOD) [20] paradigm in smart
devices. In addition, SELinux isolates in software the virtual
machines, protecting guests and their resources from the other
virtual machines and the host itself (e.g., malicious cloud
administrators, host privilege escalation exploits, etc.). Lastly
libvirt, the main virtualization API used by OpenStack to
interact with KVM, takes automatically care of the policy
configuration and the tag assignment through its component
sVirt.

Figure 2. T-KVM architecture, which includes KVM, TrustZone, SELinux
and virtualized TEE

A. Implementation details
The following part of this manuscript lists the T-KVM

implementation challenges and proposes viable solutions.
1) Trusted boot: The first step of the system’s chain of

trust is performed during the boot procedure. In fact when the
machine boots, the security configuration of the system is not
yet in place, and as a result the system is vulnerable to attacks
which target to replace the boot procedure.

In order to minimize this risk, the T-KVM’s first stage boot-
loader is a tiny program stored in a on-chip ROM along with
the public key needed for the attestation of the second stage
bootloader. Since the first stage bootloader is stored in a read-
only memory, it can not be updated and it’s therefore critical
for the security of the system. Soon after the initialization of
the key system components, it checks the integrity and boots
the second stage bootloader which is located in an external
non-volatile memory (e.g., flash memory). The second stage
bootloader then loads the microkernel binary in the system’s
Secure World memory and boots it.

The third stage bootloader of the T-KVM Trusted boot
mechanism is a Trusted Application inside the TEE. In fact,
when the Secure World OS is up and running, a specific TA
checks the integrity of the Non Secure World OS binary (i.e
the Linux kernel) and its bootloader (fourth stage). If this last
security check is successful, the fourth stage bootloader runs
the Non Secure OS and the system can be considered running.
On the other hand, if only one of these checks fails, the boot
process will be stopped and the machine will enter in a secure
and not operational state. Figure 3 shows the T-KVM Trusted
boot chain of Trust.

The Trusted boot process is the key element for the
attestation of the user space applications because it ensures
the integrity of the chain of trust. T-KVM runs in the TEE
an attestation service, which is able to check at any moment
the integrity of its key components i.e., Quick Emulator
(QEMU) [21], libvirt, the VMs and their resources, etc. libvirt
in particular, is extended to attest the VMs identity and
integrity at each boot and in an event-driven manner, assuring
to users and cloud administrators/providers the authenticity
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Figure 3. T-KVM Trusted boot procedure

of the workloads run on the hardware. The security assets
(fingerprints, keys, etc.) of these binaries are stored in the
Secure World and by consequence can be updated frequently.

2) GlobalPlatform TEE support for virtualization: The
main novelty introduced by T-KVM is the support for Trusted
Computing inside the Virtual Machines. The virtualization of
the TEE functions is of utmost importance for the T-KVM ar-
chitecture, because it links together the applications run in the
VMs with the secure services available in the TrustZone Secure
World. At the time of writing, the use of the TEE functions in
guest operating systems is not included in the GlobalPlatform
API Specification. To enable this feature, T-KVM virtualizes
the GlobalPlatform TEE APIs, executing the TEE Client API
directly in the Guest Operating System. In order to be as much
as possible compliant with the GlobalPlatform Specification
and to be able to run CAs also at the host level, T-KVM TEE
Client API is the only virtualization aware component.

This awareness needs support from the hypervisor infras-
tructure. For this reason, as depicted in Figure 4, a specific
QEMU device is used to implement the TEE control plane and
set up its data plane. All the requests (e.g., initialization/close
session, invoke command, etc.) and notification of response
are sent to the TEE Device, which delivers them either to the
TAs or to the CAs running on the guest OS. To provide good
data throughput and latency performance, the data plane is
based on a shared memory mechanism. Thus when a response
notification arrives from the TrustZone Secure World, the TEE
device notifies with an interrupt its driver, which forwards
the related information to the Guest-Client Application. The
Guest-CA is now able to read the data from the shared memory,
without involving the TEE device in the data transfer.

3) Shared memory: T-KVM needs a zero copy shared
memory mechanism to share data between the two TrustZone
Worlds and between the virtual machine and the host. The
latter in particular is very important in systems where VMs
need to communicate with each other frequently e.g., NFV,
HPC, MEC, etc. Host-guest shared memory mechanisms which
provide high performance and low latency already exist for the
KVM hypervisor [22] [23]. What these mechanisms actually
lack is the support for TrustZone.

Figure 4. TEE support for Virtual Machines in T-KVM

By design, the TrustZone Secure World is able to access
the full Non Secure World address space. For this reason, the
Trusted Applications are able to read/write the content of the
VMs shared memory unless they know the address where the
shared memory area begins. In order to pass this information,
the TEE device control plane extends the T-KVM shared
memory mechanism, enabling it to send the shared memory
address to the Secure World applications. This mechanism
needs to be secured, especially in the Non Secure World,
to prevent attacks and information leakage. T-KVM relies on
SELinux to define specific access rules for shared memory and
to enforce the shared memory access only to the interested
parties.

The encryption of the shared memory area is mindfully not
considered because, unless hardware accelerators are present
in the platform, there would be a performance loss.

4) Secure World: One of the most important parts of the
T-KVM architecture is the software running in the TrustZone
Secure World. The operating system running in the Secure
World should be fast, secure, ideally real-time and free of
programming errors (implementation correctness).

The T-KVM architecture empowers the Secure World en-
vironment with a microkernel. The primary motivation be-
hind microkernels is the small code footprint, which lead
to a smaller attack surface and an easier process of formal
verification of the code. In this context, a good candidate is
for example seL4, an opensource third-generation microkernel
based on L4 and formally verified for functional correctness
[24].

The microkernel will run in its userspace the implemen-
tation of the GlobalPlatform APIs, the secure device drivers
and the TAs. In order to do this, the Secure World OS does
not use the main platform storage device to store files and the
security assets of the system. An external, non-volatile memory
configured by the Secure World as not accessible by the Non
Secure World, is used to this purpose.

Finally, a possible alternative to microkernels is a secure
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library running in the Secure World such as OPTEE [25].
Despite this solution has a code footprint even smaller than
a microkernel, T-KVM uses a microkernel because of its real
time features and a higher flexibility for TA developers.

B. Security considerations
Virtual Machines are widely used because of their flexibil-

ity and capability to run any operating system. Nonetheless,
in order to achieve a higher security level of the system, it is
suggested to run single-application operating systems in the
T-KVM virtual machines. An example of such an operating
system is OSv [26], an opensource solution which is going to
be ported to the ARM v8 architecture. For this reason, this
work does not discuss the security of the applications inside
the virtual machines.

The threat model considered in this paper allows the
attacker to completely control one or more virtual machines,
both at user and kernel space level. In addition, the cloud
administrator, who is permitted to remotely control the vir-
tualized system, is considered as a potential attacker for the
identity and integrity of the data.

The security of T-KVM is based on two main assumptions:
the attacker does not have physical access to the virtualized
system and the first stage bootloader is flawless (thus, the chain
of trust is not compromised).

T-KVM has been designed to be compliant with additional
hardware accelerators and security modules. For example,
SecBus [27] can be used to protect the system against physical
attacks on the memory components (e.g., cold boot), Direct
Memory Access (DMA) attacks and on-board probing of the
external memory bus. Solutions like NoC Firewall [28], can
enhance the compartment isolation granularity at VM level,
protecting the system against logical attacks (virus, Trojans)
or security vulnerabilities, e.g., corrupt DMA engines.

IV. EXPERIMENTAL RESULTS

The different isolation layers which compose T-KVM pro-
vide high security, but at a cost of additional overhead. As a
matter of fact, a request for a security service from a virtual
machine has to pass through the TEE, the host system and
SELinux to arrive in the TrustZone Secure World.

For the T-KVM performance analysis of this paper, we
focused on the hardware isolation provided by the hypervisor
and TrustZone, as the SELinux performance has been mea-
sured by the authors in the past [19], and the TEE overhead
will be detailed in future works.

For this reason, following the path of a Secure Monitor Call
(SMC) from the guest to the Secure World (and then back in
the guest) we measured the overhead introduced by T-KVM.

SMC has been added to the ARM instruction set by the
ARM Security Extension and it is used to request the execution
of a software routine in the TrustZone Secure World passing
through the TrustZone Monitor. In the standard KVM imple-
mentation, when the SMC instruction is run by a guest OS,
its execution is trapped by KVM, which injects an undefined
instruction in the guest, forcing it to handle this accordingly. In
T-KVM instead, when such instruction is run, the hypervisor
traps the guest SMC execution, modifies its arguments and
forwards them to the TrustZone Secure World.

In this scenario, two SMC context switches are involved:
firstly from Guest to Host, then from Non Secure to Secure
World Mode. The overhead assessment of these two context
switch operations is the target of the following analysis.

For the first measurement, we implement a bare metal
binary blob for KVM which initializes the Performance Mon-
itoring Unit (PMU) and executes the SMC instruction in the
guest. The SMC is then trapped by KVM, which has been
modified to immediately return the control to the VM. As
soon as the program flow returns back to the guest, it checks
the PMU cycle counter status and calculates the overhead. In
this way, we are able to measure the overhead of a round-trip
context switch between the Guest and the Host when an SMC
call is executed.

On the other hand, for the measurements of the context
switch overhead between the Non Secure and the Secure
Worlds, the PMU cycle counter is set by a Linux kernel
module in the host, which executes soon after the world switch
request (i.e., the SMC instruction). This provokes an additional
switch to the TrustZone Monitor, which saves the Normal
World registers, loads the Secure World status and finally
jumps to the Secure World. In order to measure the T-KVM
context switch cost and not add further overhead, the Secure
World immediately runs the SMC call, without executing any
meaningful operation. When this instruction is executed in the
Secure World, it provokes again a switch to the Monitor Mode,
which will now save the secure world context, restore the non
secure context, and jump back to the Non Secure World. As
soon as the context switch is completed, the Linux kernel reads
the PMU cycle counter state and computes the overhead.

The results of both of the above measurements are defined
minimal because they are not considering any additional work
performed at the destination where they are trapping to. How-
ever, in a real scenario a trap is followed by the execution of
emulation code for a Guest-Host trap, or some secure service
for a Non Secure-Secure trap.

Figure 5. T-KVM overhead measurements

The performance overhead analysis has been performed on
an ARMv8 Juno board, which is equipped with two Cortex-
A57 and four Cortex-A53 in big.LITTLE configuration. Each
test has been repeated five hundred times, running Linux
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version 3.17 in both the host and the guest environments.
ARM Trusted Firmware [29] has been used as firmware
instrastructure. All the workloads for the measurements have
been executed on the Cortex-A53, which is the default CPU
that the platform uses to execute the Secure World OS.

Figure 5 shows that for a Secure request, which is the
sum of the the two measurements described before in this
section, the cost is in average 5200 clock cycles. This value
represents the minimum overhead that a guest system has to
pay to request a secure service to the T-KVM Secure World
(the Guest-Host minimum overhead is about 1400, while the
Non Secure-Secure is about 3700). This has been compared
with the minimum overhead that KVM spends to trap the SMC
instruction and perform a context switch between the guest and
the host, which is what has been described above in the Guest-
Host context switch measurement description. This result (in
average about 1400 clock cycles) has been measured with the
SMC instruction, but it is valid for all the instructions trapped
in KVM, as we did not add any specific code to trap the SMC
instruction to the standard KVM implementation.

Finally, it is important to notice that the Non Secure-Secure
context switch is 2.5 times slower than the Guest-Host. The
main reason for this behaviour is in the number of instructions
needed to complete the two operations. In particular, the
number of registers that the system has to save and restore
for the Guest-Host context switch is significantly lower.

V. RELATED WORK

The hypervisor security is a controversial topic in literature.
As a matter of fact, solutions like NoHype [30] [31] pro-
pose to secure the virtual machines removing the hypervisor,
while others use the hypervisor isolation for security appli-
cations [15] [17]. In other scientific works, when compared
with TrustZone as a security solution, the hypervisor proves a
better flexibility e.g., the Secure World is not able to interpose
on and monitor all the important events in the Non-Secure
World [16]. The proposed architecture considers the hypervisor
as an additional isolation layer, while protecting the security
assets through the ARM Security Extensions (TrustZone). T-
KVM, combining both solutions and relying on the attestation
enabled by the secure boot’s chain of trust, is able to provide
monitoring features and high security.

In fact, attestation and integrity checks are of paramount
importance for the security systems because they allow sys-
tem designers and administrators to consider a software
component as trusted. SecVisor [32], HyperSentry [33] and
SPROBES [34] propose different solutions designed for this
purpose: the first checks the integrity of commodity OS
kernels running the attestation code in hypervisor mode, thus
not addressing virtualization. The second enables integrity
measurement of a running hypervisor (i.e., XEN) through
Intel TxT, hence targeting the x86 architecture. The latter
uses TrustZone to enforce kernel code integrity, but without
mentioning the attestation challenges in virtualized systems.

These systems are explicitly addressed by solutions such
as vTPM [35] or sHype [36], both focusing their efforts
on Intel architectures. vTPM proposes a mechanism for the
virtualization of TPM functions which dedicates a VM to route
and manage the TPM requests, while sHype integrates the
MAC security policy directly inside a typical type 1 hypervisor
(i.e., XEN).

On the other hand, the solutions proposed by Narari [37]
and Lengyel [38] are designed for ARM devices with virtu-
alization extensions. The first proposes a security architecture
with TrustZone, SELinux and virtualization, targeting resource
constrained devices. The second combines a hypervisor (XEN)
and MAC Security policies (XEN Security Modules), targeting
high isolation between VMs but without mentioning TPM
access for guest OSes. Both proposals lack a solution to
standardize the access to TPM functions such as the TEE.

VI. CONCLUSION AND OUTLOOK

This paper proposes T-KVM, a new security architecture
for ARM v7 and v8 virtualized systems, providing architecture
details and a preliminary performance analysis. T-KVM’s
architecture offers strong isolation for guest applications by
means of the KVM hypervisor, ARM TrustZone, SELinux and
a virtualization enabled implementation of the GlobalPlatform
TEE API. The last component design is the main contribution
of this paper, as it enables the support of Trusted Computing
features in ARM based virtual machines through the use of a
QEMU device and a shared memory.

The benefits of the proposed solution are its flexibility
and compatibility with the existing Cloud and smart devices
architectures. In fact, since T-KVM adapts and combines
existing opensource components which are already part of
virtualized systems and OpenStack Cloud Computing infras-
tructure (i.e., KVM, libvirt, qemu, etc.), the support of T-
KVM in these environments is straightforward to implement.
Moreover, the possibility to install a real-time operating system
in the TrustZone Secure World adds the support for real-time
applications, which is interesting for automotive, avionics and
networking applications. Lastly, monitoring and (remote) attes-
tation are eased by the combination of a standard hypervisor
with TrustZone.

On the other hand, the lack of the ARM VE support in
the Secure World does not allow the hardware assisted virtu-
alization of the TEE. Nonetheless, it is possible to functionally
implement multiple TEE (or vTPMs) using paravirtualization
or virtualization at the application layer.

As for the measurements and the analysis of the overhead
introduced by the proposed solution, we can claim that the
performance cost of T-KVM is acceptable. In fact, even if the
secure request overhead is significantly higher than a trap in
the KVM hypervisor, the execution frequency of the former is
expected to be lower than the latter. In fact a service request is
issued by a T-KVM guest only to control the communication
between the guest and the Secure World, as all the data
exchanges will be performed through shared memory.

Finally, the future work includes the implementation of
a complete T-KVM ARMv8 prototype. Of interest is also
the support and integration of T-KVM in OpenStack, which
would enable a complete new set of Cloud features based on
Trusted Computing such as location aware scheduling of new
instances, trusted multitenancy, etc.
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