
Taxonomy of Deployment Patterns for Cloud-hosted Applications: A Case Study of

Global Software Development (GSD) Tools

Laud Charles Ochei, Julian M. Bass, Andrei Petrovski

School of Computing Science and Digital Media
Robert Gordon University

Aberdeen, United Kingdom
Emails: {l.c.ochei,j.m.bass,a.petrovski}@rgu.ac.uk

Abstract—Cloud patterns describe deployment and use of various
cloud-hosted applications. There is little research which focuses
on applying these patterns to cloud-hosted Global Software
Development (GSD) tools. As a result, it is difficult to know
the applicable deployment patterns, supporting technologies and
trade-offs to consider for specific software development processes.
This paper presents a taxonomy of deployment patterns for
cloud-hosted applications. The taxonomy is composed of 24 sub-
categories which were systematically integrated and structured
into 8 high-level categories. The taxonomy is applied to a selected
set of software tools: JIRA, VersionOne, Hudson, Subversion and
Bugzilla. The study confirms that most deployment patterns are
related and cannot be fully implemented without being combined
with others. The taxonomy revealed that (i) the functionality
provided by most deployment patterns can often be accessed
through an API or plugin integrated with the GSD tool, and (ii)
RESTful web services and messaging are the dominant strategies
used by GSD tools to maintain state and exchange information
asynchronously, respectively. We also provide recommendations
to guide architects in selecting applicable deployment patterns
for cloud deployment of GSD tools.

Keywords–Taxonomy; Deployment Pattern; Cloud-hosted Appli-
cation; GSD Tool; Plugin.

I. INTRODUCTION

Collaboration tools that support Global Software Devel-
opment (GSD) processes are increasingly being deployed on
the cloud [1][2]. The architectures/patterns used to deploy
these tools to the cloud are of great importance to software
architects because it determines whether or not the system’s
required quality attributes (e.g., performance) will be exhibited
[3][4][5].

Collections of cloud patterns exist for describing the cloud,
and how to deploy and use various cloud offerings [6][7].
However, there is little or no research in applying these patterns
to describe the cloud-specific properties of applications in
software engineering domain (e.g., collaboration tools for
GSD, hereafter referred to as GSD tools) and the trade-offs
to consider during cloud deployment. This makes it very
challenging to know the deployment patterns (together with
the technologies) required for deploying GSD tools to the
cloud to support specific software development processes (e.g.,
continuous integration (CI) of code files with Hudson).

Motivated by this problem, we propose a taxonomy of
deployment patterns for cloud-hosted applications to help
software architects in selecting applicable deployment patterns

for deploying GSD tools to the cloud. We are inspired by the
work of Fehling et al. [6], who catalogued a collection of
patterns that will help architects to build and manage cloud
applications. However, these patterns were not applied to any
specific application domain, such as cloud-hosted GSD tools.

The research question this paper addresses is: “How can
we create and use a taxonomy for selecting applicable
deployment patterns for cloud deployment of GSD tools.”
It is becoming a common practice for distributed enterprises
to hire cloud deployment architects or “application deployers”
to deploy and manage cloud-hosted GSD tools [8]. Saleforce’s
Continuous Integration systems, for example, runs 150000 +
test in parallel across many servers and if it fails it automat-
ically opens a bug report for developers responsible for that
checkin [9].

We created and applied the taxonomy against a selected
set of GSD tools derived from an empirical study [10] of
geographically distributed enterprise software development
projects. The overarching result of the study is that most
deployment patterns are related and have to be combined with
others during implementation, for example, to address hybrid
deployment scenarios, which usually involves integrating pro-
cesses and data in multiple clouds.

The main contributions of this paper are:
1. Creating a novel taxonomy of deployment patterns for
cloud-hosted application.
2. Demonstrating the practicality of the taxonomy by applying
it to: (i) position a selected set of GSD tools; and (ii) compare
the cloud deployment requirements of GSD tools.
3. Presenting recommendations and best practice guidelines for
identifying applicable deployment patterns together with the
technologies for supporting cloud deployment of GSD tools.

The rest of the paper is organized as follows: Section 2
gives an overview of the basic concepts related to deployment
patterns for Cloud-hosted GSD tools. In Section 3, we discuss
the research methodology including taxonomy development,
tools selection, application and validation. Section 4 presents
the findings of the study focusing on positioning a set of GSD
tools within the taxonomy. In Section 5, we discuss the lessons
learned from applying the taxonomy. The recommendations
and limitations of the study are in Sections 6 and 7 respectively.
Section 8 is reporting the conclusion and future work.

86Copyright (c) IARIA, 2015. ISBN: 978-1-61208-388-9

CLOUD COMPUTING 2015 : The Sixth International Conference on Cloud Computing, GRIDs, and Virtualization

II. DEPLOYMENT PATTERNS FOR CLOUD-HOSTED GSD
TOOLS

A. Global Software Development
Definition 1: Global Software Development. GSD is defined
by Lanubile [11] as the splitting of the development of the
same software product or service among globally distributed
sites. Since there are many stakeholders in GSD, there is
need to have tools that support collaboration and integration
among the team members involved in software development
[12]. The work of Portillo et al. [13] focused on categorizing
various tools used for collaboration and coordination in Global
Software Development.
Definition 2: Cloud-hosted GSD Tool. “Cloud-hosted GSD
Tool” refers to collaboration tools used to support GSD
processes in a cloud environment. We adopt the: (i) NIST
Definition of Cloud Computing to define properties of cloud-
hosted GSD tools; and (ii) ISO/IEC 12207 as our classification
frame for defining the scope of a GSD tool. Portillo et al. [13]
identified three groups of GSD tools for supporting ISO/IEC
12207 processes - tools to support Project Processes (e.g.,
JIRA), tools to support Implementation Processes such as
requirements analysis, integration process (e.g., Hudson) and
tools for Support Processes (e.g., Subversion). These GSD
tools, also referred to as Collaboration tools for GSD [13], are
increasingly being deployed to the cloud for Global Software
Development by large distributed enterprises.

B. Cloud Deployment Patterns
Definition 3: Cloud Deployment Pattern. We define a “Cloud
deployment pattern” as a type of architectural pattern which
embodies decisions as to how elements of the cloud application
will be assigned to the cloud environment where the applica-
tion is executed. Architectural and design patterns have long
been used to provide known solutions to a number of common
problems facing a distributed system [4][14].

Our definition of cloud deployment pattern is similar to
the concept of design patterns [14], (architectural) deployment
patterns [4], collaboration architectures [3], cloud computing
patterns [6], cloud architecture patterns [15], and cloud de-
sign patterns [7]. These concepts serve the same purpose in
the cloud (as in many other distributed environments). For
example, the generic architectural patterns- client-server, peer-
to-peer, and hybrid [4] - relates to the following: (i) the 3
main collaboration architectures, i.e., centralized, replicated
and hybrid [3]; and (ii) cloud deployment patterns -2-tier,
content distribution network and hybrid data [6].

C. Taxonomy of Cloud Computing Patterns
Taxonomies and classifications facilitate systematic struc-

turing of complex information. In software engineering, they
are used for comparative studies involving tools and methods,
for example, software evolution [16] and Global Software
Engineering [17]. In this paper, we focus on using a taxon-
omy to structure cloud deployment patterns for cloud-hosted
applications, in particular in the area of GSD tools.

Several attempts have been made by researchers to create
classifications of cloud patterns to build, and deploy cloud-
based applications. For example, Wilder [15] describes eleven
patterns and then illustrates with the Page of Photos application
and Windows Azure how each pattern can be used to build
cloud-native applications. A collection of over 75 patterns

(with known uses of their implementation) for building and
managing a cloud-native application are provided by Fehling
et al. [6]. Homer et al. [7] describes 24 patterns, for solving
common problems in cloud application development. Moyer
[18] also documents a collection of patterns and then uses
a simple Weblog application to illustrate the use of these
patterns. Other documentation of cloud deployment patterns
can be found in [19][20][21][22].

Cloud patterns in existing classifications are applied to
simple web-based applications (e.g., Weblog application [18])
without considering the different application processes they
support. Moreover, these patterns have not been applied against
a set of applications in software engineering domain, such
as cloud-hosted GSD tools. GSD tools may have similar
architectural structure but they (i) support different software
development processes, and (ii) impose varying workload on
the cloud infrastructure, which would influence the choice
of a deployment pattern. Motivated by these shortcomings,
we extend the current research by developing a taxonomy
of deployment patterns for cloud-hosted applications and
applying it to a set of GSD tools.

III. METHODOLOGY

A. Development of the Taxonomy

We develop the taxonomy using a modified form of the
approach used by Lilien [23] in his work for building a
taxonomy of specialized ad hoc networks and systems for a
given target application class. The approach summaries to the
following steps:
Step 1: Select the target class of Software Tool- The target
class is based on the ISO/IEC 12207 taxonomy for software
life cycle process (see Definition 3 for details). The following
class of tools are excluded: (i) tools not deployed in a cloud
environment (even if they are deployed on a dedicated server to
perform the same function); and (ii) general collaboration tools
and development environments (e.g., MS Word, Eclipse).
Step 2: Determine the requirements for the Taxonomy-
The first requirement is that the taxonomy should incorporate
features that restricts it to GSD tools and Cloud Computing.
In this case, we adopt the ISO/IEC 12207 framework [13]
and NIST cloud computing definition [24]. Secondly, it should
capture the components of an (architectural) deployment struc-
ture [4] - software elements (i.e., GSD tool to be deployed)
and external environment (i.e., cloud environment). Therefore
our proposed taxonomy is a combination of two taxonomies -
Taxonomy A, which relates to the components of the cloud
environment [24], and Taxonomy B which relates to the
components of the cloud application architecture [6].
Step 3: Determine and prioritize the set of all acceptable
categories and sub-categories of the Taxonomy- Determine
and prioritize the set of all acceptable categories and sub-
categories of the Taxonomy- We prioritized the categories
of the taxonomy to reflect the structure of a cloud stack
from physical infrastructure to the software process of the
deployed GSD tool. The categories and sub-categories of the
2 taxonomies are described as follows:
(1) Application Process: the sub-categories (i.e., project pro-
cesses, implementation processes and support processes) rep-
resent patterns for handling the workload imposed on the
cloud infrastructure by the ISO/IEC 12207 software processes
supported by GSD tools [13]; (2) Core cloud properties: the

87Copyright (c) IARIA, 2015. ISBN: 978-1-61208-388-9

CLOUD COMPUTING 2015 : The Sixth International Conference on Cloud Computing, GRIDs, and Virtualization

sub-categories (i.e., rapid elasticity, resource pooling and mea-
sured service) contain patterns used to mitigate the core cloud
computing properties of the GSD tools [6]; (3) Service Model:
the sub-categories reflect cloud service models- SaaS, PaaS,
IaaS [24]; (4) Deployment Model: the sub-categories reflect
cloud deployment models- private, community, public and
hybrid [24]; (5) Application Architecture: the sub-categories
represent the architectural components that support a cloud-
application such as application components (e.g., presentation,
processing, and data access), multitenancy, and integration
[6]; (6) Cloud Offerings: the sub-categories reflect the major
infrastructure cloud offerings that can be accessed- cloud envi-
ronment, processing, storage and communication offering [6];
(7) Cloud Management: contains patterns used to manage both
the components and processes/runtime challenges) of GSD
tools. The 2 sub-categories are - management components
and processes [6]; (8) Composite Cloud: contains compound
pattern (i.e., patterns that can be formed by combining other
patterns or can be decomposed into separate components).
The sub-categories are: decomposition style and hybrid cloud
application [6].
Step 4: Determine the space of the Taxonomy- The selected
categories and their associated sub-categories define the space
of the taxonomy. Table 1 show the taxonomy captured in one
piece. The upper-half represents Taxonomy A which is based
on NIST Cloud Computing Definition, while the lower-half
represents Taxonomy B which is based on the components of
a typical cloud application architecture. Each Taxonomy, A
and B, has four categories, each with a set of sub-categories.
Entries in the “Related Pattern” column show examples of
patterns drawn from well-known collections of cloud patterns
such as [6][15][7]. The thick lines (Table I) show the space
occupied by patterns used for hybrid-deployment scenarios.

TABLE I. TAXONOMY OF DEPLOYMENT PATTERNS FOR
CLOUD-HOSTED APPLICATIONS

Deployment
Components

Categories of Deployment Patterns Related PatternsMain Categories Sub-Categories

Cloud-hosted
Environment
(Taxonomy A)

Application Process
Project processes Static workload
Implementation pro-
cesses

Continuously changing workload

Support processes Continuously changing workload

Core Cloud Properties
Rapid Elasticity Elastic platform,Autoscaling[15]
Resource Pooling Shared component, Private cloud
Measured Service Elastic Platform, Throttling[7]

Cloud Service Model
Software resources SaaS
Platform resources PaaS
Infrastructure
resources

IaaS

Cloud Deployment
Model

Private clouds Private cloud
Community clouds Community cloud
Public clouds Public cloud

Hybrid clouds Hybrid cloud

Cloud-hosted
Application
(Taxonomy B)

Composite Cloud
Application

Hybrid cloud applica-
tions

Hybrid Processing, Hybrid
Data,Multisite Deployment [15]

Decomposition style 2-tier/3-tier application, Content
Delivery Network [15]

Cloud Management Management
Processes

Update Transition Process, Sched-
uler Agent [7]

Management Compo-
nents

Elastic Manager, Provider Adapter,
External Configuration Store [7]

Cloud Offerings

Communication
Offering

Virtual Networking, Message-
Oriented Middleware

Storage Offering Block Storage, Database Sharding
[15], Valet Key [7]

Processing Offerings Hypervisor, Map Reduce [15]
Cloud Environment
Offerings

Elastic Infrastructure, Elastic Plat-
form, Runtime Reconfiguration [7]

Cloud Application
Architecture

Integration Integration Provider, Restricted
Data Access Component

Multi-tenancy Shared Component, Tenant-
Isolated Component

Application
components

Stateless Component, User Inter-
face Component

TABLE II. PARTICIPATING COMPANIES, SOFTWARE PROJECTS,
SOFTWARE-SPECIFIC PROCESS AND GSD TOOLS USED

Companies Projects Software process GSD tool

Company A, Bangalore Web Mail
Web Calendar

Issue tracking
Code integration

JIRA
Hudson

Company B, Bangalore Web Mail
Web Calendar

Issue tracking
Version control

JIRA
Subversion

Company H, Delhi Customer service
Airline

Agile tailoring
Issue tracking

VersionOne
JIRA

Company D, Bangalore
(Offshore Provider to
Company E)

Marketing
CRM

version control
Error tracking

Subversion
Bugzilla

Company E, London
Banking
Marketing
CRM

Issue tracking
Agile tailoring
Code Building

JIRA
VersionOne
Hudson

B. GSD Tool Selection
We carried out an empirical study to find out: (1) the type

of GSD tools used in large-scale distributed enterprise software
development projects; and (2) what tasks they utilize the GSD
tools for.

1) Research Site: The study involved 8 international com-
panies and interviews were conducted with 46 practitioners.
The study was conducted between January, 2010 and May,
2012; and then updated between December, 2013 and April,
2014. The companies were selected from a population of large
enterprises involved in both on-shore and off-shore software
development projects. The companies had head offices in coun-
tries spread across three continents: Europe (UK), Asia (India),
and North America (USA). Data collection involved document
examination/reviews, site visits, and interviews. Further details
of the data collection and data analysis procedure used in the
empirical study can be seen in Bass [10].

2) Derived Dataset of GSD Tools: The selected set of
GSD tools are: JIRA [25], VersionOne [26], Hudson [27],
Subversion [28] and Bugzilla [29]. We selected these tools
for two main reasons: (i) Practitioners confirmed the use of
these tools in large scale geographically distributed enterprise
software development projects [10]; (ii) The tools represents
a mixture of open-source and commercial tools that support
different software development processes; and are associated
with stable developers community (e.g., Mozilla Foundation)
and publicly available records (e.g., developer’s websites,
whitepapers, manuals). Table 2 (another view of the one in
[10]) shows the participating companies, projects and the GSD
tools they used.

C. Applying the Taxonomy
We demonstrate the practicality of the taxonomy by ap-

plying it to position a selected set of GSD tools. We used the
collection of patterns from [6] as our reference point, and then
complimented the process with patterns from [15][7].

The structure of the positioned deployment pattern, in
its textual form, is specified as a string consisting of three
sections-(i) Applicable deployment patterns; (ii) Technologies
required to support such implementation; and (iii) Known uses
of how the GSD tool (or one of its products) implements
or supports the implementation of the pattern. In a more
general sense, the string can be represented as: [PATTERN;
TECHNOLOGY; KNOWN USE]. When more than one pattern
or technology is applicable, we separate them with commas.
Each sub-category of the taxonomy represents a unique class
of reoccurring cloud deployment problem, while the applicable
deployment pattern represents the solution.

88Copyright (c) IARIA, 2015. ISBN: 978-1-61208-388-9

CLOUD COMPUTING 2015 : The Sixth International Conference on Cloud Computing, GRIDs, and Virtualization

D. Validation of the Taxonomy

We validate the taxonomy in theory by adopting the
approach used by Smite et al. [17] to validate his proposed
taxonomy for terminologies in global software engineering. A
taxonomy can be validated with respect to completeness by
benchmarking against existing classifications and demonstrat-
ing its utility to classify existing knowledge [17].

We have benchmarked Taxonomy A to existing classifi-
cations: the ISO/IEC 12207 taxonomy of software life cycle
processes and the components of a cloud model based on NIST
cloud computing definition, NIST SP 800-145. Taxonomy B is
benchmarked to components of a cloud application architecture
such as cloud offering and cloud management, as proposed by
Fehling et al. [6]. The collection of patterns in [6] captures
all the major components/processes required to support a
typical cloud-based application, such as cloud management and
integration.

We demonstrate the utility of our taxonomy by positioning
the 5 selected GSD tools within the taxonomy to evaluate
applicable deployment patterns together with the supporting
technologies for deploying GSD tools to the cloud. Table 3
and 4 show that several deployment patterns (selected from 4
studies) can be placed in the sub-categories of our taxonomy.

IV. FINDINGS

In this section, we present the findings obtained by ap-
plying the taxonomy against a selected set of GSD tools:
JIRA, VersionOne, Hudson, Subversion and Bugzilla. Refer to
section III- B for details of the processes supported by these
tools.

A. Comparing the two Taxonomies

The cloud deployment patterns featured in Taxonomy A
(i.e., upper part of Table 1) relates to the cloud environment
hosting the application, while the cloud deployment patterns in
Taxonomy B (i.e., lower part of Table 1) relates to the cloud-
hosted application itself. For example, the PaaS pattern is
used to provide an execution environment to customers on the
provider-supplied cloud environment. Elastic platform pattern
can be used in the form of a middleware integrated into a
cloud-hosted application to provide an execution environment.

B. Hybrid-related deployment Patterns

Both taxonomies contain patterns for addressing hybrid
deployment scenarios (i.e., the space demarcated with thick
lines). For example, a hybrid cloud (Taxonomy A) integrates
different clouds and static data centers to form a homogeneous
hosting environment, while hybrid data (Taxonomy B) can be
used in a scenario where data of varying sizes generated from
a GSD tool resides in an elastic cloud and the remainder of
the application resides in a static environment.

C. Patterns for Implementing Elasticity

We have observed patterns that can be used by GSD tools
to address rapid elasticity at all levels of the cloud stack. For
example, Elastic manager can be used at the application level.
Elastic platform and Elastic infrastructure can be used at the
platform, and Infrastructure resources level, respectively.

D. Positioning of GSD tools on the Taxonomy
Tables 2 and 3 show the findings obtained by positioning

the cloud-hosted GSD tools on each sub-category of the
taxonomy. In the following, we present a shortlist of these
findings to show that we can identify applicable deployment
patterns to address a wide variety of deployment problems.
(i) All the GSD tools considered in this study are based
on web-based architecture. For example, Bugzilla and JIRA
are designed as a web-based application, which allows for
separation of the user interface, and processing layers from
the database that stores details of bugs/issues being tracked.

(ii) All the GSD tools have support for API/Plugin architecture.
For example, JIRA supports several API’s that allows it to
be integrated with other GSD tools. Bugzilla:Web services, a
standard API for external programs to interact with Bugzilla
implies support for stateless pattern. These APIs represent
known uses how these deployment patterns are implemented.

(iii) Virtualization is a key supporting technology used in
combination with other patterns to achieve elasticity at
all levels of the cloud stack, particularly in ensuring fast
provisioning and de-provisioning of infrastructure resources.

(iv) The GSD tools use Web services (through a REST API
in patterns such as integration provider [6]) to hold external
state information, while messaging technology (through
message queues in patterns such as Queue-centric workflow
[15] and Queue-based load leveling [7]) is used to exchange
information asynchronously between GSD tools/components.

(vi) Newer commercial GSD tools (JIRA and VersionOne)
are directly offered as SaaS on the public cloud. On the other
hand, older open-source GSD tools (Hudson, Subversion and
Bugzilla) are the preferred for private cloud deployment.
They are also available on the public cloud, but by third party
cloud providers.

We summarize our findings as follows: Although there
are a few patterns that are mutually exclusive (e.g., stateless
and statefull components [6]), most patterns still have to
be combined with others (e.g, combining PaaS with Elastic
platform). These deployment patterns may also use similar
technologies such as REST, messaging and virtualization to
facilitate their implementation.

V. DISCUSSION

The findings clearly suggest that by positioning a set of
GSD tools on our proposed taxonomy, the purpose of the study
has been achieved. The overarching result of the study is that
most deployment patterns have to be combined with others
during implementation. The findings presented here support
previous research suggesting that most patterns are related and
so two or more patterns can be used together [4][14].

A. Combining Related Deployment Patterns
Many deployment patterns are related and cannot be fully

implemented without being combined with other ones, espe-
cially to address hybrid deployment scenarios. This scenario
is very common in collaborative GSD projects, where a GSD

89Copyright (c) IARIA, 2015. ISBN: 978-1-61208-388-9

CLOUD COMPUTING 2015 : The Sixth International Conference on Cloud Computing, GRIDs, and Virtualization

TABLE III. POSITIONING GSD TOOLS ON THE PROPOSED TAXONOMY (TAXONOMY A)

Category Sub-Category JIRA VersionOne Hudson Subversion Bugzilla

Application Process
Project processes Static workload, Continu-

ously changing workload;
SaaS; JIRA used by small no.
of users, issues tracked re-
duces over time[25]

Static workload; SaaS; Ver-
sionOne is installed for a
small number of users[26]

Process not supported Process not supported Process not supported

Implementation
processes

Process not supported Process not supported Continuously changing
workload; PaaS; Hudson
builds reduces gradually as
project stabilizes)[27]

Process not supported Process not supported

Support
processes

Process not supported Process not supported Process not supported Static workload,
Continuously changing
workload;PaaS, Hypervisor;
rate of code files checked
into Subversion repository is
nearly constant or reduces
over time[28]

Continuously changing
workload; PaaS,Hypervisor;
Errors tracked using Bugzilla
reduces over time[29]

Core Cloud
Properties

Rapid Elasticity Stateless pattern, Elastic
platform; REST API; JIRA is
installed in cloud as SaaS[25]

Stateless pattern, Elastic
platform; REST API;
VersionOne is installed in
cloud as SaaS[26]

Elastic infrastructure,
shared component;
hypervisor; Hudson server is
supported by hypervisor in a
private cloud[27]

Elastic infrastructure,
tenant-isolation
component; hypervisor;
Subversion repository
is supported by Elastic
infrastructure[28]

Stateless pattern; REST API;
Bugzilla is installed in cloud
as SaaS in private cloud[29]

Resource Pooling Hypervisor, Public Cloud,
; Virtualization; JIRA de-
ployed on the public cloud as
SaaS[25]

Hypervisor, Public cloud;
Virtualization; VersionOne
deployed on public cloud as
SaaS[26]

Hypervisor, Tenant-isolated
component; Virtualization;
Hudson is deployed on a
hypervisor[27]

Hypervisor, Tenant-isolated
component; Virtualization;
Subversion is deployed on a
hypervisor[25]

Hypervisor, Public cloud;
Virtualization; Bugzilla
deployed on the public
cloud[29]

Measured
Service

Static workload, Elastic
Infrastructure,Throttling[7];
Virtualization; Small number
JIRA users generates a nearly
constant workload[25]

Static workload, Elastic
Infrastructure,Throttling[7];
Virtualization; Small
number of VersionOne users
generates small workload[26]

Static workload, Elastic
Infrastructure,Throttling[7];
Virtualization; Hudson can
be supported on public cloud
by elastic infrastructure[27]

Static workload, Elastic
Infrastructure,Throttling[7];
Virtualization; Subversion
can be supported on
public cloud by elastic
infrastructure[28]

Static workload, Elastic
Infrastructure,Throttling[7];
Virtualization; Bugzilla can
be supported on third party
public cloud by elastic
infrastructure[29]

Cloud Service
Model

Software
resources

SaaS; Web Services, REST;
JIRA OnDemand[25]

SaaS; Web Services, REST;
VersionOne OnDemand[26]

SaaS; Web Services, REST;
Hudson is offered by 3rd

party cloud providers like
CollabNet[30]

SaaS; Web Services, REST;
Subversion is offered by 3rd

party cloud providers like
CollabNet[30]

SaaS; Web Services, REST;
Bugzilla is offered by 3rd

party cloud providers like
CollabNet[30]

Platform
resources

PaaS; Elastic platform, Mes-
sage Queuing; JIRA Elastic
Bamboo[25]

PaaS; Elastic platform, Mes-
sage Queuing; No known use

PaaS; Elastic platform, Mes-
sage Queuing; Build Doctor
and Amazon EC2 for Hudson

PaaS; Elastic platform, Mes-
sage Queuing; Flow Engine
powered by Jelastic for Sub-
version

PaaS; Elastic platform, Mes-
sage Queuing; No known use

Infrastructure re-
sources

Not applicable Not applicable IaaS; Hypervisor; Hudson is
a distributed execution sys-
tem comprising master/slave
servers[27]

IaaS; Hypervisor; Subver-
sion can be deployed on a hy-
pervisor

Not applicable

Cloud Deployment
Model

Private usage Private cloud; Hypervisor;
JIRA can be deployed on pri-
vate cloud using private cloud
software like OpenStack

Private cloud; Hypervisor;
VersionOne On-premises[26]

Private cloud; Hypervisor;
Hudson can be deployed on
private cloud using private
cloud software

Private cloud; Hypervisor;
Subversion can be deployed
on private cloud using private
cloud software

Private cloud; Hypervisor;
Bugzilla can be deployed on
private cloud using private
cloud software

Community
usage

Community cloud; SaaS;
Bugzilla can be deployed on
private cloud

Community cloud; SaaS;
Bugzilla can be deployed on
community cloud

Community cloud;
SaaS,Paas, IaaS; Bugzilla
can be deployed on
community cloud

Community cloud;
SaaS,IaaS; Bugzilla can
be deployed on community
cloud

Community cloud; SaaS,
PaaS; Bugzilla can be
deployed on community
cloud

Public usage Public cloud; SaaS; JIRA
OnDemand is hosted on pub-
lic cloud[25]

Public cloud; SaaS; Ver-
sionOne is hosted on public
cloud[26]

Public cloud;
SaaS,PaaS,IaaS; Hudson
is hosted on public cloud(via
3rd party providers)[30]

Public cloud; SaaS, IaaS;
Subversion is hosted on
public cloud(via 3rd party
providers)[30]

Public cloud; SaaS, PaaS;
Bugzilla is hosted on
public cloud(via 3rd party
providers)[30]

Hybrid usage Hybrid cloud; SaaS; JIRA
used to track issues on mul-
tiple clouds

Hybrid cloud; SaaS; Agile
projects are stored in different
clouds[28]

Hybrid cloud; SaaS,PaaS,
IaaS; Hudson builds done in
separate cloud

Hybrid cloud; SaaS, IaaS;
Subversion repository resides
in multiple clouds

Hybrid cloud; SaaS,
PaaS;Bugzilla DB can
be stored in different clouds

tool either requires multiple cloud deployment environments
or components, each with its own set of requirements. Our
taxonomy, unlike others [15][7], clearly shows where to look
for hybrid-related deployment patterns (i.e., the space demar-
cated by thick lines in Table I) to address this challenge.
For example, when using Hudson there is usually a need to
periodically extract the data its generates to store in an external
storage during continuous integration of files. This implies
the implementation of a hybrid data pattern. Hudson can be
used in combination with other GSD tools such as Subversion
(for version control) and Bugzilla (for error tracking) within
a particular software development project, each of which may
also have their own deployment requirements.

B. GSD Tool Comparison
The taxonomy gives us a better understanding of various

GSD tools and their cloud specific features. While other tax-
onomies and classifications use simple web applications [15] to
exemplify their patterns, we use a mixture of commercial and
open-source GSD tools. For example, commercial GSD tools

(i.e., JIRA and VersionOne) are offered as a SaaS on the public
cloud and also have a better chance of reflecting the essential
cloud characteristic. Their development almost coincides with
the emergence of cloud computing, allowing new features to
be introduced into revised versions. The downside is that they
offer less flexibility in terms of customization [31]. On the
other hand, open-source GSD tools (i.e., Hudson, Subversion)
are provided on the public cloud by third party providers
and they rely on API/plugins to incorporate support for most
cloud features. The downside is that many of the plugins
available for integration are not maintained by the developer’s
community and so consumers use them at their own risk.
The taxonomy also revealed that open-source GSD tools (e.g.,
Hudson, Subversion) are used at a later stage of a software
life-cycle process in contrast to commercial tools which are
used at the early stages.

C. Supporting Technologies and API/Plugin Architecture
Another interesting feature of our taxonomy is that by

positioning the selected GSD tools on it, we discovered that the
90Copyright (c) IARIA, 2015. ISBN: 978-1-61208-388-9

CLOUD COMPUTING 2015 : The Sixth International Conference on Cloud Computing, GRIDs, and Virtualization

TABLE IV. POSITIONING GSD TOOLS ON THE PROPOSED TAXONOMY (TAXONOMY B).

Category Sub-Category JIRA VersionOne Hudson Subversion Bugzilla

Application
Architecture

Application
Components

User interface
component,Stateless; REST
API, AJAX; State information
in JIRA thru REST API[25]

User-interface
component,Stateless;
jQuery AJAX, REST/Web
Service; VersionOne REST
API[26]

User-interface compo-
nent,Stateless; REST API,
AJAX; Hudson Dashboard
pages via REST[27]

User-interface
component,Stateless;REST
API, AJAX; ReSTful Web
Services used to interact with
Subversion Repositories [28]

Stateless;
Bugzilla:WebService
API; Bugzilla::WebService
API[29]

Multitenancy Shared component; Elastic
Platform, Hypervisor; JIRA
login system[25]

Shared component;
Hypervisor; VersionOne
supports re-useable
configuration schemes[26]

Shared component; Hyper-
visor; Hudson 3.2.0 supports
multi-tenancy with Job Group
View and Slave isolation[27]

Tenant Isolated component;
Hypervisor; Global
search/replace operations
are shielded from corrupting
subversion repository.[28]

Shared component;
Hypervisor; Different users
are virtually isolated within
Bugzilla DB[29]

Cloud Integration Restricted Data Access
component, Integration
provider; REST API;
JIRA REST API is used to
integrate JIRA with other
applications[25]

Integration provider; REST,
Web Services; VersionOne
OpenAgile Integrations
platform, REST Data API for
user stories[26]

Integration provider; REST,
Web Services; Stapler compo-
nent of Hudson’s architecture
uses REST[27]

Integration provider; REST,
Web Services; Subversion
API[28]

Integration provider;
REST, Web Services;
Bugzilla::WebService
API[29]

Cloud Offering

Cloud
environment
Offering

Elastic platform; PaaS;
JIRA Elastic Bamboo runs
builds to create instances of
remote agents in the Amazon
EC2[25]

Integration provider; REST,
Web Services; Versionone’s
Project Management tools are
used with TestComplete for
automated testing environ-
ment [26]

Elastic Infrastruc-
ture/Platform, Node-based
Availability; PaaS, IaaS;
Hudson is a distributed build
platform with ”master/slave”
configuration [27]

Elastic platform; PaaS; Sub-
version repository can be ac-
cessed by a self-service inter-
face hosted on a shared mid-
dleware

Elastic Platform; PaaS;
Bugzilla s hosted on a
middleware offered by
providers[29]

Processing Offer-
ing

Hypervisor; Virtualization;
JIRA is deployed on
virtualized hardware

Hypervisor; Virtualization;
VersionOne can be deployed
on virtualized hardware

Hypervisor; Virtualization;
Hudson is deployed on
virtualized hardware

Hypervisor; Virtualization;
Subversion is deployed on
virtualized hardware

Hypervisor; Virtualization;
Bugzilla is deployed on
virtualized hardware

Storage Offering Block; Virtualization; Elastic
Bamboo can access central-
ized block storage thru an
API integrated into an operat-
ing system running on virtual
server[25]

Block storage; Virtualiza-
tion; VersionOne can access
centralized block storage thru
an API integrated into an op-
erating system running on vir-
tual server[26]

Block, Blob storage; Virtu-
alization; Azure Blob service
used as a repository of build
artifacts created by a Hudson

Hypervisor; Virtualization;
Subversion can access
centralized block storage thru
an API integrated into an
operating system running on
virtual server

Hypervisor; Virtualization;
Bugzilla can access
centralized block storage
thru an API integrated into an
operating system running on
virtual server

Communication
Offering

Message-Oriented
Middleware; Message
Queuing; JIRA Mail
Queue[25]

Message-Oriented
Middleware; Message
Queuing; VersionOne’s
Defect Work Queues[26]

Message-Oriented
Middleware, Virtual
networking;Message Queu-
ing,Hypervisor;Hudson’s
Execution System Queuing
component

Message-Oriented
Middleware;Message
Queuing;Subversion’s
Repository layer[28]

Message-Oriented
Middleware;Message
Queuing; Bugzilla’s Mail
Transfer Agent[29]

Cloud Management Management
Components

Provider Adapter, Managed
Configuration, Elastic man-
ager;RPC, API; JIRA Con-
nect Framework[25], JIRA
Advanced configuration

Managed Configura-
tion;RPC, API; VersionOne
segregation and appl.
configuration

Elastic load balancer,
watchdog;Elastic platform;
Hudson execution system’s
Load Balancer component)

Managed Configura-
tion;RPC, API; configuration
file is used to configure
how/when builds are done

Managed Configura-
tion;RPC, API; Bugzilla can
use configuration file for
tracking and correcting errors

Management
Processes

Elastic management
process;Elasticity Manager;
JIRA Elastic Bamboo, and
Time Tracking feature[25]

Elastic management pro-
cess;Elasticity Manager; Ver-
sionOne’s OnDemand secu-
rity platform[26]

Update Transition
process;Message Queuing;
continuous integration of
codes by Hudson’s CI
server[27]

Update Transition
process;Message Queuing;
continuous updates of
production versions of the
appl. by Subversion[28]

Resiliency management
process;Elasticity
platform; Bugzilla Bug
monitoring/reporting
feature[29]

Composite
Application

Decomposition
Style

3-tier;stateless, processing
and data access components;
JIRA is web-based
application[25]

3-tier;stateless, processing
and data access components;
VersionOne is a web
application[26]

3-tier, Content Dist. Net-
work;user interface, process-
ing, data access components,
replica distr.; Hudson is an
extensible web application,
code file replicated on multi-
ple clouds[27]

3-tier;stateless, processing
and data access components;
Subversion is a web-based
application [28]

3-tier;stateless, processing
and data access components;
Bugzilla is a web
application[29]

Hybrid Cloud
Application

Hybrid processing; process-
ing component; JIRA Agile
used to track daily progress
work[25]

Hybrid Development Envi-
ronment;processing compo-
nent; VersionOne’s OpenAg-
ile Integration[26]

Hybrid Data, Hybrid Devel-
opment Environment; data
access component;Separate
environment for code
verification and testing

Hybrid Data, Hybrid
Backup; data access
component,stateless;Code
files extracted for external
storage

Hybrid Processing; process-
ing component; DB resides in
data center, processing done
in elastic cloud

support for the implementation of most deployment patterns is
practically achieved through API integration [32]. For example,
JIRA’s Elastic Bamboo support for Blob storage on Windows
Azure is through an API [25]. JIRA has a plugin for integrating
with Hudson, Subversion and Bugzilla [25] and vice versa. The
technologies used to support software processes of GSD tools
are highlighted, unlike others which focus mostly on the design
of cloud-native applications [6]. Web services (via REST) and
messaging (via message queues) are the preferred technologies
used by cloud deployment patterns (e.g., stateless pattern) to
interconnect GSD tools and other components. REST style
is favoured by public cloud platforms. For example, JIRA’s
support for SOAP and XML-RPC is depreciated in favour of
REST [25]. This trend is also reported in [15][32].

D. Patterns for Cloud-application Versus Cloud-environment
Our taxonomy, can be used to guide an architect in focusing

on a particular architectural deployment component of interest
- that is, either cloud-hosted application or cloud-hosted en-
vironment. Other taxonomies [7][15] are concerned with the

design of cloud-native applications. Assuming an architect is
either interested in providing the right cloud resources, or map-
ping the business requirement to cloud properties that cannot
be changed (e.g., location and ownership of the cloud infras-
tructure), then Taxonomy A would be more relevant. However,
if interest is in mitigating certain cloud properties that can
be compensated at an application level (e.g., improving the
availability of the cloud-hosted GSD tool), then Taxonomy
B should be considered. Fehling et al. describes other cloud
properties that are either unchangeable or compensatable [6].

VI. RECOMMENDATIONS

Based on the experience gathered from positioning the
GSD tools on the taxonomy, we present a set of recommen-
dations in the form of selection criteria in Table 5 to guide an
architect in choosing applicable deployment patterns for de-
ploying any GSD tool. To further assist the architect in making
a good choice, we also recommend that the architect should
obtain information concerning- (i) the business requirements of
the organization; and (ii) the architectural structure, installation

91Copyright (c) IARIA, 2015. ISBN: 978-1-61208-388-9

CLOUD COMPUTING 2015 : The Sixth International Conference on Cloud Computing, GRIDs, and Virtualization

TABLE V. RECOMMENDATIONS FOR SELECTING APPLICABLE DEPLOYMENT PATTERNS FOR CLOUD DEPLOYMENT OF GSD TOOLS.

Category Sub-Category Selection Criteria Applicable Patterns

Application Process
Project Processes Elasticity of the cloud environment is not required Static workload
Implementation Processes Expects continuous growth or decline in workload over time Continuously changing workload
Support Processes Resources required is nearly constant;continuous decline in workload Static workload, Continuously changing workload

Core Cloud
Properties

Rapid Elasticity Explicit requirement for adding or removing cloud resources Elastic platform, Elastic Infrastructure
Resource Pooling Sharing of resources on specific cloud stack level-IaaS, PaaS, SaaS Hypervisor, Standby Pooling Process
Measured Service Prevent monopolization of resources Elastic Infrastructure, Platform, Throttling/Service Metering[7]

Cloud Service
Model

Software Resources No requirement to deploy and configure GSD tool Software as a Service
Platform Resources Requirement to develop and deploy GSD tool and/or components Platform as a Service
Infrastructure as a Service Requires control of infrastructure resources (e.g., storage, memory)

to accommodate configuration requirements of the GSD tool
Infrastructure as a Service

Cloud Deployment
Model

Private Usage Combined assurance of privacy, security and trust Private cloud
Community Usage Exclusive access by a community of trusted collaborative users Community cloud
Public Usage Accessible to a large group of users/developers Public cloud
Hybrid Usage Integration of different clouds and static data centres to form a

homogenous deployment environment
Hybrid cloud

Application
Architecture

Application Components Maintains no internal state information User Interface component, Stateless pattern
Multitenancy Many different users access and share the same resources Shared component
Integration Integrate GSD tool with different components residing in multiple

clouds
Integration provider, Restricted Data Access component

Cloud Offering

Cloud environment Requires a cloud environment configured to suit PaaS or IaaS offering Elastic platform, elastic infrastructure
Processing Offering Requires functionality to execute workload on the cloud Hypervisor
Storage Offering Requires storage of data in cloud Block storage, relational database
Communication Offering (1) Require exchange of messages internally between appl. compo-

nents; (2) Require communication with external components
(1) Message-oriented middleware; (2) Virtual Networking

Cloud Management Management Components (1) Pattern supports Asynchronous access; (2) State information is
kept externally in a central storage

(1) Provider Adapter; Elastic manager; Managed Configuration

Management Processes (1)Application component requires continuous update; (2) Automatic
detection and correction of errors

(1) Update Transition process; (2) Resiliency management pro-
cess

Composite
Application

Decomposition Style Replication or decomposition of application functional-
ity/components

(1) 3-tier; (2) Content Distribution Network

Hybrid Cloud Application Require the distribution of functionality and/or components of the
GSD tool among different clouds

(1) Hybrid processing; (2) Hybrid Data; (3) Hybrid Backup; (4)
Hybrid Development Environment

and configuration requirements of the GSD tool (using a
process such as IDAPO [5]). Based on this information, a
suitable level of cloud stack that will accommodate all the
configuration requirements of the GSD tool can be selected.
The architect has more flexibility to implement or support the
implementation of a deployment pattern when there is greater
control of the cloud stack. For example, to implement the
hybrid data pattern [6] during cloud deployment of Hudson,
the architect would require control of the infrastructure level of
the cloud stack to allow for provisioning (and de-provisioning)
of resources (e.g., storage, memory, CPU).

VII. LIMITATIONS OF THE STUDY

The GSD tools included in the dataset were stable and
mature, and used by all the companies involved in the empirical
study. This reduces external threats to the study that may come
from the proliferation of GDS tools deployed in the cloud. The
study should not be generalized to small and medium size
projects. Large projects are usually executed with stable and
reliable GSD tools. For small projects (with few developers
and short duration), high performance and low cost may be the
main consideration in tool selection. The small number of GSD
tools in the selected dataset is appropriate because we are not
carrying out a feature-analysis based study of GSD tools, but
only using it to apply against our proposed taxonomy. Future
research can be done to re-evaluate how new GSD tools can
be positioned within the taxonomy.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we have created and used a taxonomy of
deployment patterns for cloud-hosted applications to contribute
to the literature on cloud deployment of Global Software
Engineering tools.

Eight categories that form the taxonomy have been de-
scribed: Application process, Cloud properties, Service model,

Deployment model, Application architecture, Cloud offerings,
Cloud management, and Composite applications. Application
process contains patterns that handles the workload imposed
on the cloud infrastructure by the ISO/IEC 12207 software
processes. Cloud properties contains patterns for mitigating
the core cloud computing properties of the tools. Patterns
in Service model and Deployment model reflects the NIST
cloud definition of service models and deployment models,
respectively. Application architectures contains patterns that
supports the architectural components of a cloud-application.
Patterns in Cloud offerings reflects the main offerings that can
be provided to users on the cloud infrastructure. Cloud man-
agement contains patterns used to manage both the components
and processes of software tools. Composite cloud contains
patterns that can be formed by combining other patterns or
can be decomposed into separate components.

These categories were further partitioned into 24 sub-
categories, which were mapped to the components of an (archi-
tectural) deployment structure. This mapping reveals two com-
ponents classes: cloud-hosted environment and cloud-hosted
application. Cloud-hosted environment and cloud-hosted ap-
plication classes captures patterns that can be used to address
deployment challenges at the infrastructure level and applica-
tion level, respectively.

By positioning a selected set of software tools, JIRA,
VersionOne, Hudson, Subversion and Bugzilla, on the tax-
onomy, we were able to identify applicable deployment pat-
terns together with the supporting technologies for deploying
cloud-hosted GSD tools. We observed that most deployment
patterns are related and can be implemented by combining
with others ones, for example, in hybrid deployment scenarios
to integrate data residing in multiple clouds. We have also
provided recommendations in a tabular form which shows the
selection criteria to guide an architect in choosing applicable
deployment patterns. Examples of deployment patterns derived

92Copyright (c) IARIA, 2015. ISBN: 978-1-61208-388-9

CLOUD COMPUTING 2015 : The Sixth International Conference on Cloud Computing, GRIDs, and Virtualization

from applying these selection criteria have been presented.
We plan to carry out several Case Studies involving the

deployment of cloud-hosted GSD tools to compare how well
different deployment patterns perform under different deploy-
ment conditions with respect to specific software development
processes (e.g., continuous integration with Hudson). In the
future, we will evaluate performance and reliability (through
simulation) in multi-user collaborations involving cloud-hosted
GSD tools for different deployment patterns.

ACKNOWLEDGMENT

This research was supported by the Tertiary Education Trust
Fund (TETFUND), Nigeria and IDEAS Research Institute,
Robert Gordon University, UK.

REFERENCES

[1] R. Buyya, J. Broberg, and A. Goscinski, Cloud Comput-
ing: Principles and Paradigms. John Wiley & Sons, Inc.,
2011.

[2] M. A. Chauhan and M. A. Babar, “Cloud infrastructure
for providing tools as a service: quality attributes and
potential solutions,” in Proceedings of the WICSA/ECSA
2012 Companion Volume. ACM, 2012, pp. 5–13.

[3] S. Junuzovic and P. Dewan, “Response times in n-
user replicated, centralized, and proximity-based hybrid
collaboration architectures,” in Proceedings of the 2006
20th anniversary conference on Computer supported co-
operative work. ACM, 2006, pp. 129–138.

[4] L. Bass, P. Clements, and R. Kazman, Software Archi-
tecture in Practice, 3/E. Pearson Education India, 2013.

[5] K.-J. Stol, P. Avgeriou, and M. A. Babar, “Design and
evaluation of a process for identifying architecture pat-
terns in open source software,” in Software Architecture.
Springer, 2011, pp. 147–163.

[6] C. Fehling, F. Leymann, R. Retter, W. Schupeck, and
P. Arbitter, Cloud Computing Patterns. Springer, 2014.

[7] A. Homer, J. Sharp, L. Brader, M. Narumoto, and
T. Swanson, Cloud Design Patterns, R. Corbisier, Ed.
Microsoft, 2014.

[8] L. Badger, T. Grance, R. Patt-Corner, and J. Voas, “Cloud
computing synopsis and recommendations,” NIST special
publication, vol. 800, 2012, p. 146.

[9] S. Hansma, “Go fast and don’t break things: Ensuring
quality in the cloud.” in Workshop on High Performance
Transaction Systems(HPTS 2011), Asilomar, CA, Octo-
ber 2011. Summarized in Conference Reports column of
USENIX; login 37(1), February 2012., 2012.

[10] J. Bass, “How product owner teams scale agile methods
to large distributed enterprises,” Empirical Software En-
gineering, 2014, pp. 1–33.

[11] F. Lanubile, “Collaboration in distributed software devel-
opment,” in Software Engineering. Springer, 2009, pp.
174–193.

[12] J. D. Herbsleb and A. Mockus, “An empirical study of
speed and communication in globally distributed software
development,” Software Engineering, IEEE Transactions
on, vol. 29, no. 6, 2003, pp. 481–494.

[13] J. Portillo-Rodriguez, A. Vizcaino, C. Ebert, and M. Pi-
attini, “Tools to support global software development
processes: a survey,” in Global Software Engineering
(ICGSE), 2010 5th IEEE International Conference on.
IEEE, 2010, pp. 13–22.

[14] J. Vlissides, R. Helm, R. Johnson, and E. Gamma,
“Design patterns: Elements of reusable object-oriented
software,” Reading: Addison-Wesley, vol. 49, 1995.

[15] B. Wilder, Cloud Architecture Patterns, 1st ed.,
R. Roumeliotis, Ed. 1005 Gravenstein Highway North,
Sebastopol, CA 95472.: O’Reilly Media, Inc., 2012.

[16] J. Buckley, T. Mens, M. Zenger, A. Rashid, and
G. Kniesel, “Towards a taxonomy of software change,”
Journal of Software Maintenance and Evolution: Re-
search and Practice, vol. 17, no. 5, 2005, pp. 309–332.

[17] D. Smite, C. Wohlin, Z. Galvina, and R. Prikladnicki, “An
empirically based terminology and taxonomy for global
software engineering,” Empirical Software Engineering,
2012, pp. 1–49.

[18] C. Moyer, Building Applications for the Cloud: Con-
cepts, Patterns and Projects. Pearson Education, Inc,
Rights and Contracts Department, 501 Boylston Street,
Suite 900, Boston, MA 02116, USA: Addison-Wesley
Publishing Company, 2012.

[19] Z. Mahmood, Ed., Cloud Computing: Methods and Prac-
tical Approaches. Springer-Verlag London, 2013.

[20] N. Sawant and H. Shah, Big Data Application Architec-
ture - A problem Solution Approach. Apress, 2013.

[21] S. Strauch, U. Breitenbuecher, O. Kopp, F. Leymann,
and T. Unger, “Cloud data patterns for confidentiality,”
in Proceedings of the 2nd International Conference on
Cloud Computing and Service Science, CLOSER 2012,
18-21 April 2012, Porto, Portugal. SciTePress, 2012,
pp. 387–394.

[22] J. Varia, “Migrating your existing applications to the
cloud a phase-driven approach to cloud migration.”
Amazon Web Services (AWS), [Online: retrieved in Oc-
tober, 2014 from http://aws.amazon.com/whitepapers/].

[23] L. Lilien, “A taxonomy of specialized ad hoc networks
and systems for emergency applications,” in Mobile and
Ubiquitous Systems: Networking & Services, 2007. Mo-
biQuitous 2007. Fourth Annual International Conference
on. IEEE, 2007, pp. 1–8.

[24] P. Mell and T. Grance, “The nist definition of cloud
computing,” NIST special publication, vol. 800, no. 145,
2011, p. 7.

[25] Atlassian.com. Atlassian documentation for jira 6.1. At-
lassian, Inc. [Online: retrieved in November, 2015 from
https://www.atlassian.com/software/jira/].

[26] VersionOne, “Versionone-agile project management and
scrum,” [Online: retrieved in November, 2014 from
www.versionone.com/].

[27] M. Moser and T. O’Brien, “The hudson book.” Or-
acle, Inc., USA, [Online: retrieved in November,
2014 from http://www.eclipse.org/hudson/the-hudson-
book/book-hudson.pdf].

[28] B. Collins-Sussman, B. Fitzpatrick, and M. Pilato, Ver-
sion control with subversion. O’Reilly, 2004.

[29] Bugzilla.org. The bugzilla guide. [Online: retrieved in
October, 2014 from http://www.bugzilla.org/docs/].

[30] CollabNet. Subversionedge for the enterprise. Collab-
Net, Inc. [Online: retrieved in October, 2014 from
http://www.collab.net/products/subversion].

[31] I. Sommerville, Software Engineering. Pearson Educa-
tion, Inc. and Addison-Wesley, 2011.

[32] J. Musser. Enterprise-class api patterns for cloud and
mobile. CITO Research. (2012)

93Copyright (c) IARIA, 2015. ISBN: 978-1-61208-388-9

CLOUD COMPUTING 2015 : The Sixth International Conference on Cloud Computing, GRIDs, and Virtualization

