

Using k-Core Decomposition to Find Cluster Centers for k-Means Algorithm in

GraphX on Spark

Sheng-Tzong Cheng, Yin-Chun Chen, and Meng-Shuan Tsai

Computer Science and Information Engineering

National Cheng Kung University

Tainan, Taiwan

email: stcheng@mail.ncku.edu.tw, darkerduck@gmail.com, and stoya35893@hotmail.com

Abstract—Big data analysis is getting more and more attention

these days. In social network applications, a large amount of data

is in a graph structure form. As a result, more computation time

is required for graph data analysis. In 2014, a framework of in-

memory computing, Spark, was proposed for big data analysis.

Through reusing the data in memory to solve the long

computation time issue, Spark finishes a task in a shorter time

compared to Hadoop. In addition, GraphX, a Spark API

(Application Interface), provides a graphical interface and

makes graph data analysis simple and efficient. This study

presents an improved k-mean clustering method by integrating

k-core decomposition, which is an important algorithm in

community detection to find the center of each cluster. We

implement the clustering algorithm with GraphX to get better

performance and results compared to the original k-mean

clustering method.

Keywords—cloud computing; GraphX; Spark; k-core

decomposition; graph-based k-means

I. INTRODUCTION

With the massive growth of computational data, cloud
computing has become one of most popular disciplines in
recent years. A typical example of cloud computing system
like Hadoop [15], is based on MapReduce model [16] and
Google file systems [16] to collect and analyze huge data.

For big data, analysis is the most important work.
Techniques, such as machine learning, are used to train data
and retrieve the most important parts form the data. Data reuse
is also common in many iterative machine learning and graph
algorithms, including PageRank [15], k-Core decomposition
[3], and k-Means clustering [17]. However, for the framework
of MapReduce, iterations of data computation become the
critical bottleneck of the performance. Therefore, AMP
(Algorithms Machines People) Lab at the University of
California, Berkeley, proposes a new architecture, Spark [1],
that not only improves the data processing over a parallel in-
memory system, but also reuses inter-mediate results across
multiple computations. Empirically, a program on Spark
could run up to 100 times faster than that on Hadoop
MapReduce.

Graph is a useful form to represent a massive amount of
data in analysis, such as social network, biological
information, business model, road and map, and collaboration
network. However, traditional MapReduce framework makes
it difficult to describe the graph-parallel computation in
distributed system. Fortunately, Spark provides useful APIs
(Application Interfaces) for GraphX [2] and MLib (Machine
Learning Library). When users run applications on Spark, the
APIs make the code development easy to use and build some
algorithm efficiently. MLib provides machine learning

algorithms. GraphX is a new large-scale distributed graph-
parallel framework, such as Pregel [2], Graphlab [2], and
PowerGraph [2], to provide useful graph algorithms. It also
allows users to develop applications faster. In this paper, we
consider the graph data analysis by using GraphX on Spark.

Graph clustering is one of the crucial problems in graph
data analysis. It is used to group the vertices of a graph into
clusters with as few edges as possible between them. It is
related to unsupervised learning to divide a data set into some
small classes without a priori information on how the
classification should be done. K-Means clustering [17], which
is an algorithm for graph clustering, uses vectors of
characteristics to transform data into some clusters to find the
nearest center. It usually gives k virtually random points as the
initial centers of clusters. For each point, it finds the minimum
Euler distance to a center. Then, each point is assigned to the
cluster containing the nearest center. Before the next iteration,
each cluster can re-compute a new center. The iteration
repeats until there is no change for centers. In this work, we
consider the k-Means algorithm for the graph clustering in
GraphX.

The k-Core decomposition has been proposed to find the
strongest communicators in a graph. Recently, k-Core
decomposition for analysis of large networks has been
reported [3]. We observe that the performance and results can
be improved further if we combine the k-Core decomposition
with the graph-based k-Means, in which the k-Core is used to
find centers and the k-Means is used to find clusters. The
contribution of this paper is to engineer the integration of k-
Means clustering with k-Core decomposition for graph data
analysis in GraphX on Spark. The rest of the paper is
organized as follows. Background is given in Section II. The
problem description and the system design are stated in
Section III. Implementation details and experiment results are
illustrated in Section IV, and conclusion remarks are drawn in
Section V.

II. BACKGROUND

A. Spark

Spark is an open-source cluster computing system. It is the
highest-level project in Apache Software Foundation. In
November 2014, the world record of data sorting in the Sort
Benchmark Competition was broken by Spark, while the
previous record was made by Hadoop. As Hadoop took
seventy-two minutes to finish the job, Spark only took less
than thirty minutes to complete the sorting. Furthermore, it
only used 207 sets of amazon E2 i2.8*large virtual machines,
significantly less than 2100 sets used by Hadoop.

93Copyright (c) IARIA, 2017. ISBN: 978-1-61208-529-6

CLOUD COMPUTING 2017 : The Eighth International Conference on Cloud Computing, GRIDs, and Virtualization

In the original data flow of Hadoop MapReduce, the
reduce function has to be performed after each map function.
Spark critically improves the performance by changing the
original inflexible data flow (of Hadoop MapReduce) to a
new flexible framework in which several map functions could
be done in memory before the reduce function is invoked. In
this way, it can avoid many times of operations in the reduce
stage and data is not required to write back to disk.

B. GraphX

Spark API provides a Pregel-like framework [4] to deal
specifically with graphs. To compute graphs with strong
correlation between the nodes, it needs to adjust Graph
construction for running on a classic data-processing platform.
GraphX combines two graph processings, Pregel and
Graphlab [4], to make a new graph-parallel framework.
GraphX is developed directly on Spark to obtain better
performance than Graphlab.

1) VertexRDDs, EdgeRDDs, and Route Table: These
three data structures are the most important components to
compose a graph in GraphX. When a dataset of graph is stored
into GraphX, the graph will be initialized to an edge table,
which describes the information about a node linking to
another node with a value. After that, it generates a vertex
table by using the class named Graph.

A vertex table is always the place for storing and
computing the result, such as collecting all data, generating
sub-graphs, joining vertices to give new data, and filtering
some vertices, etc. Two kinds of operators for user
programing are possible. One operator is to view a loose
graph as a table and allow users to modify data without strong
relation. The other operator is to view a graph as a tight graph
in which vertex relations are required to re-compute when a
update is propagated. New subgraphs may be generated then.

2) Graph Parallelism: Google developed a super-step
algorithm framework [4] for graph-parallelism in 2010. It is
widely used to build graphs in distributed computing systems,
because of convenience and efficiency just like using
MapReduce. Users only need to complete three functions for
super-steps.

This model follows the bulk synchronization to finish the
computation. There are four steps for one process and the final
step can only stop when every node is inactive. It is also the
condition to start running the application for the next round.

Four steps are described as follows.
a) A node receives some messages and transforms the

status from inactive to active.
b) Active nodes aggregate all messages to get a result

for itself.
c) If the result does not need to update to nodes, then

change the status from active to inactive; otherwise,
send message to other nodes.

d) Repeat steps a to c until there is no message
sending to nodes.

In GraphX, the algorithm starts to send an initial message
to all of vertices. If vertices need to update their data, the
vertices will turn the status to active just like step (1). Second,
they filter all active vertices and compare with neighbors to
decide whether messages shall be sent or not. They use triplet

to compare the data in two vertices. In step (2), all messages
in a vertex will be stored as a list that performs sequential
processing to get a result. This result will be compared to the
original data to control the status and data. In the end, GraphX
will generate a new graph with some new RDDs (Resilient
Distributed Datasets)for this result.

C. k-Means Clustering

This is a well-known data-clustering algorithm. Upon
given every node vector of characteristics and the value of k,
the algorithm can separate the set of data into k clusters [5].
In the basic mode, operations define the original data with
characteristics, grouping those values, and vectorization. The
dataset will be divided into k clusters, given k random centers
with the same dimension. Secondly, each node finds a nearest
center by Euler distance so that primitive clusters are formed.
Thirdly, new centers are identified by averaging the sum of
nodes in each cluster. Repeat these three steps. In traditional
algorithm follows the math model: S is the center set, and D(x,
y) is the distance between x and y for y Є S

m(S) = argmin
𝑆
∑ ∑ 𝐷(𝑥, 𝑦)𝑦∈𝑆𝑘,𝑥≠𝑦
𝑘
𝑖=1 , 𝑘 = 1,… . , 𝑁 (1)

D. k-Core Decomposition

In graph theory, k-Core decomposition [6] is usually used.
It is a O(m) algorithm where m represents the number of edges
in non-parallel computing. Its main goal is to find a strong
subgroup, whose members play the role of communicators in
the graph. Every node in the sub-graph needs to be at least
degree of k. In this paper, we extend the k-Core decomposition
to the graph computation in parallel.

E. Modularity

In recent years, the concept of “quality for graph
clustering,” proposed by Newman, has been widely used as a
measure of performance [7]. Researchers usually use it to
optimize the community that splits the network. If each
community has dense relationship within the group and sparse
relationship outside of the group, the value of modularity will
be higher.

The modularity defined by Q =
(edges within communities – expectation of these edges)

sum of all degrees.
.

Q lies in the range [−1/2, 1). Without loss of generality, we
assume that a graph has n nodes and m edges. Let the
adjacency matrix for the graph be represented by A, where the
element 𝐴𝑣𝑤 of matrix equals to zero meaning there is no edge
between vertices v and w; otherwise, the element equals to one
that means there is an edge between two vertices. The degree
of vertex v is represented by d(v).

Consider a graph is split into k communities{𝐶𝑖}𝑖=1
𝑘 , , and

Q can be written as

Q =
1

2m
 ∑ ∑ 𝐴𝑣𝑤 − 𝑝(𝑣, 𝑤)𝑣𝑤∈𝐶𝑖

k
i=1 (2)

where, 𝑝(𝑣, 𝑤) =
𝑑(𝑣)𝑑(𝑤)

2m
.

We can rewrite (2) to

94Copyright (c) IARIA, 2017. ISBN: 978-1-61208-529-6

CLOUD COMPUTING 2017 : The Eighth International Conference on Cloud Computing, GRIDs, and Virtualization

Q =∑(∑
𝐴𝑣𝑤
2m

𝑣𝑤∈𝐶𝑖

−
1

2m
∑

𝑑(𝑣)𝑑(𝑤)

2m
𝑣𝑤∈𝐶𝑖

)

k

i=1

 =∑(∑
𝐴𝑣𝑤
2m

𝑣𝑤∈𝐶𝑖

− (∑
𝑑(𝑣)

2m

𝑣∈𝐶𝑖

)

2

)

k

i=1

 (3)

Modularity indicates how good the result is. The value of
modularity often drops in the range from 0.3 to 0.7, which
means the result is moderate. For the experiment in section
IV.B.3 about the social circle in Facebook, we can see that a
graph can get a high value of modularity when the number of
clusters equals 9. In this paper, we use modularity as the
performance index to conduct experiments.

III. SYSTEM DESIGN

In this section, we give the problem description and focus
on the details of our system design. First, we clarify our
problem. Then, we discuss the steps of system flow chart.
Finally, the algorithm is given in details.

A. Problem Description

When people use graph to represent the real-world data,
graph representation and graph clustering become crucial
issues. Graph clustering focuses on finding the sub-graph with
high relatives. It relies on the edges to reflect the relation and
connection of vertices. Normally, the matrix is considered as
the data structure for graph clustering. However, as a graph
becomes larger, the matrix computation makes the
performance worse.

Similarly, an adjacency matrix is not suitable for the
classic k-Means algorithm. In fact, the number of edges in
real-world graph is far less than the square of the number of
vertices. Using the row of a huge sparse matrix to be feature
vector makes k-Means algorithm heavy. It will compute many
huge vectors, but they have many useless values leading to
resource waste. Therefore, in this paper, we only use the idea
of “finding the minimum distance sum to k center of clusters”
and rebuild the k-Means algorithm with the single source
shortest path algorithm and k-Core decomposition.

B. Scheme Overview

Fig. 1 shows the system flow chart to express our graph-
based k-means algorithm. We run the code in Spark, which
provides strong and flexible framework to deal with
distributed parallel computing. It hides complex details of
application development so that programmers can write
functions with operations such as Map and Reduce. The
GraphX adopts the graph-parallel processing model into
Spark and transforms the big graph into some RDD table. The
Pregel-like super-step module is a simplified coding for the
iterative graph algorithms. Now, we explain the system
systematically and introduce properties with Spark and
GraphX in steps.

1) Spark connects to HDFS (Hadoop Distributed File
System). If programmers want to run the project in parallel-
computing mode, they should put the data into HDFS, which
is a Hadoop database. Spark uses HDFS for not-local data to
get better performance.

2) GraphX needs to generate edge RDD first for graph
generation.

3) We separate graph generation from initializing the
values. The values are initialized in the beginning of loops
every time.

4) K-means algorithm is to select the nearest center for
clustering the data set. In this paper, we choose the single
source shortest path module for finding nearest center for each
vertex. Given k centers, run single source shortest path for
each vertex to find which center is the nearest center for this
vertex.

5) K clusters are obtained from the result of step 4. Then,
run the k-Core decomposition for each cluster. In the end, this
step will find k new centers. The reason why we use k-Core
decomposition to find the center of clusters is originating
from the property: a core with the value of k is a group in
which every member is connecting to at least k members. The
vertex in-group with the biggest original degree value will be
picked as the center.

6) Repeat steps 3 to 5 until the group of centers remains
unchanged.

Figure 1. System flow chart.

C. k-Core Decomposition

In this section, we describe the details of implementing k-
Core decomposition on GraphX. The k-Core decomposition
has the following property:

∀𝑢 ∈ 𝑉 ∶ 𝑘 − 𝑐𝑜𝑟𝑒(𝑢) = 𝑘 ↔

{

There exist a maximum subgraph 𝑉𝑘

 such that ∀𝑣 ∈ 𝑉𝑘 ∶ 𝑑𝑒𝑔(𝑣) ≥ 𝑘, and
There is no subgraph 𝑉𝑘+1

such that ∀𝑣 ∈ 𝑉𝑘+1 ∶ 𝑑𝑒𝑔(𝑣) ≥ 𝑘 + 1

 (4)

This algorithm is mainly to find a sub-graph with the
strongest relationship of k. It means every member in this sub-
graph has at least k neighborhoods. Furthermore, there is no
greater sub-graph where every member has more than k
neighborhoods. Therefore, if we find a vertex that has the
highest degree in this sub-graph, it will be a good candidate
for the center in a cluster.

95Copyright (c) IARIA, 2017. ISBN: 978-1-61208-529-6

CLOUD COMPUTING 2017 : The Eighth International Conference on Cloud Computing, GRIDs, and Virtualization

We tried to implement two versions with two different
methods. The time complexity of both methods is O(|V|2). We
can use a pair likes (a, b) to be data in a vertex table and the
data will be changed to an integer value, K, representing the
number of cores as the output.
Fig. 2 presents the pseudo code of k-core decomposition.

Figure 2. Pseudo code for k-Core decomposition.

GraphX uses triplets to compare two nodes that need
updates. The time complexity of the methods is O(|V|2).

IV. IMPLEMENTATION AND EXPERIMENT

In this section, we describe the experimental environment
and illustrate the results obtained for modularity and run time.
We use the same terminology for the original k-means
algorithm to compare the performance of the original
algorithm with that of our revised method.

A. Experiment environment and setting

In the experiment, we consider a peer-servicing cloud-
computing platform, which contains six homogeneous virtual
machines. The hardware and software specifications are
detailed in Tables I and II, respectively. In Table III, the
setting of our configuration of Spark is given. Because some
RDDs are only used once, we do not need the original setting
of memory fraction (0.75), which means the memory splits
most of the space for storing RDD. When the system executes
several iterations, the driver’s java garbage collection is
always too late to recycle the resource. We observe that the
driver’s memory stores a lot of DAG (Directed Acyclic Graph)

and RDD in memory and therefore, only little space is left for
allocating work. It may block the operation of iterative loop,
so that we reduce the fraction from 0.75 to 0.4 and increase
the memory for drivers.

TABLE I. RECEIVER ENVIRONMENT

Item Content

OS Ubuntu 15.10 Desktop 64bit

Spark 2.0.0

Java 1.7.0_101

Scala 2.11.8

Maven 3.3.9

TABLE II. HARDWARE SPECIFICATION OF RECEIVER

Item Content

CPU Intel(R) Xeon(R) E5620 @2.40GHz x 2

RAM 8 GB

Hard Drive 80GB

Network Bandwidth 1Gbps

TABLE III. CONFIGURATIONS OF SPARK

Item Content

Number of executor 6

Memory size of the driver 6GB

Memory size of each executor 6GB

Memory fraction 0.4

Running mode Standalone

B. Experiment Results

We conduct experiments on three real-world datasets from
SNAP [8] and UCI Network Data Repository [9]-[13]. Each
dataset is represented as a graph with vertices and edges. To
revise the original k-means algorithm, we transfer the data to
an adjacency matrix, because the algorithm requires the
vertices’ features for clustering. Each column can be
considered as features of a vertex in the adjacency matrix. The
vertices connecting to same vertex should be assigned to the
same cluster. After finishing clustering, we calculate the
modularity to evaluate the performance of both our revised
method and the original k-means with adjacency matrix.
Spark has a software version of the common k-means
algorithm in Mlib, which is an API for machine learning.

 The runtime of an experiment does not include the time
of transferring original data to a matrix nor the time of
calculating the modularity. From the experimental results, we
see that even though the runtime of our proposed method is
longer than the common k-means in Mlib, the value of
modularity is much higher than the original k-means. All of
the experiments started with centers randomly picked.

Procedure k-core decomposition

1: Input
2: Graph: data in vertex is (degree, bool)

3: Output
4: Graph: data in vertex is K

5: Pseudo Code

6: While
7: Initial the Pregel send initial MSGs to all node

8: Graph.Vertex update (intitial MSGs)

9: MSGs = message merge (all message sent)
10: While messages.count > 0

11: Graph.Vertex update (messages)

12: MSGs = message merge (all message sent)

13: End while

14: K += 1

15: End while
16: Vertex update stage(messages)

17: If (message.bool) messages.degree =

max(origin, new degree)
18: Message.bool = origin && new bool

19: Message send stage

20: If (! v1.bool || ! v2.bool)
21: empty

22: Else if(v1.degree == k && v2.degree > k)

23: Send to v2 (1,true)
24: Send to v1 (0,false)

25: Else
26: Iterator.empty

27: Message merge stage

28: (Sum, a.bool && b.bool)

96Copyright (c) IARIA, 2017. ISBN: 978-1-61208-529-6

CLOUD COMPUTING 2017 : The Eighth International Conference on Cloud Computing, GRIDs, and Virtualization

1) The dolphin social network

This is a famous social network dataset for graph
clustering. There is a network of frequent associations
between 62 dolphins in a community living off Doubtful
Sound, New Zealand [9]. In Fig. 3 (a), we can see that the
modularity gets higher when the number of clusters increases.
For example, our method gets an averaged value of
modularity up to 0.3924 upon splitting to five clusters.
Comparing the results reported in [14], they get the highest
scores on four clusters. Although the case of four clusters is
not the best result for our method, our proposed method still
gets an averaged Q to 0.387703. This is helpful for observing
a big group in real world.

In Fig. 3 (b), the runtime of our proposed method gets
significantly high from 5 to 6 (for the number of clusters).
Taking into account the modularity, the optimum case for the
number of clusters is five.

2) The social cycle in Facebook

In this section, the dataset is much bigger than the datasets
in the formal two experiments. The dataset is provided by J.
McAuley and J. Leskovec [11]. They collected data from
using an APP (Application) named social circle. There are
4039 vertices and 88234 edges. One edge between two
vertices means two vertices are friends. In Fig. 4 (b), we can
see that the runtime does not grow up when the data size
increases if the memory is still enough to handle the
experiments. This result also proves that Spark is fit for large-
size data rather than small-size data.

The Stanford website [8] not only provides the dataset for
researchers but also provides some basic analytic results. The
average clustering coefficient they provided is 0.6055. In our
method, we can find when the k = 4, 7, 8, 9, 10, the average
modularity is higher than 0.6055 and the highest modularity
is appearing when k = 9, which is the same number of clusters
for the data on website. We think this data has a clear
relationship between groups, because both methods obtain
good result. In our method, when k is 5 or 6, the performance
is worse than the case when k is 4. It is because that the four-
cluster structure is similar to the nine-cluster graph. We can
see from Fig. 4 (a) that the modularity reaches a local peak
when k is 4 .

3) Gnutella Network

This is the experiment with Gnutella peer-to-peer file
sharing network from August 2002. Nodes represent hosts in
the Gnutella network topology and edges represent
connections between the hosts [12][13]. There are 8717
vertices and 31525 edges in the graph. Compared to the
second experiment, this graph has double the number of
vertices but the number of edges is much less. On Stanford
website [8], we can see that for this kind of graphs with
strongly-connected components, only a small group can reach
each other. It also has bad coefficient in clustering. In k-means
with adjacency matrix, the modularity is almost approaching
zero, however, as shown in Fig. 5 (a), our proposed method
still gets the modularity average higher than 0.2. Although

this result is slightly less, our method still performs well for
k-means with loose grouping dataset.

For runtime shown in Fig. 5 (b), our proposed method is
faster than k-means with adjacency matrix for the cases when
k is from two to six. Actually, the edges are less dense so that
the k-mean algorithm spent time in computing many bad
features. We observe that when the data size grows, k-means
algorithm not only needs a large space and time to transfer
data for adjacency matrix but also needs more time to divide
the graph into small clusters.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we proposed a graph-based k-means
algorithm on Spark. Given a dataset, a graph could be
structured and fed into this algorithm for solving the
clustering problem. We also implemented the k-core
decomposition with GraphX API to find the centers of
clusters.

By spending more runtime, our proposed method would
be able to find clusters with higher modularity. If we take the
time for data processing into account, the total elapsed time
of our method will be approaching to that of k-means. It is
because the matrix structure used by k-means needs more
processing time especially for the sparse matrix of many
vertices with few edges. We find that k-core decomposition
still is a good method for finding centers of clusters.

The initial random centers have a large effect on the
performance of the k-means algorithm and our proposed
method. Runtime can be greatly reduced if the two methods
start with good initial points. Furthermore, even if the two
methods start with the same initial centers, they probably have
big difference in the clustering and the result value of
modularity. We also find that vertices with many neighbors
have great dominating effects. If we can select initial centers
nearby these vertices, we can gain a better result.

Future work is to improve the performance of our
proposed method further. The distributed k-core
decomposition could be improved by integrating with Pregel
algorithm. The original Pregel algorithm wastes a lot of time
in sending initial iterators that have impact on the
performance of GraphX. We plan to use the internal code of
GraphX Pregel API to reconstruct the k-core decomposition.

REFERENCES

[1] M. Zaharia, et al., “Spark: cluster computing with working sets” Hot

Cloud, vol. 10, 2010, pp.10-10.

[2] R. Xin, J. Gonzalez, M. Franklin, and I. Stoica “GraphX: A Resilien
t Distributed Graph System on Spark”, AMPLab, EECS, UC Berkele

y 2013

[3] W. Khaouid, M. Barsky, V. Srinivasan, and A. Thomo, "K-Core Deco
mposition of Large Networks on a Single PC," Proc. VLDB Endowm

ent, vol. 9, no. 1. 2015.

[4] G. Malewicz, et al., “Pregel: a system for large-scale graph processin
g,” Proc. 2010 ACM Intl. Conf. on Management of data, 2010.

[5] J. Hartigan and M. Wong, “A k-means clustering algorithm,” Applie

d Statistics, vol. 28, 1979, pp. 100-108.
[6] A. Montresor, F. Pellegrini, and D. Miorandi, “Distributed k-core dec

omposition,” IEEE Trans. Parallel Distrib. Syst., vol. 24, no. 2, 2013,

 pp. 288–300.
[7] M. Newman, “Modularity and community structure in networks,” Pr

oc. Natl. Acad. Sci. USA, vol. 103, no. 23, 2006, pp. 8577-8582.

97Copyright (c) IARIA, 2017. ISBN: 978-1-61208-529-6

CLOUD COMPUTING 2017 : The Eighth International Conference on Cloud Computing, GRIDs, and Virtualization

[8] Stanford Large Network Dataset Collection, http://snap.stanford.edu/

data/index.html [Jul, 6, 2016].

[9] D. Lusseau, et al., “The bottlenose dolphin community of Doubtful S

ound features a large proportion of long-lasting associations,” Behav

ioral Ecology and Sociobiology,” vol. 54, 2003, pp. 396-405.
[10] W. W. Zachary, “An information flow model for conflict and fission

in small groups,” J. Anthropological Research, vol. 33, 1977, pp. 452

-473.
[11] J. McAuley and J. Leskovec, “Learning to Discover Social Circles in

 Ego Networks,” NIPS, 2012.

[12] J. Leskovec, J. Kleinberg, and C. Faloutsos, “Graph Evolution: Dens
ification and Shrinking Diameters,” ACM Trans. Knowledge Discov

ery from Data, vol. 1, no. 1, 2007.

[13] M. Ripeanu, I. Foster, and A. Iamnitchi, “Mapping the Gnutella Netw

ork: Properties of Large-Scale Peer-to-Peer Systems and Implication

s for System Design,” IEEE Internet Computing Journal, 2002.

[14] D. Lusseau and M. E. J. Newman, “Identifying the role that individu
al animals play in their social network,” Proc. R.SOC.LONDON B,

271:S477, 2004.
[15] “Hadoop,” http://hadoop.apache.org/.
[16] “MapReduce,” http://research.google.com/archive/mapreduce.html.

[17] J. Hartigan and M. Wang, “A K-Means Clustering Algorithm,” J.

Royal Statistical Society, vol. 28, no.1, 1979, pp. 100-108.

Figure 3. Modularity and runtime of dolphin social network.

Figure 4. Modularity and runtime of Facebook social network.

Figure 5. Modularity and runtime of Gnutella network.

0

0.1

0.2

0.3

0.4

0.5

2 3 4 5 6 7 8

M
o
d

u
la

ri
ty

Number of cluster
(a)

propose method k-means

0

10

20

30

40

50

2 3 4 5 6 7 8

R
u

n
ti

m
e

(s
ec

s)

Number of cluster
(b)

propose method k-means

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

2 3 4 5 6 7 8 9 10

M
o
d

u
la

ri
ty

Number of cluster
(a)

propose method k-means

0

10

20

30

40

50

2 3 4 5 6 7 8 9 10

R
u

n
ti

m
e

(s
ec

s)

Number of cluster
(b)

propose method k-means

0

0.05

0.1

0.15

0.2

0.25

0.3

2 3 4 5 6 7 8

M
o
d

u
la

ri
ty

Number of cluster
(a)

propose method k-means

0

10

20

30

40

50

2 3 4 5 6 7 8

R
u

n
ti

m
e

(s
ec

s)

Number of cluster
(b)

propose method k-means

98Copyright (c) IARIA, 2017. ISBN: 978-1-61208-529-6

CLOUD COMPUTING 2017 : The Eighth International Conference on Cloud Computing, GRIDs, and Virtualization

http://link.springer.com/article/10.1007/s00265-003-0651-y
http://link.springer.com/article/10.1007/s00265-003-0651-y
http://hadoop.apache.org/

