
Policy Based Context Aware Service Level Agreement (SLA)

Management in the Cloud

Mhammed Chraibi

Abdelilah Maach

Dept of Computer Engineering

Ecole Mohammadia d’Ingénieurs

Universite Mohammed 5, Rabat, Morocco

e-mail: M.Chraibi@aui.ma

Souhail Meftah

Hamid Harroud

School of Science and Engineering

Al Akhawayn University in Ifrane

Ifrane, Morocco

e-mail: S.Meftah@aui.ma

Abstract—The lack of security and the inexistence of Quality

of Service tracking mechanisms limit the success of cloud

computing as a new technology, even if it demonstrates great

capabilities of solving a number of problems that almost all

organizations suffer from. This paper presents a novel way of

expressing Service Level Agreements (SLAs) and tracking them

to assure the client about the security and Quality of Service that

are provided by the Cloud Service Provider. Allowing the client

to combine specific security and Quality of Service metrics with

context information within SLAs, when they are expressed as

software policies, increases tremendously their expressiveness

and precision.

Keywords—Security; Quality of Service; Service level

Agreement; software policies;

I. INTRODUCTION

Cloud computing as a technology is changing the way
Information Technology (IT) is seen by private, public, and
independent organizations. None of them can survive in
today’s environment without heavily relying on IT. Therefore,
all of them are looking for innovative ways to have their data
and applications run. The quality of IT management might
give them the edge that they need over the competition. Cloud
computing, with the advantages it brings is, for many
organizations, the most viable alternative. Having their data
and applications managed by experts guaranteeing security
and Quality of Service (QoS) on a pay per use basis is an
incredible opportunity. Unfortunately, the fear of losing
control of data and information that is not hosted locally
anymore is stopping the organizations from migrating their IT
to the cloud.

Our research group firmly believes that, if organizations
were provided with the means to express their security and
QoS needs and were able to track how well the cloud service
provider is doing in taking care of those needs, they would be
more willing to migrate to the cloud. The research we present
in this paper consists of proposing software policies as a way
to represent and manage Service Level Agreements (SLAs).
The SLAs are the contract between the client and the Cloud
Service Provider (CSP). The SLAs must allow the clients to
express in terms of metrics what QoS and what security mean
for them. In addition to that, software policies, the way we
designed them, allow the integration of context information.
Context awareness does not only increase the expressiveness
of SLAs, but it also allows them to tackle any metrics
identified to increase security and Quality of Service.

In this paper, we start by describing what we mean by
context information within the cloud environment. Then, in
Section III, we present our policy based, context aware

Service Level Agreements design. In Section IV, we explain
the reasons why we opted for a middleware to incorporate the
management of SLAs in the cloud. Then, in Section V, we
discuss the testing of the prototype that we built as a proof of
concept. Finally, in the conclusion, we describe the future
work.

II. CONTEXT AWARENESS IN CLOUD COMPUTING

The definition of the context of an application within the

cloud is an exercise that has not been done by many

researchers. The reason behind this is the fact that every

application within the cloud has a different role and a different

context. When the cloud is used for offloading, the context of

the processing done in it relates to the domain where the

application operates. In this section, we will see how context

information is used to improve QoS in terms of efficiency,

performance, or security.

A. Context information for performance improvement

Mobile Cloud Computing, for example, is currently a

research hotspot. Scientists are looking into ways to allow

mobile applications run their processing and data analysis in

the cloud. They are aware that one of the major challenges

facing them, the moment they consider offloading as an

alternative, is the performance of the network. CloudAware is

a context aware framework that contains a context manager

entity responsible for collecting and analyzing network data to

predict the status of the network at a point in time and make

sure that the processing and communication of the data is done

in a reasonable amount of time [1]. The context manager, once

it has received the data from network sensors and other tools,

performs a set of intelligent data mining operations in order to

predict the future situation of the network [1]. This leads to the

improvement of the overall network performance.

B. Context information for security management

Context aware role based access control is the solution

described by [2]. The use of context information in order to

provide a personalized service and “dynamic adaptation” of

access control requires collecting continuously context data.

To move into useful information, a few steps are described,

such as:

 Context pre-processing

 Context analyzing

 Context providing

The huge amount of data received from the different

context acquiring tools (both hardware and software) is

considered big data. Therefore, intelligent, machine learning

122Copyright (c) IARIA, 2017. ISBN: 978-1-61208-529-6

CLOUD COMPUTING 2017 : The Eighth International Conference on Cloud Computing, GRIDs, and Virtualization

algorithms are utilized by [2] in order to filter and have readily

available context information. Such quality context

information allows for state of the art role based access control

without adding a big load to the overall system performance.

C. Multiplicity of cloud context providers

Within a cloud environment, any context aware platform,

middleware, or application needs to be able to handle

incoming context data from a wide variety of sources.

Depending on the nature of the source, different processing of

the data may be done to be transformed into information that

will be used in order to perform the appropriate actions. In [3],

the authors raise the point that heterogeneity of incoming

context data must be handled and they review the literature

and analyze the way it is done. In the framework that they

present, named MobiLife, the context data is all received by

an entity called the context provider. That entity has three

main responsibilities:

 It receives data from the different context sources,

analyzes it, checks the ontology being used

 It advertises the availability of the context

information

 It responds to requests of context information

Such a central entity is necessary because of the different

sources of context data. They also mention how new needs of

modeling of context data are there since context aware

applications do not rely anymore on location only as it was the

case previously.

III. CONTEXT AWARE SERVICE LEVEL AGREEMENTS FOR

SECURITY AND QUALITY OF SERVICE

 SLAs are the contract that exists between the cloud service
provider and the cloud application. The accuracy of the SLA is
the key to a healthy relationship between those entities.
Therefore, there is a need for a way that allows the detailed
expression of SLAs and monitoring to know if the SLAs are
being respected or not. In this section, we present our policy
specification language that is used to represent SLAs. Then,
we go deeper into the metrics that the policy specification
language must allow the SLAs to express. Finally, we show
examples of SLAs and how they are represented.

A. SLA Specification Language

 In a previous work, our team developed a policy
specification language that allows the expression of policies to
manage security in quickly changing environments [4]. Figure
1 shows the structure of the Service Level Agreement using
our policy specification language.
 The first Attribute of the SLA is the ID. It represents a
unique identifier to each Service Level Agreement. It allows
the tracking and modification of SLAs. It is the only attribute
that is not assigned a value by the client. Second, every SLA
has a Subject. It is the entity responsible for enforcing the
policy’s action. Usually, the subject is a Policy Enforcement
Point (PEP) that wraps the client application. More details
about the PEP are given in Section IV.

Figure 1. SLA policy based structure

 The next attribute is the Target. It is the entity on which
the action defined by the SLA is executed. Obviously, every
Service Level Agreement contains the action itself that is
triggered in case the conditions are met, and a priority that
allows conflict resolution between policies. Finally, every
SLA has a type. Obligation SLAs are triggered when a change
in the context happens and a notification is generated. On the
other hand, Authorization policies are triggered when a
request, from the client application, is received asking to
verify if an SLA is being respected or not.
 The condition set, as shown in Figure 1, is composed of
four different attributes. The major attribute is the metric that
is being evaluated. It also contains the value against which the
metric is compared. The comparison is done through an
operator such as: greater, smaller, equal. Finally, since an SLA
can have a set of conditions, they are linked using connectors.
These connectors are based on First Order Logic (FOL) in
order to allow for as much flexibility as possible.

B. SLA Metrics

SLAs describe for both parties (the client and the cloud
provider) expectations and act as a roadmap for change in the
cloud service. Actually, just as an IT project needs a roadmap
that comprises a set of clearly defined deliverables, an SLA is
also crucial for working with cloud infrastructure. In fact, to
develop a consistent and an effective SLA, a list of important
criteria needs to be mentioned [5]. The following are some of
the most important criteria:

 Availability: describes the percentage of the
availability of the service agreed upon during
working and non working days. For example: 99.9%
during work days, 98.5% for nights/weekend.

 Performance: this element describes the maximum
response times for a specific service.

 Security/privacy of the data: this element is related to
the section described above concerning the
confidentiality, integrity, availability, and
accountability of the data stored within the cloud. An
example of a rule regarding security is: encrypting all
stored and transmitted data.

 Disaster Recovery expectations: this element
describes the commitment sated by the cloud
provider to ensure the recovery of data in case of
disaster that may affect the main data center.

123Copyright (c) IARIA, 2017. ISBN: 978-1-61208-529-6

CLOUD COMPUTING 2017 : The Eighth International Conference on Cloud Computing, GRIDs, and Virtualization

 Location of the data: this element describes the
location where data are stored. This rule should be
consistent with local legislation.

 Access to the data: this rule defines the way the client
will be using to access its data. An example of this
rule would be: data retrievable from provider in
readable format.

 Portability of the data: this element describes the
identity of another provider that may own the client’s
data whenever the main provider encounters a
problem. In fact, it is possible for the cloud provider
to not mention any other cloud provider.

 Change management process: this part deals with
process a service should go through to be updated or
add new functionalities.

 Exit strategy: this part describes how smooth the exit
from the data center of the cloud provider is.

 While going through the literature, we have identified two
major categories of metrics that can be expressed within
SLAs. The first category contains metrics to assess the Quality
of Service offered by the CSP, while the second one contains
metrics that are used to assess the security of the environment
offered by the CSP. In both categories, we could subdivide the
metrics based on the level of service offered by the CSP:
Software as a Service (SaaS), Storage as a Service, Platform
as a Service (Paas), and Infrastructure as a Service. In Figure
2, we classify the metrics that we can assess when we are
considering the Quality of Service offered by the CSP.
 Since security is one of the most important aspects that
clients consider before making the decision to move the
management of their data and services to the cloud, we have
identified, in Figure 3, the different metrics that need to be
expressed in an SLA to assure clients of the security of their
assets.
 Identifying the different metrics that need to be specified
and detailed in SLAs is an important step that will allow us to
design our policies. In fact, our team is still working and
making progress in detailing the metrics and bringing them to
a lower level of granularity. In the next section, we present
two policy based SLAs in order to show the way they are
represented using our policy specification language.

C. Examples of SLAs

 Figure 4 shows two policies that represent SLAs. We
intentionally decided to give the example of a QoS SLA and
the example of a security SLA.

From the first policy, the user is enforcing the fact that as
agreed with the CSP, in case of maintenance work, the
services of the client applications must not be down for more
than 2 hours and it has to be between 3 and 5 AM. This
example shows clearly how a policy can be used to combine
metrics extracted from Service Level Agreement with context
information (in this example, time) to express the users
preferences in terms of Quality of Service. The second policy,
on the other hand, deals exclusively with a security issue
management. The user wants to be notified in the case of an
intrusion detection where the latency of response is more than
80ms. The choice of then 80ms is specific to the client’s own
knowledge about the application. Finally, from the two
examples, we demonstrate how clients can express their

Quality of Service requirements and security requirements
using software policies. These policies are a representation of
the Service Level Agreement between the client and the cloud
service provider.
 In the next section, we will show the architecture of our
system and explain how the policy based SLA management
system fits within the cloud environment.

IV. SLA MANAGEMENT WITHIN THE CLOUD

A. Opting for a Middleware Solution

 Our policy based security management system was
previously used within the context of mobile computing.
When we started thinking of re-modeling it to adapt to the
needs of cloud environment, the question of how to insert the
software in the cloud was raised. When we were dealing with
mobile environments, one of the major concerns that arose
was the amount of processing needed by the system versus the
mobile device’s computing power and battery life. We are not
the only ones who struggled with such an issue. In [8], the
authors show that there is a direct impact of offloading on
energy saving in mobile devices. Computation offloading is
defined as “sending heavy computation to resourceful servers
and receiving the results from these servers” [9]. In other
words, instead of having the heavy computations take place at
the level of the mobile device, given that there is an Internet
connection available, and a safe medium to transmit the data
and instructions, the computations can be delegated to a
powerful server (or the cloud). The results can then be sent
back to the mobile device. In the same line, researchers have
proposed frameworks for developing software to make use of
offloading.

Figure 2. Quality of Service SLA metrics [6]

124Copyright (c) IARIA, 2017. ISBN: 978-1-61208-529-6

CLOUD COMPUTING 2017 : The Eighth International Conference on Cloud Computing, GRIDs, and Virtualization

Figure 3. Security SLA metrics [7]

In [10], for example, a framework was tested to considerably
reduce execution time of different types of applications given
that a fast and reliable network connection is available
between the mobile device and the server.

 Learning from that experience, we decided that the policy
based security management in the cloud should offload client
applications from SLA management and the processing it
incurs. Using a middleware is the best way to offer to cloud
client applications. Since both the middleware and the
applications are run by the same physical platform, the issue
of latency in response that existed in mobile environments
[11][12] does not exist anymore. Figure 5 shows how our
system fits within the cloud.

B. Middleware Architecture

The middleware contains three main components, as we
can see from Figure 5. We have described in detail each one of
them in our previous work [4]. The major tasks performed by
each one of them are summarized as follows:

 Tool Abstraction Layer (TAL): This component is
responsible for collecting context data. This context
data can be obtained by software tools just like it can
be obtained by Radio Frequency IDentification
(RFID) readers or other hardware tools. The tool
abstraction feeds the received data to the context and
services management system.

 Context and services management system receives
data from the TAL and transforms it into useful
(needed) context information. It does so by
processing the data through the following services:

o Data transformation services
o Data dissemination services
o Data filtering services
o Data aggregation services
o Duplicate removal services
o Data replacement services

The way the services are managed is also through
policies.

Figure 4. QoS and Security SLA example

 Policy management system contains the following:
o Policy Decision Point (PDP): Entity

responsible for checking the data provided
in a request or a context change notification
against the client’s policies. The PDP then
enforces the action of the policy or not.

o Policy manager: Entity responsible for
adding policies, removing policies, or
updating policies.

o Policy conflict manager: Entity responsible
for resolving conflict between different
policies whose conditions are met and that
need to be triggered.

o Policy information base: this entity is a
repository where all policies are stored.

Figure 5. Policy based SLA management system in the cloud

125Copyright (c) IARIA, 2017. ISBN: 978-1-61208-529-6

CLOUD COMPUTING 2017 : The Eighth International Conference on Cloud Computing, GRIDs, and Virtualization

 Policy Enforcement Points (PEP): are wrapping
entities that have access to enforce policy actions on
the target entities. This access is provided by the
client applications through method calls.

 Our team has developed a prototype for the middleware
and we started proceeding with the evaluation and testing, as
we show in the next section.

V. SLA MANAGEMENT MIDDLEWARE EVALUATION AND

TESTING

The International Organization for Standardization (ISO)
and the International Electrotechnical Commission (IEC), in
the standard ISO/IEC 9126, later on revised to ISO/IEC
25010:2011, identified the different criteria to evaluate the
quality of a software as being: Functionality, Reliability,
Usability, Efficiency, Maintainability, and Portability [13]. In
this section, we will discuss how our middleware performs in
each one of those categories keeping in mind that we are
talking about a prototype meant for the sole purpose of
building a proof of concept.

A. Functionality

The Policy based security management system is
responsible for managing and enforcing the SLA policies
provided by the client application. In that sense, once the
policies are obtained from the client, they are stored in the
policy information base and retrieved for evaluation when a
request pertaining to the client is received. In our software,
only the policies that have as a target the client’s application
are retrieved, each one of the conditions is checked against the
data in our context base and a decision on whether the action
of the policy is to be triggered or not is made. Therefore, the
middleware fulfills the functionality for which it was designed
in terms of suitability and accuracy.

The quality of the context information is managed by the
software policies that deal with the requests incoming from the
different software tools that provide us with raw data. There
are some cases, where a piece of data comes only from one
source where it might be given by the CSP itself. For example,
the data about availability of the cloud services is posted every
month on the website of the cloud service provider. We have
not yet identified a tool that can provide us with such an
information. Therefore, our context base is fed with data
coming from the website of the service provider. Since this
process is public, it is up to the client to choose whether to
rely on the accuracy of that data in order to formulate their
policies of Service Level Agreements. Finally, the policy
based security management middleware still fulfills its
functionality.

The system is reliable because no external entity can
interfere with its processing. The policy management entity
and context management entity only receive requests that
come from the Policy Enforcement Point, which is part of the
middleware. Therefore, the system is reliable and will perform
the expected actions the way it was designed to.

B. Reliability

In the context of the discussion, the real threat to reliability
is the interaction between the PEP and the client application,

and the way the PEP intercepts the incoming requests, models
them and forwards them to the policy decision point. The
communication protocol between the PEP and the client
application (it is also the process by which an application
registers to the services of the middleware) is part of the future
work. As for metrics such as maturity, and fault recovery we
will only be able to test for them when we deploy on the
cloud.

C. Maintainability

When we were thinking of the maintainability of the
middleware, only one thing came to mind: we have designed
the software for maintainability. Policy based systems are by
definition maintainable. Since they are managed by policies,
to maintain the software all that is required is remove the
obsolete policies and replace them with updated versions. In
terms of Analyzability, the accountability tag on the policies
(audit tag) allows the system to keep track of all the policies
whose actions have been triggered. Once new policies are in
place it is straight forward to design requests that will test the
impact of the policies on the system. Several scenarios have
been described before showing how we can use requests to
test the policies; therefore, we can say that the system is
changeable and stable. As for testability, we have run several
performance tests and the results are shown below.

D. Usability & Portability

The programming language and programming platform
that we have used are synonyms of portability. The JAVA
language and J2EE environment need no introduction and one
of their major advantages is portability. As for usability, the
client applications, once they have submitted their security
policies, their interaction will remain with the Policy
enforcement point. A graphical user interface is being
developed in order to allow the clients to express their
business rules and have them translated into software policies.
The user interface is meant to be as user friendly as possible.
All the translation into the policy attributes and XML will be
transparent to the user.

E. Efficiency (Performance)

One of the major motivations behind opting for the
middleware as a way to include the policy based SLA
management middleware in the cloud is to offload the tracking

TABLE 1. TESTING ENVIRONMENT

CPU Intel core i5 3221M 2.5Ghz

RAM 4 GB

Operating System Windows 8 professional (64bits

version)

IDE Netbeans 8.0.2

and management of SLAs from the client applications. The
moment we think about offloading, we want to know how
much extra processing time will incur when the services of our
middleware are being used. For performance testing, Table 1
shows the platform that we have used.

126Copyright (c) IARIA, 2017. ISBN: 978-1-61208-529-6

CLOUD COMPUTING 2017 : The Eighth International Conference on Cloud Computing, GRIDs, and Virtualization

In the first scenario, we wanted to investigate the impact of
having multiple clients in our system on the performance of
the system with regards to the requests received for a specific
client. In the scenario, we have designed 100 policies and we
sent 20 requests. During the first run, all the 100 policies
belong to client 1. Then, we keep only 80 policies from client
1 (the one to whom the requests are directed) and we add 20
new policies from 4 other clients and we see the impact it has
on the average request processing time. We continue using the
same technique and, at each step, we reduce the number of
policies of client 1 by 20 and increase the other clients’
policies by 20. The results are shown in Figure 6.

We see from the graph that the processing time per request
decreases with the number of client policies. The more
policies we have, the more conditions we check the request
against and therefore the more processing time is required.
What is interesting for us to see is compare these results with
the equivalent ones in the previous figures. That comparison
can give us an idea about the impact of having multiple clients
versus having one single client on the overall performance.

In the second scenario, we send 20 requests when client 1
owns 60 policies, when he/she owns 40 policies, and when
he/she owns 20 policies. Figure 7 shows the average response
time when the user is the only client in the environment versus
when the environment is shared.
 When we first look at Figure 7, we are surprised to see that
the response time in shared environment is less than the one in
the environment where a client is alone. But the tendency
changes as we increase the number of policies. This is
explained by the nature of policies. It just happens that the
policies used in the first test (20 requests, 20 policies in a non-
shared environment) contained more conditions leading to a
higher processing time. When we increase the number of
policies, it normalizes the number of conditions within a

Figure 6. Response time based on the % of client policies in shared
environment

policy and makes the performance in shared environments less

than the one in non-shared environments. The reason behind

that is the time that is used in selecting the client policies.

VI. CONCLUSION

 Policy based management has proven efficient in many
environments. First, we have used policies to manage security
in mobile environments. Then, we adapted our work to the
context of security management in the cloud. Here, we are
modeling and testing the management of Service Level
Agreements. Next, we are investigating policy based
management in mobile cloud computing. Also, the next step in
our project is to devise a set of policies that would express the
needs of Quality of Service and security for a real life client.
At the university, we have a private cloud which is the ideal
environment for us to perform the necessary set of tests in
order to see how the system performs.

Figure. 7. Performance in shared environment Vs non-shared environment

REFERENCES

[1] G. Orsini, D. Bade, and W. Lamersdorf, “Cloudaware: Towards context
adaptive mobile cloud computing,” in IFIP/IEEE IM 2015: 7th
Intern.Workshop on Management of the Future Internet (ManFI), 2015.

[2] S. Hiray and R. Ingle, “Context-aware middleware in cyber physical
cloud (CAMCPC)”. Proceedings of the 2013 International Conference
on Cloud & Ubiquitous Computing & Emerging Technologies
(CUBE)”, Pune, India, 15–16 November 2013, pp. 42–47.

[3] N. Gupta and A. Agrawal, “Context Aware Mobile Cloud Computing:
Review”, 2nd International Conference on Computing for Sustainable
Global Development (INDIACom), pp. 1061–1065, 2015

[4] M. Chraibi, H. Harroud, and M. Maach, “Personalized security in
mobile environment using software policies”, UBICOMM 2011 : The
Fifth International Conference on Mobile Ubiquitous Computing,
Systems, Services and Technologies, Nov 2011, Lisbon, Portugal.

[5] http://www.facilities.ac.uk/j/free-cpd/155-slas-and-service-
specifications, retrieved: December, 2016

[6] M. Alhamad, T. Dillon, and E. Chang, “Conceptual SLA framework for
cloud computing”, 4th IEEE International Conference on Digital
Ecosystems and Technologies, 2010, doi:10.1109/dest.2010.5610586

[7] M. Hoehl, “Proposal for standard Cloud Computing Security SLAs -
Key Metrics for Safeguarding Confidential Data in the Cloud”, Used
from:

127Copyright (c) IARIA, 2017. ISBN: 978-1-61208-529-6

CLOUD COMPUTING 2017 : The Eighth International Conference on Cloud Computing, GRIDs, and Virtualization

http://www.facilities.ac.uk/j/free-cpd/155-slas-and-service-specifications
http://www.facilities.ac.uk/j/free-cpd/155-slas-and-service-specifications

https://isc.sans.edu/forums/news/Proposal+for+standard+Cloud+Compu
ting+Security+SLAs+Key+Metrics+for+Safeguarding+Confidential+Da
ta+in+the+Cloud/893991/studies on magneto-optical media and plastic
substrate interface”, IEEE, retrieved: December, 2016

[8] K. Kumar and Y. Lu, “Cloud computing for mobile users: Can
offloading computation save energy?” IEEE Comput, pp. 51–56, 2010

[9] K. Kumar, J. Liu, Y. Lu, and B. Bhargava, "A Survey of Computation
Offloading for Mobile Systems", In the Journal of Mobile Networks and
Applications, Springer, pp. 129–140, 2012.

[10] E. Cuervo, "MAUI: Making Smartphones Last Longer with Code
Offload", Proc. 8th ACM MobiSys, 2010

[11] C. Shi, K. Habak, P. Pandurangan, M. Ammar, E. Zegura, and M. Naik,
"Cosmos: Computation offloading as a service for mobile devices",
ACM MobiHoc, 2014

[12] H. Flores, S. N. Srirama and R. Buyya, "Computational offloading or
data binding? bridging the cloud infrastructure to the proximity of the
mobile user", Proceedings 2nd IEEE International Conference on Mobile
Cloud Computing, Services, and Engineering, 2014

[13] http://www.iso.org/iso/catalogue_detail.htm?csnumber=35733,
retrieved: December, 2016

128Copyright (c) IARIA, 2017. ISBN: 978-1-61208-529-6

CLOUD COMPUTING 2017 : The Eighth International Conference on Cloud Computing, GRIDs, and Virtualization

http://www.iso.org/iso/catalogue_detail.htm?csnumber=35733

