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Abstract— In order to quickly reach incident locations, 

emergency services have to fairly distribute their resources on 

the territory. This distribution is based on an analysis which 

depends on heterogeneous spatial data like past interventions 

(recurring risk), specific geographical places (sporadic risk), 

road network or socio-economic variables. On the other hand, 

Spatial Online Analytical Processing (SOLAP) tools are 

designed for the collection and the analysis of large spatial data 

sets. In this study, an original raster SOLAP model is 

implemented for emergency services of Brussels 

agglomeration. It allows decision-makers to freely generate 

risk maps (continuous fields), depending on several dimensions 

(time, intervention type, risk type, etc.), and to compare them 

with the accessibility of firefighters and ambulances. 

Simulations can also be performed on resources locations to 

see their impact on the main accessibility. 

Keywords-GIS; Risk Analysis; Data Warehouse; Fields; 

Firefighting. 

I.  INTRODUCTION 

In order to quickly reach incident locations, emergency 

services (including firefighters and medical aids) have to 

fairly distribute their resources on the territory. This 

distribution is a complex problem since it has to be adapted 

to a risk model which depends on heterogeneous spatial data 

sets: past interventions, population, buildings, road network, 

etc. 

On the other hand, Business Intelligence [8] and 

Geographic Information Systems (GIS) include efficient 

tools for the collection and the analysis of large amounts of 

spatial data. Amongst them, SOLAP Spatial Online 

Analytical Processing (SOLAP) tools allow decision makers 

to freely explore spatial data warehouses through interactive 

maps, tables or charts [1][2]. The information from SOLAP 

is summarized (aggregated), thus more easily analyzed by 

the decision-makers. The objective of this research is the 

design of a SOLAP adapted to the needs of the emergency 

services of Brussels. Thanks to SOLAP, they should be able 

to easily collect the data and analyze the risk so as to 

adequately deploy their resources in the territory of the 

Brussels agglomeration. 

The remainder of this paper is structured as follows. 

Section II is a state of the art about risk analysis for 

emergency services (subsection II-A) and SOLAP including 

explanations about SOLAP basics (subsection II-B). A 

raster SOLAP model adapted to risk analysis is then 

deducted from this review of the literature (research 

hypothesis in subsection II-C). Section III describes the 

raster SOLAP model developed to reach the research 

objective. Its main architecture (subsection III-A) is 

composed on the one hand of a vector data warehouse in 

charge of data collecting/archiving (subsection III-B), and 

on the other hand, of several raster data cubes which allows 

risk calculations by the SOLAP (subsection III-C). The 

SOLAP model is then validated in section IV by the SOLAP 

interface, which allows users to explore raster data cubes 

through interactive risk maps. Section V contains 

conclusions and perspectives of this paper. 

II. STATE OF THE ART 

A. Risk Analysis 

Risk can be divided into two distinct categories (and so 

two distincts models): recurring risk and sporadic risks [9]. 

Recurring risk is the probability of incidents, which can 

be estimated from historical interventions. These data are 

mainly characterized by time, space and intervetion type. In 

particular, space can be modeled as a field [3][18] thanks to 

Kernel Density Estimation  (KDE) [13]. It is very popular to 

identify hotspots of punctual events in a continuous space. 

For instance, it is offenly used by police for crime 

prevention [7][8]. Moreover, when points are aggregated 

with KDE, shapes of the hotspots suffer less from the 

Modifiable Areal Unit Problem (MAUP) [25] than with 

spatial aggregations, depending on administrative entities 

(communes, census tracts, etc.). 

Sporadic risk does not depend on incidents frequencies, 

but on specific places that would require important 

resources from emergency services in the event of an 

incident: tunnels, schools, hospitals, etc. Once identified, 

these locations can be incorporated into a multicriteria 

analysis [11] to determine the sporadic risk, by weighting 

the human and material damages incurred in their vicinity.  

In addition to the probabilistic nature of the recurring 

risk, it is possible to study the conditions favoring the 

emergence of the risk, no longer for an operational purpose, 

but for an urban planning objective. Population density, age 

of buildings and other environmental variables can be 

considered in a geographic regression model to explain the 

frequency of incidents [14]. 
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Once the risk model has been completed, the adequacy 

of the response by the emergency services can be assessed 

by the travel times required by the various concerned 

resources (personnel and specific equipment) to reach the 

claims sites. This step requires an up-to-date and precise 

road graph with average speeds adapted to the emergency 

vehicles.  

B. SOLAP 

A SOLAP server allows decision makers to query data 

hypercubes (also simply called “data cubes”) extracted from 

a data warehouse. Data hypercubes are models of pre-

aggregated data depending on several dimensions (for 

example: month, commune and incident type) [1]: 

combinations of dimension members define facts, and an 

aggregated measure is associated to every fact. For example, 

the combination of January 2016 (member of dimension 

“month”), fire incident (member of dimension “incident 

type”) and Anderlecht (member of geographical dimension 

“commune”) is a fact with an associated number of 

incidents (measure). 

Users navigate into data hypercubes through interactive 

tables, charts or maps. Maps can represent spatial facts 

(defined by at least one geographical dimension like 

communes), and tables/charts can represent non-spatial facts 

(defined by non-spatial dimensions like months, incident 

types, etc.). 

The SOLAP server is able to calculate the measure of 

every possible fact defined at a less detailed level of 

dimensions than the one stored in the data hypercube (for 

example, the number of incidents for the whole year 2016 

instead of January 2016). This typical SOLAP operation is 

called “roll up” (on the time dimension in the previous 

example) and the reverse operation is called “drill down”. 

Filters on dimension members (for instance, facts defined by 

a specific month of the time dimension) are called “slices” 

in the SOLAP vocabulary. 

Despite the heavy calculations that a “roll up” operation 

can require, a SOLAP must show quick results. For this 

purpose, the SOLAP literature proposes different strategies 

[1] like the precomputing of different hypercubes at 

different levels of details or the use of different physical 

structures: hypercubes modelled by arrays 

(Multidimensional OLAP or MOLAP) [11], by relational 

tables (Relational OLAP or ROLAP) [20] or both (Hybrid 

OLAP or HOLAP) [13]. 

 
 

Figure 1. Examples of map algebra operators, adapted from [23] 

 

Most of SOLAP tools are only able to use the vector 

model to represent spatial facts on maps [16] [29]. However, 

several researches showed the potential of raster SOLAP 

[17][18] [20][22] [24] [28]. The raster model is well adapted 

to the representation of data which are continuous in space 

(fields). Pixels of a raster can spatially define every type of 

geographical entities while the vector model uses three 

different primitives: point, line and polygon. The physical 

structure of raster is quite similar to MOLAP (arrays of 

data) and so the SOLAP aggregations can easily be 

computed by raster functions which are already 

implemented in most of spatial database management 

systems (DBMS). The most important functions [23] are 

local map algebra (Figure 1a) for aggregations on non-spatial 

dimensions and zonal map algebra (Figure 1b) for 

aggregations on geographical dimensions. Moreover, as the 

X and Y dimensions of space are defined in the 

multidimensional structure of raster SOLAP (a spatial 

member is a pixel) [17][18], any geographical dimension 

(for examples: the communes of Brussels) can be imported 

on the fly as a zone layer during the analysis. 

C. Hypothesis 

This distribution of resources for emergency services is 

a complex problem that requires the design of a risk model. 

As said in subsection II-A, a risk model integrates spatial 

data about recurring risk (historical interventions), sporadic 

risk (hospitals, schools, etc.) and socio-economic 

characteristics. Then, the risk model has to be confronted to 

the accessibility of emergency service resources. As said in 

subsection II-B, SOLAP tools are very useful for the 

integration and the analysis of large amounts of spatial and 

heterogeneous data, as required by the risk analysis. In 

particular, raster SOLAP has important advantages for this 

study: a continuous representation of a space for recurring 

risk, a single spatial primitive (pixel) for every type of 

geographical entities, etc. Therefore, a raster SOLAP can be 

designed to help emergency services of Brussels to fairly 

distribute their resources on the territory.  
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III. RASTER SOLAP MODEL 

A. Main architecture 

The main structure of the SOLAP is a typical “Business 

Intelligence” architecture (Figure 2). Data are extracted 

from different sources and archived in a spatial data 

warehouse (subsection III-B). At this stage, data are still in 

their native vector format. Then, vector data are used to 

create five raster data cubes (subsection III-C): recurring 

risk for fires, recurring risk for medical aids, sporadic risks, 

accessibility of firefighters and accessibility of medical aids. 

Users can then manipulate these raster cubes in the SOLAP 

interface to compute different risk maps. 

 

   
 

Figure 2. Main architecture of the SOLAP 

 

As mentioned above, spatialized variables of 

demography, environment, buildings, etc., can also be 

integrated into the SOLAP for urban planning objective, but 

this aspect is not developed here. 

B. Spatial data warehouse 

Some data were directly provided by emergency services 

of Brussels (internal data): 

 fire stations and departures of ambulances 

georeferenced as points; 

 past interventions from 2012 to 2016 

georeferenced as points with time and type (the 

two main categories are fires and medical aids) 

for recurring risk (around 350 000 incidents). 

Some data were obtained from the appropriate suppliers 

or directly downloaded (open data). A first category of these 

external data are the ones defined by emergency services as 

sources of sporadic risk: 

 school buildings with more than 1000 students 

(around 80 points with an attribute “number of 

students”); 

 dangerous industrial sites (UE Seveso 

directive) with a “risk level” attribute (4 

points); 

 prisons (2 points); 

 hospitals with a “number of beds” attribute 

(around 80 points); 

 main shopping zones with a “type” attribute 

(around 100 polygons) [2]; 

 tunnels with a length superior to 400m (around 

200 polygons). 

A second category of external data is the road graph of 

Brussels extracted from Open Street Map (OSM) [26]. It 

covers a larger territory than Brussels because the quicker 

path between two points inside Brussels is not always 

entirely included in the city (which is surrounded by an 

important motorway).  Arcs are associated to an average 

speed that was fixed with firefighters of Brussels for each 

road type of OSM. There is a speed for the two crossing 

directions in order to model prohibited directions 

(associated to a very slow speed). Note that OSM road data 

for Brussels are geometrically based on accurate UrbIS data 

which are supplied by Brussels Regional Informatics Centre 

(BRIC) [6]. 

C. Raster Data Cubes 

1) Recurring risk 

Conceptually, the multidimensional structure of a raster 

data cube can be described by a star schema. Figure 3 is the 

star schema for recurring risks. It is characterized by three 

non-spatial dimensions and two spatial dimensions. The 

raster SOLAP model used in this study, including the 

management of KDE, is based on [17][18]. Note that 

recurring risk data cubes about fires or about medical aids 

are described by the same star schema. Only the members of 

the “incident type” dimension are different. 

 
 

Figure 3. Star schema of a recurring risk data cube 

 

Non-spatial dimensions are incident type, hour range (3 

hours) and day of the week. Physically, these dimensions 

are managed as a ROLAP model [20]: a non-spatial fact is 

the record of a fact table and the member of each non-spatial 

dimension describing the fact is stored in a specific attribute 

(incident type, hour range and day of week). The measure of 

the non-spatial detailed fact is stored in a raster attribute. 

The theoretical number of records of the fact table is 
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determined by the Cartesian product of the three non-spatial 

dimensions. For instance, the raster cube for fire recurring 

risk should have 224 records (detailed facts): 4 incident 

types * 8 hour ranges * 7 days of week. This value grows 

exponentially with the number of dimensions. For this 

reason, a raster cube cannot involve too many non-spatial 

dimensions to be able to quickly compute “roll up” 

aggregations. Note that concretely, the number of detailed 

facts can be inferior to the theoretical value if the density of 

the data cube is less than 100% (some detailed facts can 

have a null measure). This is an advantage of the ROLAP 

model, which does not have to store null facts (contrary to 

MOLAP or raster). 

Physically, spatial dimensions (X and Y) are directly 

managed in the ROLAP measure (a raster attribute). At the 

raster level, a spatial fact is a pixel which is characterized by 

a raster measure (the pixel value), a member for X and a 

member for Y. These spatial dimensions members are 

determined by the position of the pixel in the raster array 

like for MOLAP. Therefore, the raster SOLAP model is also 

characterized by MOLAP advantages (fast aggregations on 

arrays) and disadvantages (null pixels have to be stored). 

Note that every raster of the fact table is characterized by 

the same resolution (100 m) and the same spatial coverage 

[16]. 

When a raster cube is created for recurring risks, a KDE 

raster is computed for the ROLAP measure of every non-

spatial fact with the same parameters: resolution of 100 m, a 

quartic KDE function and a KDE bandwidth of 500 m (this 

parameter determines the smoothing of the field).  It has 

been demonstrated [17] that aggregating KDE measures 

with local map algebra is equivalent to the computation of a 

KDE with all the points that should be involved in the 

SOLAP aggregation (if KDE parameters are identical for 

every non-spatial fact). Therefore, maps resulting from 

SOLAP operations on these data cubes are KDE fields of 

recurring risk. They are the result of a simple sum 

aggregation (local map algebra), then normalized to range 

from 0 to 100. An example is given by Figure 4. It is a map 

of recurring risk for indoor fires including all days of the 

week and all hour ranges. 

 

 
 

Figure 4. Recurring risk for indoor fires 

 

The other raster data cubes are characterized by a similar 

star schema for the spatial dimensions (resolution of 100 m). 

Consequently, only the non-spatial dimensions and the 

raster measure (pixel value) will be discussed in the 

following subsections. 

2)  Sporadic risks 

The star schema of the raster cube for sporadic risk is 

only characterized by one non-spatial dimension: the source 

of risk. Its dimension members are schools, hospitals, 

tunnels, industrial sites, commercial areas and prisons. 

When punctual entities (schools, hospitals, industrial sites 

and prisons) are rasterized, their spatial shape is a buffer of 

300 m. For zonal entities (tunnels and shopping zones), the 

shape of the native polygons is used. 

The raster measure is a weight reflecting the risk 

generated by the source: 

 hospitals: number of beds; 

 schools: number of students; 

 commercial areas: 1 for secondary poles, 2 for 

primary poles and shopping centers, 3 for “rue 

Neuve” (a very populated shopping street in 

Brussels) [2]; 

 industrial sites: 1 for “low risk” industries and 2 

for “high risk” industries in the Seveso 

description; 

 prisons: 1 for all; 

 tunnels: 1 for all. 

After their rasterisation, these six measures are 

normalized to range from 0 to 100. 

As it is characterized by only one non-spatial dimension 

(source of risk), the fact table for sporadic risk has only six 

non-spatial facts (records). The local map algebra operation 

for the SOLAP aggregation on this dimension is a weighted 

sum for which weights were determined with the Brussels 

fire department: 

 hospitals: 0.2; 

 schools: 0.2; 
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 commercial areas: 0.1; 

 industrial sites: 0.15; 

 prisons: 0.2; 

 tunnels: 0.15. 

 

 
 

Figure 5. Sporadic risk 

 

Figure 5 shows a map of sporadic risks including all 

sources (pixels values are normalized to range from 0 to 

100). 

3) Resources accessibility 

The star schema of the two raster cubes for resources 

accessibilities are also characterized by one non-spatial 

dimension: fire stations for firefighters (first raster cube) 

and departures of ambulances for medical aids (second 

raster cube). The measure of a non-spatial fact is a raster, 

modelling the accessibility of a specific resource. The 

measure of a spatial fact (a pixel value) is the travel time 

from the resource to the pixel location (in minutes). Note 

that in some cases, ambulances can start from fire stations 

too. These particular resources are present in both raster 

cubes (fire stations and ambulances departures). 

When raster cubes are built, measures are calculated in 

this way. For a specific resource (a non-spatial fact), a 

vector routing algorithm calculates a travel time value for 

every node of the OSM graph through the quicker path. 

Then an interpolated value is associated to every pixel of a 

raster covering the region of interest. 

As asked by emergency services, users can choose one 

threshold amongst three different values: 4 minutes, 7 

minutes and 10 minutes. Beyond these thresholds, the 

accessibility of a resource is considered as null. Therefore, 

during the analysis, every pixel exceeding the chosen 

threshold is set to null. After that, remaining pixel values are 

transformed in order to obtain an accessibility index which 

grows when it gets closer to the resource and ranges from 0 

to 100 (1).  

                   ' (100 *100)
max

p
p          (1) 

In (1), p’ is the new pixel value, p is the original pixel 

value (travel time in minutes) and max is the maximum 

pixel value in the raster. 

 

 
 

Figure 6. Accessibility of fire stations with a travel time threshold of 7 

minutes 

 

Finally, the local map algebra operation for the SOLAP 

aggregation on the resource dimension is a weighted sum. 

The weights can be set on the fly by the user in order to 

obtain an accessibility field adapted to previous risk maps. 

They reflect the amount of humans/materials present in the 

fire station or ambulance departure. For instance, Figure 6 

shows an accessibility map of all fire stations with equal 

weights and with a travel time threshold of 7 minutes (pixels 

values are normalized to range from 0 to 100). 

 

IV. VALIDATION 

The raster SOLAP for emergency services of Brussels is 

implemented with open source tools only. The spatial 

DBMS PostgreSQL/PostGIS manages the vector data 

warehouses and the raster cubes. SOLAP aggregations are 

implemented with map algebra functions of PostGIS [28]. 

MapServer [21] delivers map results through Web Map 

Services (WMS) which are shown in the SOLAP web 

interface. 

The SOLAP interface allows the user to do “slice” and 

“roll up” operations on the five raster cubes (recurring risk 

for fires and medical aids, sporadic risk, accessibility of 

firefighters and ambulances). It is also possible to add new 

resources and directly see their effect on the accessibility: 

after setting the new location on the interactive map, 

PGRouting (PostGIS extension for routing algorithms) 

calculates all the quicker paths and then PostGIS raster 

builds the new measure in the accessibility raster cube. As 

previously said, weights of fire stations and ambulance 

departures can also be modified on the fly. In addition to the 

risk analysis, emergency services are thus able to perform 

simulations about the spatial distribution of their resources. 
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The tool is also designed to easily integrate new data for 

future analysis. The creation of all raster cubes is 

automatized, including recurring risk (a KDE function has 

been implemented in PL/PGSQL language). 

Let’s remember that SOLAP is a powerful tool to easily 

explore data. It gives all the keys that form the basis of a 

complete risk analysis: different sources of risk described 

through time/space dimensions and accessibility of 

emergency services resources. It is then up to the user to 

compare and interpret the different risk maps obtained with 

the SOLAP. 

V. CONCLUSIONS AND PERSPECTIVES 

The aim of this research was the design of a SOLAP for 

emergency services of Brussels agglomeration, which have 

to fairly distribute their resources on the territory (fire 

stations and ambulances). After a review of the literature 

about risk analysis and SOLAP, a raster SOLAP model was 

chosen to reach the objective. Following this model, a data 

warehouse was created to collect and archive spatial data 

involved in the risk study of Brussels (historical 

interventions, specific places of risk, road network, etc.). 

Several raster data cubes were then created to model the 

different aspects of the analysis: recurring risk, sporadic 

risk, accessibility of firefighters and ambulances. Finally, 

the model was validated by the implementation of the 

SOLAP architecture and its interface. It allows users to 

freely explore data by applying SOLAP operations (“slices” 

and “roll up”) on raster data cubes through interactive risk 

maps. Moreover, simulations can be performed on resources 

locations and weights (reflecting the amount of present 

human/materials) to see their effect on the main 

accessibility. 

This research highlighted the interest of raster SOLAP 

for risk analysis. In comparison with vector SOLAP (most 

of current SOLAP tools), raster allows a continuous 

visualization of space adapted to the analysis of recurring 

risk through KDE maps. Moreover, all types of spatial 

entities can be described by a single primitive: the pixel. 

Raster SOLAP is quite easy to implement with spatial 

DBMS because raster operations (map algebra) can be 

directly used for data aggregations. More generally, SOLAP 

allows decision makers to proceed to risk analysis in a user-

friendly environment which also includes the automatic 

integration of new data for future analyzes. 

Finally, further improvements could be provided to this 

study. First, it was only possible to set one average speed to 

every arc of the road graph with the available data. This 

does not reflect the real situation of Brussels because the 

important congestion of the road network mainly depends 

on time dimensions: hour of the day and day of the week. 

With richer data, it would be easy to integrate these 

dimensions in raster cubes for accessibility. Secondly, for 

technical reasons, it was not possible to extract the durations 

of interventions from historical data. If it was available, the 

risk analysis could take it into account as a weight for each 

point when KDE measures are computed. Indeed, the 

requisition time of emergency resources is an important 

factor in risk analysis. 
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