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Abstract—Cloud computing is a rapidly developing 

computing paradigm. It enables dynamic on-demand 

resource distribution computing in a cost-effective manner. 

However, it introduces compelling concerns related to 

privacy and security of the data.  As many of these have 

been extensively studied and are monitored effectively, this 

paper proposes a novel solution relying on detecting 

anomalies in system calls behavior of the system. We use 

Dempster-Shafer theory of evidence for learning the 

normality and show how to parametrize this in the method 

presented. The method is scalable to any set of system calls. 

Finally, we propose further challenges on this track.  
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I. INTRODUCTION 

With the advances of (Inter) networking and the advent of 

the concept cloud computing, computing resources are 

provided ―on-demand‖ from a virtualized pool. According 

to NIST [1] essential characteristics of cloud computing 

include on-demand self-service, network access, pooling, 

elasticity and measured service. Service models include 

Software as a Service (SaaS), Platform as a Service (PaaS) 

and Infrastructure as a Service (IaaS) with deployment 

models including private, community, public and hybrid 

clouds. Common to these are that the hardware is abstracted 

from the consumer who typically ―pay-per-use‖ of resources 

whose availability is elastically adjusted by momentary 

demand [2]. As a consequence, cloud computing 

encompasses a new means to provide virtually unlimited 

resources to paying customers whenever needed. Hence, the 

cloud has revolutionized the way computing infrastructure is 

used [3] to offer adaptive utility computing.  

With novel computing paradigms, concerns on their 

feasibility arise. In cloud computing this concern relates, 

among others, to security [4] and privacy. Commonly 

agreed security requirements include data integrity, 

confidentiality, access controllability and privacy 

preservability. These threats do not restrict themselves to 

point-of-sales activity, but are much more sophisticated 

extending to data integrity and privacy concerns including 

espionage, malicious insiders and curious and greedy 

service providers.These security threats are also the main 

impediments to wider deployment of cloud computing 

solutions especiallyin domains operating on sensitive data 

such as used in the accounting industry [5]. These concerns 

lend themselves also to emerging cloud-based applications 

such as the Internet of Things and Big Data [16]. In 

addition, legislation may add technical impediments for 

privacy protection such as the Regulation (EU) 2016/679 

and EU-U.S. Privacy Shield [6]. The extent to which this 

affects the Attribute Authority (AA) and the Third Party 

Auditor (TPA) roles and their functionality is yet to be 

discovered. Because of these reasons, many solutions are 

still hosted ―in-house‖with typically higher initial 

investment cost, higher maintenance costs and with 

restrictions on availability.  

On the type of attacks on enterprise clouds, Verizon’s 

security report [7] states that roughly 80% of all breaches 

are of external origin and 80% have a financial motive, with 

roughly 20% having espionage as the motive. Moreover, 

Verizon report that a system is compromised in minutes or 

seconds and exfiltration of the data happens typically within 

a day. And despite all the effort by specialists to protect a 

system from getting compromised, these keep on 

happening. Research is also directed on this track with 

searchable and homomorphic encryption research 

flourishing. Both approaches do, however, rely on a policy 

and a shared secret lifting the importance of the AA and 

TPA. Possibly as of this advancements, tactics to perform 

social attacks granting access to internal attacks develop; 

with rudimentary known ones including phishing. Other 

well-known risks the cloud based application faces include 

data protection risks, system outages including (D)DoS 

attacks, data loss, vendor lock-in and vendor failure [8]. 

Common to social and DoS attacks are that no policy-

based technological appliance can protect against these. As 

social attacks typically provide access to restricted data 

where the attacker would need to know what to search for or 

how to stir the system up, these are often well targeted with 

a certain purpose in mind. Alleged examples include 

Stuxnet, US expelling 35 Russian diplomats at the end of 

2016 accused to have tried to influence US presidential 

elections and the noticed espionage at the Finnish foreign 

ministry in 2013. With respect to DoS attacks, with the IoT 

proposal and its envisioned spread, the zombies for botnets 

are ubiquitous and maintained by ordinary persons lacking 

maintenance skills. First recorded DDoS attacks with IoT 
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devices are reputed to have occurred in 2015 by CCTV [9] 

with other larger attacks overloading Twitter, PayPal and 

Spotify [10] in 2016. Also, if an IoT device operates on 

private data, its owner’s concern is to keep it 

uncompromised and if compromised, being promptly 

informed about this. This is forecast as an immense problem 

with the advances of automated data analysis including 

image recognition and profiling. Moreover, privacy may be 

compromised by such a device in a manner enabling identity 

hijacking.  

With respect to these concerns, this paper does not aim 

to advance on the policies, encryption or similar purely 

technological advances, but have a main contribution in 

presenting a method for detecting behavioral anomalies. 

This method learns a pattern of normality and reacts on 

events outside this pattern, i.e. anomalies. As an 

implementation we use system calls of a cloud application, 

as these are needed whether searchable or homomorphic 

encryption each time a system accesses the kernel. In this 

context, we mean by cloud application any cloud based 

backend software communicating with a set of agents 

including IoT systems. Thus, compared to policy-based 

models, this paper takes nearly the reverse view that relies 

on an agent’s past activity to indicate its current activity 

rather than on Boolean logic and cryptography.  

The rest of this paper is organized as follows: Section II 

present the background and the motivation of the paper. 

Section III is divided in five subsections and presents our 

solution to the security issues identified. The first and the 

second talks about system calls and system call patterns. 

The other subsections talk about the mathematical method 

of the proposed solution. Conclusions are presented in 

section IV. 

II. BACKGROUND AND MOTIVATION 

In the cloud, main security concerns relate to data privacy or 

integrity being compromised. Recent infamous ones include 

Sony PlayStation data breach [11], Dropbox privacy leakage 

[12] and the alleged major security breach in May 2016 

compromising 273M passwords. Typically, the severity of 

these attacks is measured by the sensitivity of the data being 

exposed or the harm it causes. It is also speculated that 

many of the most severe ones do not reach the headlines 

because of loss of reputation. Moreover, the laws stating the 

consequences have often not been tested yet, imposing little 

scrutiny on companies. Moreover, breaches of Service Level 

Agreements (SLA) dictating the division of responsibilities 

between the customer and the Cloud Service Provider (CSP) 

occur frequently. These are seldom made public because of 

the reputation implications on both parties with an exception 

of black-hat hackers. Reasons for security breaches may 

relate to improper configuration, SW bugs, HW errors or 

power failures [13]. In addition, SW not being up-to-date 

may contain known exploits. This holds especially for the 

CSP, where ―a single vulnerability or misconfiguration can 

lead to a compromise across an entire provider’s cloud‖ [14] 

[17].  

With the cloud and its essential characteristics 

including differences in national legislation, SLA may start 

to include paragraphs stipulating spatial distribution. This 

implies that the administrator passwords of the computers 

used for this application must not have been disclosed to 

areas not included in the SLA. This concern goes especially 

for outsourced data services where the owner’s exclusive 

control over their data is compromised when stored on a 

server whose admin password is known by someone else. 

For example, Google’s privacy policy states that Google 

reserves the right to review application, project and 

customer data for compliance with the acceptable use policy 

[17]. In this case, it comes down to what is ―acceptable use 

policy‖. Moreover, for personal data, the cloud computing 

sets a stage of novel problems that need to be dealt with 

including those who have the right to process the data, what 

is the level of privacy etc. addressed in e.g. Regulation (EU) 

2016/679 and EU-U.S. Privacy Shield [5]. Hence, the cloud 

used by an application may need to be spatially constrained 

opposing the principal characteristics of cloud computing.  

Means to restrict access and preserve data privacy and 

integrity includes sophisticated policies on data backup and 

distribution over nodes. In cases of a cloud application, this 

is the responsibility of the application service provider and 

its SLA’s with Cloud Service Provider’s (CSP). These are 

often professionally maintained and alternative means to 

gain access are developed and gaining popularity, e.g. 

phishing or malwares opening a backdoor or as a key 

logger. On the CSP, as they share infrastructure, platforms 

and underlying virtualization software, they form a single 

point of failure attracting targeted and very sophisticated 

attacks. If vulnerability is found in any layer, it affects 

everyone on this cloud. For this, CSA recommend a 

defense-in-depth strategy. Contemporary attacks are also 

often more directed and if successful, pose a greater 

risk.Moreover, common to most attacks are that they often 

go unnoticed until it is too late, e.g. data exfiltration has 

already taken place. In such cases, restoring the data from a 

backup may not suffice as privacy has been compromised.  

III. HOW WE MIGHT APPROACH THESE ISSUES 

In this paper we take the in-depth approach and present a 
method that builds the normal behavior of an agent on a 
cloud system. We construct the normality by analyzing 
system calls by its user with the aim of detecting system 
anomalies by monitoring specific system calls of specific 
applications. This normality would define the way the 
system works ―normally‖, with any anomaly indicating a 
situation calling for further attention.  

In the next section we present the system calls and we 
define the set of system calls to use for monitoring and 
explain the reason why we choose those calls. After that we 
are going to present the mathematical tool for analyzing and 
for detecting possible threats in the system. 
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A. System calls 

By definition, a system call is an atomic request in a Unix-
like operating system made via a software interrupt by an 
active process for a service performed by the kernel [16]. 
 
 

 

 

 

 

Figure 1. System calls 

The system call provides an interface to the operating 

system’s services. Application developers often do not have 

direct access to the system calls, but can access them 

through an application programming interface (API). The 

functions that are included in the API invoke the actual 

system calls. This is illustrated in Figure 1. By using the 

API, certain benefits can be gained: 

 Portability: as long a system supports an API, any 

program using that API can compile and run. 

 Ease of Use: using the API can be significantly easier 

than using the actual system call. 

 

 

 

 

 

 

 

 
Figure 2. System call parameters 

 

Three general methods exist for passing parameters to the 

OS as shown in Figure 2: 

1. Parameters can be passed in registers. 

2. When there are more parameters than registers, 

parameters can be stored in a block and the block 

address can be passed as a parameter to a register. 

3. Parameters can also be pushed on or popped off the 

stack by the operating system. 

The system calls are plentiful and vary between 

operating systems, with Linux kernel having 300+ system 

calls and Windows 7 having close to 700. These can be 

categorized to 5 different categories: a process control is a 

running program that needs to be able to stop execution 

either normally or abnormally. When execution is stopped 

abnormally typically a dump of the memory is taken to be 

examined by a debugger. The file management system calls 

include create (), delete (), read (), write (), reposition (), or 

close (). Also, there is a need to determine the file attributes 

– get and set file attribute. Often the OS provides an API to 

make these system calls. The device management process 

usually requires several resources to execute, if these 

resources are available, they will be granted and control 

returned to the user process. These resources are also 

thought of as devices. Some are physical, such as a video 

card, and others are logical, such as a file.User programs 

request the device, and when finished they release the 

device. Similar to files, we can read, write, and reposition 

the device. The information management system call 

exists purely for transferring information between the user 

program and the operating system. An example of this is 

time, or date. The OS also keeps information about all its 

processes and provides system calls to report this 

information. The communicationsystem call exists in two 

models of interprocess communication, the message-passing 

model and the shared memory model. 

 Message-passing uses a common mailbox to pass 

messages between processes. 

 Shared memory use certain system calls to create and 

gain access to regions of memory owned by other 

processes. The two processes exchange information by 

reading and writing in the shared data. 

According to the characteristics of the system calls we 

propose to monitor 2 categories of system calls:  

1. Communication  

2. File management. 

For the communication category we propose to monitor 

accept (), socket (), connect () system calls, and for the file 

management category we propose to monitor read (), write 

(),delete () andcreate () system calls.These are the system 

calls that rank as the most common threats in the CSA 

report and are vital for any cloud based application. We 

think that monitoring the data sent across the network is not 

a good idea because there is a high overhead tracing those 

system calls and they do a lot variable invocation for 

sending and receiving data. Hence, this might not be 

favorable to do with the method presented below without 

packet inspection.  

B. System call patterns 

We assume the system calls monitored to behave in 

anatomic manner and the set of them to be exclusive and 

exhaustive. That is, we assume the system calls not to be 

subject to race conditions hence assuming an atomic part to 
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be executed from the beginning till the end and each and 

every one is exactly one of the possible. On such a 

foundation a pattern could be constructed from analyzing 

the system call log, i.e. by the recorded evidence. Moreover, 

the pattern could be augmented by contextual bindings by 

some machine learning method. The outcome could 

reasonably be a probability of a certain or a sequence of 

system calls happening. Applying a timed window on this 

analysis would provide a timed pattern for the system calls, 

e.g. a diurnal pattern when human behavior is analyzed.  

To detect anomalies, a valid approach is to teach a 

model what normality is by analyzing the past. Yet, the 

model must consider the possibility of a change in the 

system or its behavior implying a change in normality. 

Realistically, this could mean a software update or 

installation of new software. Hence, the valid system call 

pattern calls for an adaptive method providing a level of 

certainty that the system indeed operating normally. In case 

of anomaly the system could inform the user about the task 

behaving anomalously prompting the user to authorize the 

anomaly.  

C. Mathematical foundation of the proposed method 

On the problem and domain outlined in this paper, we 

propose to use Dempster-Shafer theory, aka, evidence 

theory. The evidence theory is a generalization of Bayesian 

theory of subjective probabilities on a set of exclusive and 

exhaustive events 𝑋, here the system calls. The power set 

2𝑋  denotes all combinations of system calls, realistically 

enabling comparing any category of system calls to discover 

new domain specific patterns. On this, the mass m is the 

level of certainty on a set of events with 𝑚 ∶ 2𝑋 →
[0,1] , 𝑚 ∅ = 0  and  𝑚 = 12𝑋 . On this, the certainty 

(belief)bel of a set of outcomes 𝐴 ⊆ 𝑋  is 𝑏𝑒𝑙 𝐴 =
 𝑚(𝑥)𝑥⊆𝐴  and plausibility pl is 𝑝𝑙 𝐴 =  𝑚(𝑥)𝑥∩𝐴≠∅  as 

for the possibility of this outcome. This implies that 

𝑏𝑒𝑙 < 𝑝𝑙 whenever 𝑚 𝑋 ≠ 0 and 𝐴 ⊂ 𝑋. The semantics of 

this is that the difference between bel and pl denote the 

uncertainty. Moreover, the complement of a set of events 𝐴 

denoted 𝐴  is the evidence against this event, i.e. 𝑝𝑙 𝐴 =
1 − 𝑏𝑒𝑙(𝐴 ). Consequently, the Dempster-Shafer theory  

Realistically, in the context of this paper, the bel and pl 

would define the uncertainty, i.e. the tolerance between 

normal (base truth) and anomaly behaviour that initially is 

1. The theory provides a foundation for a three-valued logic, 

whose parameters are: belief as certainty in favour of a 

proposition 𝑏𝑒𝑙 , uncertainty as for do not know 𝑝𝑙 − 𝑏𝑒𝑙 
and disbelief 𝑏𝑒𝑙     as for certainty against this proposition 

1 − 𝑝𝑙(𝐴). They share the property of 𝑝𝑙 𝐴 + 𝑏𝑒𝑙    = 1, i.e. 

they are additive. In cases when 𝑏𝑒𝑙(𝐴) = 𝑝𝑙(𝐴) , the 

uncertainty is 0 and the theory behaves as traditional 

probability theory.  

D. The adaptive method  

Having the Dempster-Shafer theory as a solid foundation 

with a plethora of extensions that enable calculation with it, 

the problem of defining the values for the parameters is 

central. On this, inspired by Krukow’s [18] and Teacy et al. 

[19], Neovius et al. [20, 21, 22] have in previous work 

presented a method for recording and mapping experiences 

to Dempster-Shafer theory. They consider an event an 

experience that in the context of this paper is a system call. 

Hence, let the set of system calls S and the communication 

𝐶 =  𝑎𝑐𝑐𝑒𝑝𝑡, 𝑠𝑜𝑐𝑘𝑒𝑡, 𝑐𝑜𝑛𝑛𝑒𝑐𝑡  and file management 

𝐹 =  𝑟𝑒𝑎𝑑, 𝑤𝑟𝑖𝑡𝑒, 𝑑𝑒𝑙𝑒𝑡𝑒, 𝑐𝑟𝑒𝑎𝑡𝑒  categories be exclusive 

and exhaustive, i.e. 𝑆 = 𝐶 ∪ 𝐹 and 𝐶 ∩ 𝐹 = ∅ and similarly 

for the elements. 

With these system calls, we model an experience as a 

four tuple  𝛿, 𝜖, 𝜁, 𝜂  where 𝛿  is the subject system’s and 

application’s identification, 𝜖 the timestamp, 𝜁 the set of 

system call and 𝜂  a score ∈ {0, 1}. This view can be 

reduced to that only events that actually took place are 

recorded, i.e. that the score is always 1. Thus, an experience 

 𝛿, 𝑢𝑛𝑖𝑥𝑡𝑖𝑚𝑒, 𝑜𝑝𝑒𝑛, 1  indicates that on a device and app 

𝛿 at a time called the open system call and this was 

triggered. For an entity, the history of the device’s system 

calls can be modelled as a set of such four tuples, i.e. 
  𝛿, 𝜖, 𝜁, 𝜂  . Projections on this history 

𝐸𝑥𝑝 𝛿, 𝜖,  𝑟𝑒𝑎𝑑  =   𝜂   in case the cardinality card of 

the result indicate the amount of connect system calls that 

were made at time ϵ. Realistically, 𝛿 could be IMEI code 

augmented by an application, say FB including its version.  

With the realistic assumption that recent behaviour 

weighs heavier, we may apply a decay function on this. Let 

decay be denoted by λ where 𝜆 ∈ [0,1] with semantics of 

the closer to 1 indicating less decay and 0 being a vacuous 

view. Then decay at 𝜖𝑚 denoted 𝑑𝜖𝑚
is 

defined: 𝑑𝜖𝑚
 𝐸𝑥𝑝 𝛿, 𝜖𝑖 , 𝑠 ⊂ 𝑆  = ( 𝜆𝜖𝑚 −𝜖𝑖 ∗ 𝜂) . A cyclic 

(diurnal) history is an abstracted view of this projection with 

λ = 1 with 𝜖𝑚  denoting the moment and 𝜖𝑛 ≤ 𝜖𝑚  the 

timespan, i.e. 𝐴𝑏𝑠𝜖𝑚
 𝐸𝑥𝑝 𝛿, 𝜖𝑛 , 𝑠 ⊂ 𝑆  is the abstract score 

 𝜂𝑑𝜖𝑚 𝐸𝑥𝑝  𝛿 ,𝜖𝑛 ,𝑠⊂𝑆 . That is, for a comparison view over a 2 

hour time span yesterday 𝜖𝑚  is set -23hours and 𝜖𝑛  to -

25hours from this moment. The definition of such views are 

defined by some contextual predicate constructed by a 

domain specialist; a fundamental question omitted in this 

paper.  

E. Detecting anomalies with the method 

Utilizing the history of events and building a decayed view 

of the cyclic behavior on each system call provides a basis 

for normality. For comparison and anomaly detection, the 

cardinality needs to be put in context. Hence, a projection 

on the complementary experiences within this category of 

system calls is motivated. Thus, having 𝐸𝑥𝑝 𝛿, 𝜖,  𝑟𝑒𝑎𝑑  , 

the category’s complementary projection is 

𝐸𝑥𝑝 𝛿, 𝜖,  𝑤𝑟𝑖𝑡𝑒, 𝑑𝑒𝑙𝑒𝑡𝑒, 𝑐𝑟𝑒𝑎𝑡𝑒  , i.e. 𝐸𝑥𝑝 𝛿, 𝜖,  𝑟𝑒𝑎𝑑           . 

The cardinality of the outcomes provides the relative 

distribution of these system calls over 𝜖 on  𝛿. The tolerance 

is then defined as the a priori weight of uncertainty W. The 

scale of W is domain 𝛿  and category specific with the 
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property small values risking anomalies with low values; 

and larger W prolonging the cold start.  

As an example, assume the projections over a time span 

where the system calls cardinality is 95 and the score for 

projection on 𝑟𝑒𝑎𝑑 to be 73 and for that on 𝑟𝑒𝑎𝑑        to be 22. 

However, let the abstracted projections result in 70 and 21 

respectively as of decay.Moreover, let for readability W = 5, 

making the example specific cardinality 100. Normalizing 

these gives the scores 0.70, 0.21 with uncertainty ubeing 

0.04 +
𝑊

𝑐𝑎𝑟𝑑𝑖𝑛𝑎𝑙𝑖𝑡𝑦 +𝑊
= 0.09 . Consider a reference vector 

𝑏𝑒𝑙(𝑟 ) = (𝑥𝑖)  that in this case is 𝑏𝑒𝑙(𝑟 ) = (0.7, 0.21) ; 

much alike the belief and certainty for the two projections. 

The plausibility of these projections are then 𝑝𝑙(𝑟 ) =
(0.79, 0.3) . With these abstracted values, we propose to 

define an anomaly behavior as when the current bel and pl 

does not overlap with the reference bel and pl vectors. What 

actions to perform if this happens is again domain specific.  

IV. CONCLUSION 

Cloud computing can lead to numerous business advantages 

to organizations. As a result of its popularity, many security 

issues have been exposed by company experts and academic 

researchers.Numerous of these researches haveproved that 

security should be a top priority for companies, especially 

low- to medium-sized enterprises ones. Moreover, the 

common ground is that security related solutions developed 

for static client server systems cannot be used in cloud 

based computing.  

In this paper we take a novel view, assuming that a 

system under attack will behave anomalously. To address 

this assumption, we presented a soft security means to 

construct a cloud based solutions’ behavioral normality. 

Knowing the normal behavior, we define the anomalous 

behavior to be simply anything that is not normal. We stress 

that the implications of detecting anomalies is domain 

specific.  

As future work, we intend to validate this method with 

real life data. We will also formalize the normality vs. 

anomalies more formally. Once having these results, 

validation on a larger scale is possible.  
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