
Anomaly Detection in Cloud Based Application using System Calls

Marin Aranitasi

Polytechnic University of Tirana, Faculty of Information

Technology, Department of Fundamentals of Informatics

Tirana, Albania

Email : maranitasi@fti.edu.al

Mats Neovius

Åbo Akademi University, Faculty of Science and

Engineering, Department of Computer Science

Turku, Finland

Email: mneovius@abo.fi

Abstract—Cloud computing is a rapidly developing

computing paradigm. It enables dynamic on-demand

resource distribution computing in a cost-effective manner.

However, it introduces compelling concerns related to

privacy and security of the data. As many of these have

been extensively studied and are monitored effectively, this

paper proposes a novel solution relying on detecting

anomalies in system calls behavior of the system. We use

Dempster-Shafer theory of evidence for learning the

normality and show how to parametrize this in the method

presented. The method is scalable to any set of system calls.

Finally, we propose further challenges on this track.

Keywords- Cloud computing; Security; System calls;.

I. INTRODUCTION

With the advances of (Inter) networking and the advent of

the concept cloud computing, computing resources are

provided ―on-demand‖ from a virtualized pool. According

to NIST [1] essential characteristics of cloud computing

include on-demand self-service, network access, pooling,

elasticity and measured service. Service models include

Software as a Service (SaaS), Platform as a Service (PaaS)

and Infrastructure as a Service (IaaS) with deployment

models including private, community, public and hybrid

clouds. Common to these are that the hardware is abstracted

from the consumer who typically ―pay-per-use‖ of resources

whose availability is elastically adjusted by momentary

demand [2]. As a consequence, cloud computing

encompasses a new means to provide virtually unlimited

resources to paying customers whenever needed. Hence, the

cloud has revolutionized the way computing infrastructure is

used [3] to offer adaptive utility computing.

With novel computing paradigms, concerns on their

feasibility arise. In cloud computing this concern relates,

among others, to security [4] and privacy. Commonly

agreed security requirements include data integrity,

confidentiality, access controllability and privacy

preservability. These threats do not restrict themselves to

point-of-sales activity, but are much more sophisticated

extending to data integrity and privacy concerns including

espionage, malicious insiders and curious and greedy

service providers.These security threats are also the main

impediments to wider deployment of cloud computing

solutions especiallyin domains operating on sensitive data

such as used in the accounting industry [5]. These concerns

lend themselves also to emerging cloud-based applications

such as the Internet of Things and Big Data [16]. In

addition, legislation may add technical impediments for

privacy protection such as the Regulation (EU) 2016/679

and EU-U.S. Privacy Shield [6]. The extent to which this

affects the Attribute Authority (AA) and the Third Party

Auditor (TPA) roles and their functionality is yet to be

discovered. Because of these reasons, many solutions are

still hosted ―in-house‖with typically higher initial

investment cost, higher maintenance costs and with

restrictions on availability.

On the type of attacks on enterprise clouds, Verizon’s

security report [7] states that roughly 80% of all breaches

are of external origin and 80% have a financial motive, with

roughly 20% having espionage as the motive. Moreover,

Verizon report that a system is compromised in minutes or

seconds and exfiltration of the data happens typically within

a day. And despite all the effort by specialists to protect a

system from getting compromised, these keep on

happening. Research is also directed on this track with

searchable and homomorphic encryption research

flourishing. Both approaches do, however, rely on a policy

and a shared secret lifting the importance of the AA and

TPA. Possibly as of this advancements, tactics to perform

social attacks granting access to internal attacks develop;

with rudimentary known ones including phishing. Other

well-known risks the cloud based application faces include

data protection risks, system outages including (D)DoS

attacks, data loss, vendor lock-in and vendor failure [8].

Common to social and DoS attacks are that no policy-

based technological appliance can protect against these. As

social attacks typically provide access to restricted data

where the attacker would need to know what to search for or

how to stir the system up, these are often well targeted with

a certain purpose in mind. Alleged examples include

Stuxnet, US expelling 35 Russian diplomats at the end of

2016 accused to have tried to influence US presidential

elections and the noticed espionage at the Finnish foreign

ministry in 2013. With respect to DoS attacks, with the IoT

proposal and its envisioned spread, the zombies for botnets

are ubiquitous and maintained by ordinary persons lacking

maintenance skills. First recorded DDoS attacks with IoT

44Copyright (c) IARIA, 2017. ISBN: 978-1-61208-529-6

CLOUD COMPUTING 2017 : The Eighth International Conference on Cloud Computing, GRIDs, and Virtualization

devices are reputed to have occurred in 2015 by CCTV [9]

with other larger attacks overloading Twitter, PayPal and

Spotify [10] in 2016. Also, if an IoT device operates on

private data, its owner’s concern is to keep it

uncompromised and if compromised, being promptly

informed about this. This is forecast as an immense problem

with the advances of automated data analysis including

image recognition and profiling. Moreover, privacy may be

compromised by such a device in a manner enabling identity

hijacking.

With respect to these concerns, this paper does not aim

to advance on the policies, encryption or similar purely

technological advances, but have a main contribution in

presenting a method for detecting behavioral anomalies.

This method learns a pattern of normality and reacts on

events outside this pattern, i.e. anomalies. As an

implementation we use system calls of a cloud application,

as these are needed whether searchable or homomorphic

encryption each time a system accesses the kernel. In this

context, we mean by cloud application any cloud based

backend software communicating with a set of agents

including IoT systems. Thus, compared to policy-based

models, this paper takes nearly the reverse view that relies

on an agent’s past activity to indicate its current activity

rather than on Boolean logic and cryptography.

The rest of this paper is organized as follows: Section II

present the background and the motivation of the paper.

Section III is divided in five subsections and presents our

solution to the security issues identified. The first and the

second talks about system calls and system call patterns.

The other subsections talk about the mathematical method

of the proposed solution. Conclusions are presented in

section IV.

II. BACKGROUND AND MOTIVATION

In the cloud, main security concerns relate to data privacy or

integrity being compromised. Recent infamous ones include

Sony PlayStation data breach [11], Dropbox privacy leakage

[12] and the alleged major security breach in May 2016

compromising 273M passwords. Typically, the severity of

these attacks is measured by the sensitivity of the data being

exposed or the harm it causes. It is also speculated that

many of the most severe ones do not reach the headlines

because of loss of reputation. Moreover, the laws stating the

consequences have often not been tested yet, imposing little

scrutiny on companies. Moreover, breaches of Service Level

Agreements (SLA) dictating the division of responsibilities

between the customer and the Cloud Service Provider (CSP)

occur frequently. These are seldom made public because of

the reputation implications on both parties with an exception

of black-hat hackers. Reasons for security breaches may

relate to improper configuration, SW bugs, HW errors or

power failures [13]. In addition, SW not being up-to-date

may contain known exploits. This holds especially for the

CSP, where ―a single vulnerability or misconfiguration can

lead to a compromise across an entire provider’s cloud‖ [14]

[17].

With the cloud and its essential characteristics

including differences in national legislation, SLA may start

to include paragraphs stipulating spatial distribution. This

implies that the administrator passwords of the computers

used for this application must not have been disclosed to

areas not included in the SLA. This concern goes especially

for outsourced data services where the owner’s exclusive

control over their data is compromised when stored on a

server whose admin password is known by someone else.

For example, Google’s privacy policy states that Google

reserves the right to review application, project and

customer data for compliance with the acceptable use policy

[17]. In this case, it comes down to what is ―acceptable use

policy‖. Moreover, for personal data, the cloud computing

sets a stage of novel problems that need to be dealt with

including those who have the right to process the data, what

is the level of privacy etc. addressed in e.g. Regulation (EU)

2016/679 and EU-U.S. Privacy Shield [5]. Hence, the cloud

used by an application may need to be spatially constrained

opposing the principal characteristics of cloud computing.

Means to restrict access and preserve data privacy and

integrity includes sophisticated policies on data backup and

distribution over nodes. In cases of a cloud application, this

is the responsibility of the application service provider and

its SLA’s with Cloud Service Provider’s (CSP). These are

often professionally maintained and alternative means to

gain access are developed and gaining popularity, e.g.

phishing or malwares opening a backdoor or as a key

logger. On the CSP, as they share infrastructure, platforms

and underlying virtualization software, they form a single

point of failure attracting targeted and very sophisticated

attacks. If vulnerability is found in any layer, it affects

everyone on this cloud. For this, CSA recommend a

defense-in-depth strategy. Contemporary attacks are also

often more directed and if successful, pose a greater

risk.Moreover, common to most attacks are that they often

go unnoticed until it is too late, e.g. data exfiltration has

already taken place. In such cases, restoring the data from a

backup may not suffice as privacy has been compromised.

III. HOW WE MIGHT APPROACH THESE ISSUES

In this paper we take the in-depth approach and present a
method that builds the normal behavior of an agent on a
cloud system. We construct the normality by analyzing
system calls by its user with the aim of detecting system
anomalies by monitoring specific system calls of specific
applications. This normality would define the way the
system works ―normally‖, with any anomaly indicating a
situation calling for further attention.

In the next section we present the system calls and we
define the set of system calls to use for monitoring and
explain the reason why we choose those calls. After that we
are going to present the mathematical tool for analyzing and
for detecting possible threats in the system.

45Copyright (c) IARIA, 2017. ISBN: 978-1-61208-529-6

CLOUD COMPUTING 2017 : The Eighth International Conference on Cloud Computing, GRIDs, and Virtualization

A. System calls

By definition, a system call is an atomic request in a Unix-
like operating system made via a software interrupt by an
active process for a service performed by the kernel [16].

Figure 1. System calls

The system call provides an interface to the operating

system’s services. Application developers often do not have

direct access to the system calls, but can access them

through an application programming interface (API). The

functions that are included in the API invoke the actual

system calls. This is illustrated in Figure 1. By using the

API, certain benefits can be gained:

 Portability: as long a system supports an API, any

program using that API can compile and run.

 Ease of Use: using the API can be significantly easier

than using the actual system call.

Figure 2. System call parameters

Three general methods exist for passing parameters to the

OS as shown in Figure 2:

1. Parameters can be passed in registers.

2. When there are more parameters than registers,

parameters can be stored in a block and the block

address can be passed as a parameter to a register.

3. Parameters can also be pushed on or popped off the

stack by the operating system.

The system calls are plentiful and vary between

operating systems, with Linux kernel having 300+ system

calls and Windows 7 having close to 700. These can be

categorized to 5 different categories: a process control is a

running program that needs to be able to stop execution

either normally or abnormally. When execution is stopped

abnormally typically a dump of the memory is taken to be

examined by a debugger. The file management system calls

include create (), delete (), read (), write (), reposition (), or

close (). Also, there is a need to determine the file attributes

– get and set file attribute. Often the OS provides an API to

make these system calls. The device management process

usually requires several resources to execute, if these

resources are available, they will be granted and control

returned to the user process. These resources are also

thought of as devices. Some are physical, such as a video

card, and others are logical, such as a file.User programs

request the device, and when finished they release the

device. Similar to files, we can read, write, and reposition

the device. The information management system call

exists purely for transferring information between the user

program and the operating system. An example of this is

time, or date. The OS also keeps information about all its

processes and provides system calls to report this

information. The communicationsystem call exists in two

models of interprocess communication, the message-passing

model and the shared memory model.

 Message-passing uses a common mailbox to pass

messages between processes.

 Shared memory use certain system calls to create and

gain access to regions of memory owned by other

processes. The two processes exchange information by

reading and writing in the shared data.

According to the characteristics of the system calls we

propose to monitor 2 categories of system calls:

1. Communication

2. File management.

For the communication category we propose to monitor

accept (), socket (), connect () system calls, and for the file

management category we propose to monitor read (), write

(),delete () andcreate () system calls.These are the system

calls that rank as the most common threats in the CSA

report and are vital for any cloud based application. We

think that monitoring the data sent across the network is not

a good idea because there is a high overhead tracing those

system calls and they do a lot variable invocation for

sending and receiving data. Hence, this might not be

favorable to do with the method presented below without

packet inspection.

B. System call patterns

We assume the system calls monitored to behave in

anatomic manner and the set of them to be exclusive and

exhaustive. That is, we assume the system calls not to be

subject to race conditions hence assuming an atomic part to

User process executing Calls system call
Return from

system call

Execute system call

Kernel

User process

User mode

(mode bit =1)

Kernel mode

(mode bit =0)

X:parameter

for call

Load

address X

System call

13

Use

parameters

from table X

Code

for

system

call 13

X

register

User program Operating system

46Copyright (c) IARIA, 2017. ISBN: 978-1-61208-529-6

CLOUD COMPUTING 2017 : The Eighth International Conference on Cloud Computing, GRIDs, and Virtualization

be executed from the beginning till the end and each and

every one is exactly one of the possible. On such a

foundation a pattern could be constructed from analyzing

the system call log, i.e. by the recorded evidence. Moreover,

the pattern could be augmented by contextual bindings by

some machine learning method. The outcome could

reasonably be a probability of a certain or a sequence of

system calls happening. Applying a timed window on this

analysis would provide a timed pattern for the system calls,

e.g. a diurnal pattern when human behavior is analyzed.

To detect anomalies, a valid approach is to teach a

model what normality is by analyzing the past. Yet, the

model must consider the possibility of a change in the

system or its behavior implying a change in normality.

Realistically, this could mean a software update or

installation of new software. Hence, the valid system call

pattern calls for an adaptive method providing a level of

certainty that the system indeed operating normally. In case

of anomaly the system could inform the user about the task

behaving anomalously prompting the user to authorize the

anomaly.

C. Mathematical foundation of the proposed method

On the problem and domain outlined in this paper, we

propose to use Dempster-Shafer theory, aka, evidence

theory. The evidence theory is a generalization of Bayesian

theory of subjective probabilities on a set of exclusive and

exhaustive events 𝑋, here the system calls. The power set

2𝑋 denotes all combinations of system calls, realistically

enabling comparing any category of system calls to discover

new domain specific patterns. On this, the mass m is the

level of certainty on a set of events with 𝑚 ∶ 2𝑋 →
[0,1] , 𝑚 ∅ = 0 and 𝑚 = 12𝑋 . On this, the certainty

(belief)bel of a set of outcomes 𝐴 ⊆ 𝑋 is 𝑏𝑒𝑙 𝐴 =
 𝑚(𝑥)𝑥⊆𝐴 and plausibility pl is 𝑝𝑙 𝐴 = 𝑚(𝑥)𝑥∩𝐴≠∅ as

for the possibility of this outcome. This implies that

𝑏𝑒𝑙 < 𝑝𝑙 whenever 𝑚 𝑋 ≠ 0 and 𝐴 ⊂ 𝑋. The semantics of

this is that the difference between bel and pl denote the

uncertainty. Moreover, the complement of a set of events 𝐴

denoted 𝐴 is the evidence against this event, i.e. 𝑝𝑙 𝐴 =
1 − 𝑏𝑒𝑙(𝐴). Consequently, the Dempster-Shafer theory

Realistically, in the context of this paper, the bel and pl

would define the uncertainty, i.e. the tolerance between

normal (base truth) and anomaly behaviour that initially is

1. The theory provides a foundation for a three-valued logic,

whose parameters are: belief as certainty in favour of a

proposition 𝑏𝑒𝑙 , uncertainty as for do not know 𝑝𝑙 − 𝑏𝑒𝑙
and disbelief 𝑏𝑒𝑙 as for certainty against this proposition

1 − 𝑝𝑙(𝐴). They share the property of 𝑝𝑙 𝐴 + 𝑏𝑒𝑙 = 1, i.e.

they are additive. In cases when 𝑏𝑒𝑙(𝐴) = 𝑝𝑙(𝐴) , the

uncertainty is 0 and the theory behaves as traditional

probability theory.

D. The adaptive method

Having the Dempster-Shafer theory as a solid foundation

with a plethora of extensions that enable calculation with it,

the problem of defining the values for the parameters is

central. On this, inspired by Krukow’s [18] and Teacy et al.

[19], Neovius et al. [20, 21, 22] have in previous work

presented a method for recording and mapping experiences

to Dempster-Shafer theory. They consider an event an

experience that in the context of this paper is a system call.

Hence, let the set of system calls S and the communication

𝐶 = 𝑎𝑐𝑐𝑒𝑝𝑡, 𝑠𝑜𝑐𝑘𝑒𝑡, 𝑐𝑜𝑛𝑛𝑒𝑐𝑡 and file management

𝐹 = 𝑟𝑒𝑎𝑑, 𝑤𝑟𝑖𝑡𝑒, 𝑑𝑒𝑙𝑒𝑡𝑒, 𝑐𝑟𝑒𝑎𝑡𝑒 categories be exclusive

and exhaustive, i.e. 𝑆 = 𝐶 ∪ 𝐹 and 𝐶 ∩ 𝐹 = ∅ and similarly

for the elements.

With these system calls, we model an experience as a

four tuple 𝛿, 𝜖, 𝜁, 𝜂 where 𝛿 is the subject system’s and

application’s identification, 𝜖 the timestamp, 𝜁 the set of

system call and 𝜂 a score ∈ {0, 1}. This view can be

reduced to that only events that actually took place are

recorded, i.e. that the score is always 1. Thus, an experience

 𝛿, 𝑢𝑛𝑖𝑥𝑡𝑖𝑚𝑒, 𝑜𝑝𝑒𝑛, 1 indicates that on a device and app

𝛿 at a time called the open system call and this was

triggered. For an entity, the history of the device’s system

calls can be modelled as a set of such four tuples, i.e.
 𝛿, 𝜖, 𝜁, 𝜂 . Projections on this history

𝐸𝑥𝑝 𝛿, 𝜖, 𝑟𝑒𝑎𝑑 = 𝜂 in case the cardinality card of

the result indicate the amount of connect system calls that

were made at time ϵ. Realistically, 𝛿 could be IMEI code

augmented by an application, say FB including its version.

With the realistic assumption that recent behaviour

weighs heavier, we may apply a decay function on this. Let

decay be denoted by λ where 𝜆 ∈ [0,1] with semantics of

the closer to 1 indicating less decay and 0 being a vacuous

view. Then decay at 𝜖𝑚 denoted 𝑑𝜖𝑚
is

defined: 𝑑𝜖𝑚
 𝐸𝑥𝑝 𝛿, 𝜖𝑖 , 𝑠 ⊂ 𝑆 = (𝜆𝜖𝑚 −𝜖𝑖 ∗ 𝜂) . A cyclic

(diurnal) history is an abstracted view of this projection with

λ = 1 with 𝜖𝑚 denoting the moment and 𝜖𝑛 ≤ 𝜖𝑚 the

timespan, i.e. 𝐴𝑏𝑠𝜖𝑚
 𝐸𝑥𝑝 𝛿, 𝜖𝑛 , 𝑠 ⊂ 𝑆 is the abstract score

 𝜂𝑑𝜖𝑚 𝐸𝑥𝑝 𝛿 ,𝜖𝑛 ,𝑠⊂𝑆 . That is, for a comparison view over a 2

hour time span yesterday 𝜖𝑚 is set -23hours and 𝜖𝑛 to -

25hours from this moment. The definition of such views are

defined by some contextual predicate constructed by a

domain specialist; a fundamental question omitted in this

paper.

E. Detecting anomalies with the method

Utilizing the history of events and building a decayed view

of the cyclic behavior on each system call provides a basis

for normality. For comparison and anomaly detection, the

cardinality needs to be put in context. Hence, a projection

on the complementary experiences within this category of

system calls is motivated. Thus, having 𝐸𝑥𝑝 𝛿, 𝜖, 𝑟𝑒𝑎𝑑 ,

the category’s complementary projection is

𝐸𝑥𝑝 𝛿, 𝜖, 𝑤𝑟𝑖𝑡𝑒, 𝑑𝑒𝑙𝑒𝑡𝑒, 𝑐𝑟𝑒𝑎𝑡𝑒 , i.e. 𝐸𝑥𝑝 𝛿, 𝜖, 𝑟𝑒𝑎𝑑 .

The cardinality of the outcomes provides the relative

distribution of these system calls over 𝜖 on 𝛿. The tolerance

is then defined as the a priori weight of uncertainty W. The

scale of W is domain 𝛿 and category specific with the

47Copyright (c) IARIA, 2017. ISBN: 978-1-61208-529-6

CLOUD COMPUTING 2017 : The Eighth International Conference on Cloud Computing, GRIDs, and Virtualization

property small values risking anomalies with low values;

and larger W prolonging the cold start.

As an example, assume the projections over a time span

where the system calls cardinality is 95 and the score for

projection on 𝑟𝑒𝑎𝑑 to be 73 and for that on 𝑟𝑒𝑎𝑑 to be 22.

However, let the abstracted projections result in 70 and 21

respectively as of decay.Moreover, let for readability W = 5,

making the example specific cardinality 100. Normalizing

these gives the scores 0.70, 0.21 with uncertainty ubeing

0.04 +
𝑊

𝑐𝑎𝑟𝑑𝑖𝑛𝑎𝑙𝑖𝑡𝑦 +𝑊
= 0.09 . Consider a reference vector

𝑏𝑒𝑙(𝑟) = (𝑥𝑖) that in this case is 𝑏𝑒𝑙(𝑟) = (0.7, 0.21) ;

much alike the belief and certainty for the two projections.

The plausibility of these projections are then 𝑝𝑙(𝑟) =
(0.79, 0.3) . With these abstracted values, we propose to

define an anomaly behavior as when the current bel and pl

does not overlap with the reference bel and pl vectors. What

actions to perform if this happens is again domain specific.

IV. CONCLUSION

Cloud computing can lead to numerous business advantages

to organizations. As a result of its popularity, many security

issues have been exposed by company experts and academic

researchers.Numerous of these researches haveproved that

security should be a top priority for companies, especially

low- to medium-sized enterprises ones. Moreover, the

common ground is that security related solutions developed

for static client server systems cannot be used in cloud

based computing.

In this paper we take a novel view, assuming that a

system under attack will behave anomalously. To address

this assumption, we presented a soft security means to

construct a cloud based solutions’ behavioral normality.

Knowing the normal behavior, we define the anomalous

behavior to be simply anything that is not normal. We stress

that the implications of detecting anomalies is domain

specific.

As future work, we intend to validate this method with

real life data. We will also formalize the normality vs.

anomalies more formally. Once having these results,

validation on a larger scale is possible.

REFERENCES

[1] US national institute of standards and
technology.http://csrc.nist.gov/, 2016, accessed 15.1.2017

[2] D. Fernandes, L. Soares, J. Gomes, M. Freire, and P. Inacio,
―Security issues in cloud environments: aSurvey‖.
International Journal of Information Security, pp. 113–170,
2013

[3] F. Shahzad, ―State-of-the-art Survey onCloud Computing
Security Challenges, Approaches and Solutions‖. Procedia
Computer Science, 37, 357–362, 2014

[4] I. Iankoulova and M. Daneva, ―Cloud computing security
requirements: A systematic review‖. In: Research Challenges
in Information Science RICS, pp. 1–7, 2012

[5] R. Duncan, ―Accounting for stewardship in the cloud‖ PhD
Thesis, University of Aberdeen, 2016.

[6] European Comission. ―Comission Implementing Decision of
12.7.2016 pursuant to Directive 95/46/EC of the European
Parliament and of the Council on the adequacy of the
protection provided by the EU -U.S. Privacy Shield‖ 2016
http://ec.europa.eu/justice/data-protection/files/privacy-shield-
adequacy-decision_en.pdf accessed on 13.01.2017

[7] Verizon ―Data Breach Investigations Report‖ 2016
http://www.verizonenterprise.com/verizon-insights-
lab/dbir/2016/ accessed on 13.01.2017

[8] M. Williams, ―New Tools for Business,A Quick Start Guide
to Cloud Computing‖, Kogan Page, 2010.

[9] S. Khandelwal, "Hacking CCTV Cameras to Launch DDoS
Attacks".The Hacker News, 2015,
http://thehackernews.com/2015/10/cctv-camera-hacking.html,
accessed on 15.1.2017.

[10] T. Reuters, ―Major cyberattack knocks Twitter, Paypal,
Spotify offline Friday‖ CBC news,
2016,http://www.cbc.ca/news/technology/dyn-ddos-attack-
websites-down-1.3815417, accesed on 13.01.2017

[11] E. Petterson, ―Sony to pay as much as $8 million to settle data
breach case‖, Bloomberg Technology,
2015https://www.bloomberg.com/news/articles/2015-10-
20/sony-to-pay-as-much-as-8-million-to-settle-data-breach-
claimsaccesed on 13.01.2017

[12] S. Yin, ‖Dropbox accounts were accessible by anyone fo four
hours on Sunday‖ PCMag UK,
2011.http://uk.pcmag.com/storage-devices-
reviews/9092/news/dropbox-accounts-were-accessible-by-
anyone-for-four-hours-onaccesed on 13.01.2017

[13] R. Ko and S. Lee ―Cloud computing vulnerability incidents:
A statisctical overview‖, Cloud Security Alliance, 2013.

[14] F. Rashid, ―The dirty dozen: 12 cloud security threats‖,
Infoworld magazine, 2016,
http://www.infoworld.com/article/3041078/security/the-dirty-
dozen-12-cloud-security-threats.html, accesed on 13.01.2017.

[15] Linux Information Project ―System call definition‖ 2016
http://www.linfo.org/system_call.html accessed on
13.01.2017

[16] S. De Capitani, S. Foresti, and P. Samarati, "Data Security
Issues in Cloud Scenarios", In Proceedings of the 11th
International Conference on Information Systems Security,
2015.

[17] Cloud security alliance, ―Cloud Computing top threats in
2016‖.https://downloads.cloudsecurityalliance.org/assets/rese
arch/top-threats/Treacherous-12_Cloud-Computing_Top-
Threats.pdfaccesed on 13.01.2017

[18] K. Krukow, ―Towards a theory of trust for the global
ubiquitous computer,‖ PhD thesis, University of Aarhus,
Denmark., 2006.

[19] W. Teacy, J. Patel, N. Jennings, and M. Luck, ―TRAVOS:
Trust and Reputation in the Context of Inaccurate Information
Sources,‖ Autonomous Agents and Multi-Agent Systems, vol.
12, no. 2, pp. 183-198. , 2006.

[20] M. Neovius, ―Trustworthy Context Dependency in Ubiquitous
Systems,‖ TUCS dissertations nr. 151. PhD thesis, Turku,
Finland, 2012.

[21] M. Neovius, M. Stocker, M. Rönkkö, and L. Petre,
―Trustworthiness Modelling on Continuous Environmental
Measurement,‖ in Proc. of the 7th Int. Conf. on
Environmental Modelling and Software, 2014.

[22] M. Neovius, ―Adaptive Experience-Based Composition of
Continuously Changing Quality of Context,‖ in Int. Conf. on
Adaptive and Self-Adaptive Systems and Applications, 2015.

48Copyright (c) IARIA, 2017. ISBN: 978-1-61208-529-6

CLOUD COMPUTING 2017 : The Eighth International Conference on Cloud Computing, GRIDs, and Virtualization

