
A Benchmarking Based SLA Feasibility Study Method for Platform as a Service

Ge Li, Frédéric Pourraz, Patrice Moreaux

Université Savoie Mont Blanc, Annecy le vieux, France
Email: {ge.li, frederic.pourraz, patrice.moreaux}@univ-savoie.fr

Abstract—Service Level Agreements (SLA) are contracts estab-
lished between Software as a Service (SaaS) providers and Plat-
form as a Service (PaaS) providers related to various properties
of the services running on the platform. We propose a generic
method to evaluate to what extent SaaS provider proposed
Quality of Service (QoS) targets, such as response time or
maximal throughput, can be guaranteed with constraints on
workload, resources and cost. These “what-if” evaluations are
based on small scale benchmarking and ability of the application
to be scaled. The approach allows us to estimate with minimal
costs, to what extend a given SLA can be accepted by both client
and provider of a given PaaS.

Keywords–SLA; Capacity planning; SLA negotiation; Bench-
mark; PaaS.

I. INTRODUCTION

Cloud services [1] can be classified as Infrastructure as a
Service (IaaS), PaaS and SaaS. SaaS providers rely on PaaS
features to benefit from the “pay as you go” paradigm cor-
responding to pay only “adapted” resources usage at runtime
while satisfying a set of constraints related to QoS, workload
and cost. Elasticity [2] is the property of the platform to meet
all these requirements at a given variation rate. SLAs are used
to describe the responsibilities of contracting parties (SaaS
provider and PaaS provider). SLA management involves two
stages [3]: establishing an SLA before runtime, and fulfilling
the SLA at runtime. Establishing SLA is usually done through
an automated negotiation process. It involves benchmarking
and/or modelling the system (application and runtime support)
to define the levels of QoS accepted by the SaaS “client” and
offered by the PaaS provider and the constraints both parties
will fulfil.

Web Service Level Agreement (WSLA), WS-Agreement
and other SLA models proposed in SLA@SOI are significant
proposals about SLA [4]. However, more work has to be done
to take into account SLA in the context of cloud computing [3],
especially at runtime. PSLA [5] is a PaaS level SLA descrip-
tion language based on WS-Agreement, which is an extendible
SLA skeleton. PSLA takes the particular needs in PaaS level
SLA into consideration and is well structured, commonly
usable and machine readable for PaaS level SLA management.
Modelling arrival rate and resource demands when satisfying
QoS targets are foundations of capacity evaluation. Modelling
methods can be classified as simulation modelling and analytic
modelling.

As it is the case for most of current applications deployed
in cloud infrastructures, we assume that the architecture of the
application (App) is given as a graph of components (whatever
the component model used) and that the designer of App has
mapped this architecture on a graph of stages. Vertices of
the graph are the components and edges are the relationships
service required - service provided between components. A
stage s is then instantiated as identical VMs at runtime.

Horizontal scaling (HS), or scaling out, of s, means that s
can be instantiated by several VMs (with a front-end Load
Balancer (LB)). Vertical scaling (VS), or scaling up, of s means
that VMs with different resources (for instance 1 to 3 CPUs, 1
to 4 GB of RAM), termed flavors, can instantiate s. Hence, a
configuration of App is the deployed set of VMs of its graph
of stages according to the HS and/or VS capability of the
stages. Since we want to design a non intrusive method with
respect to the application, our model will be based on results
of benchmarks run in the target PaaS context, using measures
also available at runtime.

Our method is as follows. First, we check to what extent the
proposed SLA can be meet. To do so, we benchmark various
configurations of the application. If the application and the
underlying IaaSs on which the configuration is deployed can
achieve the SLA, then we control the running application based
on a set of configurations derived from the first step and on
monitoring both the submitted workload (user’s requests) and
the behaviour of the running application. In this paper, we
address the first step of the method and we propose an appli-
cation independent, cost effective, benchmarking based, SLA
feasibility study method from the PaaS provider’s perspective.
Since the number of feasible configurations may be “large”
(more than 100) and time for benchmarking can be from min-
utes to hours, we propose to reduce the number of benchmarks
by selecting the set of configurations benchmarked.

The paper is organized as follows. Section II briefly re-
minds the reader benchmarking methodology. Then Section III
presents the context of our approach. In Section IV, we
describe in detail our benchmark based SLA feasibility study
method. Finally, we conclude this paper in Section V.

II. RELATED WORK

Benchmarking methods [6] are a well known set of meth-
ods to analyse the behaviour of software and hardware. The
increasing number of software systems running in cloud infras-
tructures has raised a new interest in benchmarking because of
the specificities of the running environments of these systems
and of the variety of the applications. In [7], Iosup et al.,
summarise recent work on benchmarking cloud applications
and propose to adapt benchmarking methods to cope with
properties of these applications, especially for what concerns
elasticity and variability. Due to the fact that controlling the
runtime cloud application can lead to modify its allocated
resources and since the application uses resources which
are usually shared with other applications under control of
hypervisors, benchmarking such applications must address the
behaviour of the application faced up to these endogenous and
exogenous variations [8].

III. SLA FEASIBILITY STUDY CONTEXT

SLA feasibility study is based on the evaluations of elas-
ticity constraints described in PSLA. QoS target quantifies

160Copyright (c) IARIA, 2015. ISBN: 978-1-61208-388-9

CLOUD COMPUTING 2015 : The Sixth International Conference on Cloud Computing, GRIDs, and Virtualization

TABLE I. SLA FEASABILITY STUDY

(a) FLAVOR DESCRIPTION
FLAVOR L cpu M cpu L gnrl M gnrl L ram M ram S ram
vCPU 8 5 6 4 5 3 1
RAM(G) 2.67 1.67 3 2 10 6 2
DISK(G) 13.35 8.35 15 10 25 15 5
COST(euro/s) 5.34 3.34 3 2 5 3 1

(b) RESOURCE CONSTRAINTS: MAXIMUM NoI
MAX NoI L cpu M cpu L gnrl M gnrl L ram M ram S ram
Apache 2 3
Jonas 4 6
Mysql 2 3 2 3 2 3 4

(c) RESOURCE CONSTRAINTS: MINIMUM NoI
MIN NoI L cpu M cpu L gnrl M gnrl L ram M ram S ram
Apache 1 1
Jonas 2 2
Mysql 1 1 1 1 1 1 1

(d) MFC(TIER,1,FLAVOR).
MFC(*,1,*) L cpu M cpu L gnrl M gnrl L ram M ram S ram
Apache 300 200
Jonas 150 94
Mysql 134 84 150 100 400 300 100

(e) MFC(TIER,MAX NoI,FLAVOR).
MFC(*,MAX L cpu M cpu L gnrl M gnrl L ram M ram S ram MAX
NoI,*) MFC(TIER)

Apache 600 600 400 600
Jonas 600 564 600
Mysql 268 252 300 300 800 900 400 900

(f) MINIMUM COST TO SERVE MAR
COST L cpu M cpu L gnrl M gnrl L ram M ram S ram
Apache 3 4
Jonas 10.68 13.36
Mysql 16.02 13.36 6 6 5 3 3

the acceptable QoS metric “Value Range”, e.g., Response
time ≤ 13s. Workload constraints include “Data Size”, “Data
Composition”; e.g., it is composed of only “atomic request
A” with a Maximum Arrival Rate (MAR) of 300 requests/s.
Resource constraints indicate the kinds of allowed scaling
actions and its limits; e.g., we indicate the minimum (in
Table I(c)) and maximum (in Table I(b)) Number of Instances
(NoI) for flavors (a flavor is a set of resources allocated to a
virtual machine) (in Table I(a)) and tiers, which can be used
for scaling actions. Cost constraints tell how much money can
be spent per time unit, e.g., cost < 10 euro/s.

Scaling actions for virtualized application are at the virtual
machine level. To benchmark the application, we use “CLIF is
a Load Injection Framework” (CLIF) and SelfBench services,
which are provided as services under OpenCloudware project.
CLIF [9] is designed for generating predefined traffic on a
system to measure QoS target and observe the computing
resources usage at the same time. CLIF can be used for de-
ployment, remote control, monitored measurements collection
of its distributed load injectors and probes. SelfBench [10]
provides a virtualized and self-scalable load injection system to
automatically detect the supportable upper bounder arrival rate
of the system. SelfBench is based on CLIF. System MAR and
corresponding resource utilization can be achieved by applying
SelfBench.

Let us list terms and abbreviations used to describe our
feasibility study method (see algorithms). To simplify expla-
nation, we consider a three tier application.

Resource Allocation Scheme (RAS) is in the form
of (FLAVOR1(NoI1), FLAVOR2(NoI2), FLAVOR3(NoI3)),
where FLAVOR1(NoI1) denotes using NoI1 instances of FLA-
VOR1 on first tier.

CLIF(ARRIVAL RATE, RAS) with result CAP/NO CAP
denotes do CLIF benchmark on RAS with ARRIVAL RATE
and get result that RAS can serve ARRIVAL RATE(CAP) or
not(NO CAP).

SelfBench(RAS) with result MAX ARRIVAL RATE de-
notes do SelfBench on RAS and get the maximum capable
arrival rate MAX ARRIVAL RATE of RAS.

Average resource utilization (e.g., Avg RAM UTIL(AR
RIVAL RATE) and Avg CPU UTIL(ARRIVAL RATE)) can
be achieved by both benchmarks.

BCF(TIER) denotes Best Choice Flavor for a given tier
TIER . When adopting BCF(TIER), CPU utilization and
RAM utilization are relatively balanced compared to non
BCF(TIER).

MAXTH is the maximum arrival rate, which can be served
by respecting the QoS target in SLA with a RAS of the biggest
BCF(TIER) with minimum NoI.

ORAS(ARRIVAL RATE) is an Optimized RAS, which is
able to serve the arrival rate of ARRIVAL RATE by respecting
the QoS target with the minimum NoI and as small as possible
size of BCF(TIER) according to SLA.

MFC(TIER,N,FLAVOR) = MAX ARR RATE denotes
the maximum arrival rate can be served for a RAS with N
instances of FLAVOR on TIER is at most MAX ARR RATE.
So the integral capable arrival rate should be the minimum
achievable MFC(TIER,N,FLAVOR) of all tiers. It is reasonable
to assume that (1) is fulfilled.

MFC(TIER,N, FLAV OR) = N ∗MFC(TIER, 1, FLAV OR) (1)

All possible MFC(TIER,1,FLAVOR) will be benchmarked or
deduced for estimating the integral capable arrival rate of a
RAS.

RAS(MFC(TIER,N,FLAVOR)) means a RAS which can
serve maximum arrival rate of MFC(TIER,N,FLAVOR) with
N instances of FLAVOR on TIER.

RAS(BCF(TIER),MIN NoI) denotes a RAS with the
biggest BCF and minimal NoI.

CAP SLA ReCst denotes the CAPable arrival rate accord-
ing to SLA Resources Constraints.

COST(RAS) denotes the cost per charge unit for RAS
and COST AR SLA is the minimal cost per charge unit for
serving the arrival rate required in SLA.

IV. METHOD DESCRIPTION

Our method estimates the capable workload. Over esti-
mation may lead to under provisioning, which means high
probability of SLA violation. Under estimation leads to over
provisioning, which means unnecessary cost. From the PaaS
provider’s perspective, low level under estimation is inevitable
for signing a contract.

In this part, our SLA feasibility study method will be
introduced according to the steps. For each step, we will
formally describe our method and corresponding examples.

161Copyright (c) IARIA, 2015. ISBN: 978-1-61208-388-9

CLOUD COMPUTING 2015 : The Sixth International Conference on Cloud Computing, GRIDs, and Virtualization

Require: FLAVOR, MIN NoI
Ensure: BCF(TIER) for each tier.

1: function SELFBENCH BCF(ORAS(FLAVOR), ORAS(MIN NoI))
2: SelfBench(S gnrl(MIN NoI),S gnrl(MIN NoI),S gnrl(MIN NoI))
3: for each TIER do
4: CPU RAM RATIO = Avg CPU UTIL/Avg RAM UTIL
5: if CPU RAM RATIO ≥ 1.5 then
6: BCF(TIER)=X cpu
7: else if CPU RAM RATIO ≤ 0.5 then
8: BCF(TIER)=X ram
9: else

10: BCF(TIER)=X gnrl
11: end if
12: end for
13: return BCF(TIER) for each tier

14: end function

Figure 1. Algorithm Find BCF(TIER)

Require: BCF(TIER), MIN NoI
Ensure: MAXTH

1: function SELFBENCH MAXTH(FLAVOR, MIN NoI)
2: SelfBench(RAS(BCF(TIER),MIN NoI))
3: return MAXTH = MAX ARRIVAL RATE

4: end function

Figure 2. Algorithm Find MAXTH

A. Step 1: Find BCF(TIER)
As described in the algorithm of Figure 1, we know

BCF(TIER) if several kinds of flavors are allowed in
SLA. Using non BCF(TIER) can be interesting when
the maximum capability of BCF(TIER) is not sufficient,
e.g., BCF(Apache) is X gnrl, BCF(Jonas) is X cpu and
BCF(Mysql) is X ram. So, ORAS(ARRIVAL RATE) should
have a RAS of (X gnrl(1),X cpu(2),X ram(1)).

B. Step 2: Find MAXTH
As described in the algorithm of Figure 2, we do

SelfBench on RAS (L gnrl(1),L cpu(2),L ram(1)) with the
biggest BCF(TIER) on each tier. MAXTH is 300 requests/s.

C. Step 3: ORAS(MAXTH) exploration
“new RAS” can be not existing because of SLA con-

straints. According to the algorithm of Figure 3, we
check the resource utilization of doing SelfBench on
(L gnrl(1),L cpu(2),L ram(1)), and only Mysql tier is not yet
saturated when arrival rate reaches MAXTH. So, the size
of the Mysql tier flavor is decreased to get a “new RAS”
(L gnrl(1), L cpu(2), M ram(1)). CLIF benchmark result on
the “new RAS” shows that MAXTH can be served, so
we do CLIF benchmark on (L gnrl(1),L cpu(2),S ram(1)),
which indicate that MAXTH can not be served. So
ORAS(MAXTH)=(L gnrl,2L cpu,M ram).

D. Step 4: Exploring MFC of flavors used in ORAS(MAXTH)
According to the algorithm of Figure 4, ORAS(MAXTH)

can be approximately seen as a RAS fitly allocated
the resources to serve arrival rate of 300 requests/s.
A RAS has one instance of L gnrl on Apache tier,
which is the same as ORAS(MAXTH)=300, can serve
maximum arrival rate at most 300 requests/s. So
MFC(Apache,1,L gnrl)=300, MFC(Mysql,1,M ram)=300 and
MFC(Jonas,1,L cpu)=MFC(Jonas,2,L cpu)/2=MAXTH/2=150
according to equation 1.

Require: MIN NoI, MAXTH, BCF(TIER), FLAVOR
Ensure: ORAS(MAXTH)

1: function FIND ORAS MAXTH(MIN NoI, MAXTH, BCF(TIER), FLAVOR)
2: ORAS(MAXTH) = NULL
3: repeat
4: TIER = 0
5: repeat
6: TIER ++
7: Check Avg RAM UTIL, Avg CPU UTIL for TIER.
8: until Both Avg RAM UTIL and Avg CPU UTIL are unsaturated
9: if unsaturated TIER existing then

10: “new RAS” is a RAS using smaller flavor on TIER.
11: if “new RAS” existing then
12: CLIF(MAXTH, “new RAS”)
13: if NO CAP then
14: ORAS(MAXTH)=“previous RAS”
15: end if
16: else
17: ORAS(MAXTH)= “previous RAS”
18: end if
19: else
20: ORAS(MAXTH)= “current RAS”
21: end if
22: until ORAS(MAXTH)!=NULL
23: return ORAS(MAXTH)

24: end function

Figure 3. ORAS(MAXTH) exploration

Require: ORAS(MAXTH), MAXTH
Ensure: MFC(TIER,1,FLAVOR used in ORAS(MAXTH)

1: function SPECU MFC ORAS(ORAS(MAXTH), MAXTH)
2: for each FLAVOR used by TIER in ORAS(MAXTH) do
3: N= NoI for FLAVOR in TIER in ORAS(MAXTH)
4: MFC(TIER,1,FLAVOR)=MAXTH/N
5: end for
6: return MFC(TIER,1,FLAVOR used in ORAS(MAXTH)

7: end function

Figure 4. Exploring MFC of flavors used in ORAS(MAXTH)

E. Step 5: Speculating MFC of flavors smaller than the one
used in ORAS(MAXTH)

According to the algorithm of Figure 5, linear estima-
tion as in Figure 6 can be used for deducing MFC of
smaller flavor based on a bigger flavor. We consider both
CPU and RAM. Comparing with the CPU and RAM of
the flavor used in corresponding tier of ORAS(MAXTH),
we get two ratios Ratio CPU and Ratio RAM, and we
take the minimum ratio, which is lower or equals to 1.
Then, MFC(tier,1,FLAVOR)= MIN Ratio*MFC(tier,1,flavor
in ORAS(MAXTH)). e.g., M cpu allocated 5/3 of CPU
and M ram 1.67/6 of RAM. So, MIN Ratio(M cpu,

Require: FLAVOR, ORAS(MAXTH), MFC(TIER,1,flavor used in ORAS(MAXTH))
Ensure: MFC(TIER,1,smaller FLAVOR)

1: function SPECU MFC LESS(FLAVOR, ORAS(MAXTH), MFC(TIER,1,flavor
used in ORAS(MAXTH)))

2: for each FLAVOR in each TIER do
3: Ratio CPU(FLAVOR, flavor used in ORAS(MAXTH))
4: Ratio RAM(FLAVOR, flavor used in ORAS(MAXTH))
5: MIN Ratio = min(Ratio CPU, Ratio RAM)
6: if MIN Ratio ≤ 1 then
7: MFC(TIER,1,FLAVOR smlr oras)= MIN Ratio*MFC(TIER,1,flavor

used in ORAS(MAXTH))
8: end if
9: end for

10: return MFC(TIER,1,smaller FLAVOR)

11: end function

Figure 5. Speculating MFC of flavors smaller than the one used in
ORAS(MAXTH)

162Copyright (c) IARIA, 2015. ISBN: 978-1-61208-388-9

CLOUD COMPUTING 2015 : The Sixth International Conference on Cloud Computing, GRIDs, and Virtualization

Linear speculation
based on MFC of

smaller Flavor will lead
to

OVER ESTIMATION
MFC based on
benchmark of

ORAS(MAXTH)

Linear speculation based
on MFC of bigger Flavor

will lead to
UNDER ESTIMATION

Y

0

500

MFC(Mysql,1,FLAVOR)

300

100

S_ram M_ram L_ram

Size of flavor

Figure 6. Under estimation and over estimation

Require: FLAVOR, ORAS(MAXTH), MIN Ratio MFC(TIER,1,flavor used in
ORAS(MAXTH))

Ensure: MFC(TIER,1,bigger FLAVOR).
1: function SPECU MFC GREATER(FLAVOR, ORAS(MAXTH), MIN Ratio,

MFC(TIER,1,flavor used in ORAS(MAXTH)))
2: SelfBench(ORAS(MAXTH))
3: for each FLAVOR MIN Ratio > 1 in each TIER do
4: Re util= Avg RAM UTIL(MAXTH) for FLAVOR by checking benchmark

report in Step2 or Step3
5: Arr rate=ARRIVAL RATE(Re util) by checking SelfBench report in Step6.
6: augmentation = MAXTH - Arr rate
7: MFC(TIER,1,bigger FLAVOR)=MAXTH + augmentation
8: end for
9: return MFC(TIER,1,bigger FLAVOR)

10: end function

Figure 7. Speculating MFC of flavors bigger than the one used in
ORAS(MAXTH)

M ram)=1.67/6. Since 1.67/6 < 1, MFC(Mysql,1, M cpu)
= MIN Ratio(M cpu, M ram) ∗MFC(Mysql,1,M ram)=
1.67/6 ∗ 300 = 84. Other MFC(TIER,1,FLAVOR) which have
a MIN Ratio ≤ 1 can be speculated similarly. If MIN Ratio
> 1, MFC(TIER,1,FLAVOR) can’t be linearly deduced in
the same way. Otherwise, overestimation will be introduced
because of the concavity and convexity of the curve in Fig-
ure 6 [11].

F. Step 6: Speculating MFC of flavors bigger than the one
used in ORAS(MAXTH)

If RAS1 and RAS2 use the same FLAVOR and NoI
for TIER, the observable overlapped ARRIVAL RATE of
SelfBench(RAS1) and SelfBench(RAS2) results have approx-
imately the same Avg RAM UTIL and Avg CPU UTIL
SelfBench(L gnrl(1),L cpu(2),L ram(1)) is done in Step2.
Avg RAM UTILs and Avg CPU UTILs of Mysql tier for
ARRIVAL RATE from 0 to MAXTH are achievable and can

Y

0

100

500

MAXTH

= 300

200 Se
lfB

en
ch

(R
AS

(M
FC

(M
ys

ql
,1

,L
_r

am
)))

Self
Ben

ch
(R

AS(M
FC(M

ys
ql,

1,M
_r

am
)))

Curve of SlefBench result
Unknown Curve

400

30% 80%

With M_ram,
from 30% to

80%, capable
arrival rate

increased 100

With L_ram,
from 30% to

80%, capable
arrival rate

should increase
at least 100

ARRIVAL_RATE

RAM utilization

Figure 8. Linear estimation of bigger flavor MFC based on smaller flavor

Require: MFC(TIER,1,FLAVOR), MAX NoI
Ensure: AAR RC SLA.

1: function FIND AAR RC SLA(MFC(TIER,1,FLAVOR, MAX NoI)
2: for each TIER do
3: for each FLAVOR do
4: MFC(TIER,MAX NoI,FLAVOR)= MFC(TIER,1,FLAVOR)*

MAX NoI
5: end for
6: MAX MFC(TIER)= MAX{MFC(TIER,MAX NoI,FLAVOR)}
7: end for
8: CAP SLA ReCst= MIN{MAX MFC(TIER)}
9: return AAR RC SLA

10: end function

Figure 9. Resources constraints evaluation

be seen as the same for RAS(MFC(Mysql,1,L ram)).
Then, we do SelfBench(ORAS(MAXTH)) and get the

curve of Figure 8 for RAS(MFC(Mysql,1,M ram)). The goal is
to estimate ARRIVAL RATE for RAS(MFC(Mysql,1,L ram))
when Avg RAM UTIL is saturated (e.g., reaches 80%). This
ARRIVAL RATE is MFC(Mysql,1,L ram). Avg RAM UTIL
increases from 30% to 80%, ARRIVAL RATE of
RAS(MFC(Mysql,1,L ram)) augmentation should be more
than RAS(MFC(Mysql,1,M ram))’s. Under estimation is
made for MFC(Mysql,1,L ram) 400 by taking the smaller
augmentation of SelfBench(RAS(MFC(Mysql,1,M ram))).

G. Step 7: Resources constraints evaluation
Until now, we have all the MFC(TIER,1,FLAVOR) I(d).

The maximum capable arrival rate of all possible RAS, should
be the minimum value, which is achieved by comparing the
maximum MFC(TIER,MAX NoI,FLAVOR) values in each
tier, among all tiers. e.g., according to MAX NoI Table I(b)
from SLA and MFC(TIER,1,FLAVOR) Table I(d) achieved
during benchmark, we know the MFC(tier, MAX NoI, flavor)
Table I(e). The maximum arrival rate can be served according

163Copyright (c) IARIA, 2015. ISBN: 978-1-61208-388-9

CLOUD COMPUTING 2015 : The Sixth International Conference on Cloud Computing, GRIDs, and Virtualization

Require: MFC(TIER,1,FLAVOR), FLAVOR, MAR
Ensure: COST AR SLA.

1: function FIND COST AR SLA(MFC(TIER,1,FLAVOR), FLAVOR, MAR)
2: for each TIER do
3: for each FLAVOR do
4: MAX NoI MAR=dMAR/MFC(TIER, 1, FLAV OR)e
5: COST(TIER,FLAVOR)= MAX NoI MAR * FLAVOR.COST
6: end for
7: MIN COST(TIER)= min{COST(TIER,FLAVOR)}
8: end for
9: COST AR SLA=

∑
MIN COST(TIER)

10: return COST AR SLA

11: end function

FIGURE 10. COST CONSTRAINTS EVALUATION

to resource constraints in SLA is MIN{600,600,900}=600,
which is higher than SLA requirement(300 requests/s). So, the
SLA can be achieved while fulfilling the resource constraints.

H. Step 8: Cost constraints evaluation
According to the algorithm of Figure 10, the cost for each

tier with each flavor is shown in Table I(f). The minimum cost
to serve MAR of 300 requests/s is 3+10.68+3 = 16.68(euro/s),
which is higher than SLA cost constraint(maximum 10 euro/s).
So SLA feasibility study refuses current version of SLA for
cost constraints.

V. CONCLUSION

We proposed an SLA feasibility study method based on
limited amount of benchmarking with application’s Auto-
scaling group architecture. The “what-if” evaluations answer
the question that whether QoS target can be satisfied with the
workload, resource and cost constraints stated in SLA. We
experiment our method in the context of the OpenCloudware
project [12] and on a small experimental set-up on which we
are deploying a configurable virtualized application that we
can stress in various ways to check the quality of derivations
made from th benchmarks. Future work will be first to verify
the accuracy of our proposal. Then, we will design our runtime
controller to provide elasticity to virtualized applications using
informations recorded during our benchmarking campaign
while satsifying SLA.

ACKNOWLEDGMENT

The research described in this paper is supported by the
OpenCloudware project [12].

REFERENCES
[1] W. Voorsluys, J. Broberg, and R. Buyya, Introduction to Cloud

Computing. John Wiley & Sons, Inc., 2011, pp. 1–41. [Online].
Available: http://dx.doi.org/10.1002/9780470940105.ch1

[2] N. R. Herbst, S. Kounev, and R. Reussner, “Elasticity in Cloud
Computing: What it is, and What it is Not,” in Proceedings of the
10th International Conference on Autonomic Computing (ICAC 2013),
San Jose, CA, June 24–28, 2013, pp. 23–27.

[3] D. Kyriazis, “Cloud Computing Service Level Agreements - Exploita-
tion of Research Results,” European Commission, Directorate General
Communications Networs, Content and Technology Unit E2 - Software
and Services, Cloud, Brussels, Belgium, Report/Study, Jun. 2013.

[4] P. Patel, A. Ranabahu, and A. Sheth, “Service level agreement in cloud
computing,” in Cloud Worshop, OOPSLA 2009, S. Arora and G. T.
Leavens, Eds. Osrlando, FL, USA: ACM, Oct. 25-29 2009.

[5] G. Li, F. Pourraz, and P. Moreaux, “PSLA: a PaaS Level SLA
Description Language,” in Intercloud 2014, Boston, United States, Mar.
2014.

[6] R. W. Hockney, The Science of Computer Benchmarking, ser. Software,
environments, tools. Society for Industrial and Applied Mathematics,
1996.

[7] A. Iosup, R. Prodan, and D. Epema, “Iaas cloud benchmarking: Ap-
proaches, challenges, and experience,” in 5th Workshop on Many-Task
Computing on Grids and Supercomputers (MTAGS 2012, (SC),, Salt
Lake City, UT, USA, Nov. 2012, invited paper.

[8] A. Alexandrov, E. Folkerts, K. Sachs, A. Iosup, V. Markl, and C. Tosun,
“Benchmarking in the cloud: What it should, can, and cannot be,” Aug
2012.

[9] B. Dillenseger, “Clif, a framework based on fractal for flexible, dis-
tributed load testing,” annals of telecommunications, vol. 64, no. 1-2,
2009, pp. 101–120.

[10] A. Tchana et al., “A self-scalable and auto-regulated request injection
benchmarking tool for automatic saturation detection,” Cloud Comput-
ing, IEEE Transactions on, vol. 2, no. 3, July 2014, pp. 279–291.

[11] N. Gunther, Guerrilla Capacity Planning: A Tactical Approach to
Planning for Highly Scalable Applications and Services. Springer,
2007.

[12] “OpenCloudware,” [retrieved 02,2015], http://opencloudware.org/.

164Copyright (c) IARIA, 2015. ISBN: 978-1-61208-388-9

CLOUD COMPUTING 2015 : The Sixth International Conference on Cloud Computing, GRIDs, and Virtualization

