
Using Unikernels to Address the Cloud Forensic
Problem and help Achieve EU GDPR Compliance

Bob Duncan
Computing Science

University of Aberdeen, UK
Aberdeen, UK

Email: bobduncan@abdn.ac.uk

Andreas Happe
Dept. Digital Safety & Security
Austrian Inst. of Tech. GmbH

Vienna, Austria
Email: andreas.happe@ait.ac.at

Alfred Bratterud
Dept. of Computer Science

Oslo and Akershus University
Oslo, Norway

Email: alfred.bratterud@hioa.no

Abstract—IT security and privacy is a challenging problem to
address, and when cloud is used, there is an exponential increase
in the challenge. A particular challenge is the cloud forensic
problem, which arises when an attacker succeeds in breaching
a cloud system, because one of the first aims is to delete the
forensic trail, and there is little to prevent this from happening
in cloud. Quite apart from the obvious difficulties this will present
to finding out who has breached the system and how they got
in, there will now be a far more pressing problem to be dealt
with, namely, the forthcoming European Union General Data
Protection Regulation. Once a breach has been identified, it is
also necessary for the company to report the impact of the breach,
to include which records were accessed, modified, deleted, or ex-
filtrated, on pain of punitive levels of fine. Where the forensic trail
has been compromised, this might prove to be a huge challenge
to comply with. We propose addressing this problem through
the use of Unikernel based monitoring systems which can ensure
both full forensic and audit trails can be maintained.

Keywords–Cloud Forensic Problem; unikernels; EU GDPR,
compliance.

I. INTRODUCTION

Every business is the subject of cyber attacks, no matter
whether it is a public corporation, a private firm, a financial
institution, a government agency, a non-government agency or
a charity. No matter what type of organisation is involved,
all will be subject to the rules of the forthcoming European
Union (EU) General Data Protection Regulation (GDPR) [1],
which comes into effect on 25th May 2018. It will apply to
every single organisation that deals with any individual who is
resident anywhere within the EU; and in a post-Brexit world,
the UK Government has indicated that the GDPR will still
apply in the UK. Indeed, the UK Government have indicated
that the UK GDPR will be enforced with greater rigour, and
will accord greater rights to private individuals.

The rules of the GDPR will mean considerable extra
work, and expense, for all these organisations who fall under
the scope of the GDPR, which will basically include any
organisation, anywhere on earth, who process the personal data
of any EU resident, anywhere within the EU. Each organisation
will require to appoint a data controller, who either must have
the requisite technical skills, or must be assisted by a person
with such technical skills. This will no doubt be an unwelcome
additional expense. They must also have a data processor and a
data protection officer, meaning more costs. In addition, they
will have to take all necessary technical steps to ensure the
security and privacy of all Personally Identifiable Information

(PII) belonging to data subjects of the organisation, at yet more
expense.

A great many companies are totally unprepared for this.
Many believe that because the reporting requirement has been
changed from “within 72 hours of a breach occurring” to
“within 72 hours of discovering a breach”, they will have no
problem being compliant [2]. They will be wrong! They must
also be able to report which records were accessed, modified,
deleted or ex-filtrated from the system.

Once an attacker breaches a system and becomes resident
as an intruder, one of their first tasks is to delete the forensic
trail of their incursion into the enterprise systems, so that their
presence becomes more covert, thus allowing them to remain
hidden inside the system. This allows them to harvest whatever
information or secrets they desire for as long as they can stay
hidden in the system.

Once the forensic trail has been deleted as part of the
attacker seeking to retain an ever more capable foothold
inside the system, there may be a reduced ability to actually
comply with this particular GDPR requirement. In some cases,
compliance may even be completely impossible. This will
particularly be the case with cloud systems, since there is
nothing to prevent such an intruder from deleting not only
the forensic trail, but anything else they desire, including the
very running cloud instance that they are hiding within.

Since failure to comply can result in fines which can rise
to the greater of e20 million or 4% of global turnover, then
this will certainly have a substantial impact, although there are
many who still fail to grasp this important point.

We start by considering the cloud forensic problem in
Section II, and discuss why this is such a challenge for GDPR
compliance in cloud systems. We are concerned with achieving
both good security and good privacy. While it is possible to
have security without privacy, it is not possible to have privacy
without security. Thus our approach will be to first ensure a
good level of security can be achieved, and to that end, we
start by listing the specific security issues we seek to address
and discuss how we propose to tackle them in Section III. The
remainder of the paper is organized as follows: in Section IV,
we consider how we might go about finding a cloud based
solution, in Section V, we discuss the outline technical details
of our proposed approach; In Section VI, we consider possible
attack vectors. In Section VII, we consider just how robust a
unikernel approach might be. In Section VIII, we discuss our
conclusions.

71Copyright (c) IARIA, 2018. ISBN: 978-1-61208-607-1

CLOUD COMPUTING 2018 : The Ninth International Conference on Cloud Computing, GRIDs, and Virtualization

II. THE CLOUD FORENSIC PROBLEM AND THE GDPR
Cloud computing has been around now for over 10 years,

and a great deal of good quality research has been carried out,
particularly regarding matters of security and privacy. Cloud
systems have become highly popular with companies due to
the flexibility of cloud offerings. The speed of starting a cloud
instance, the removal of long lead times to access compute
and storage resources, the ability to scale up, as well as down,
to match demand presents a particularly good incentive to use
cloud computing. The fact that companies can write costs off
entirely against revenue provides a further attractive incentive
for their use. Kratzke [3] has long warned of the dangers of
thinking that conventional software is just the same as cloud-
native software. Kratzke et al [4] do suggest the possibility of
using existing Container technologies to improve cloud-native
programming.

There have been many good papers produced on both
security [5]–[9] and privacy [10]–[14], and we laud the efforts
of countless researchers who have tried to provide this area
with better security and privacy, which speaking generally,
has been successfully achieved over the years. But there
remains one fundamental weakness that has not been resolved,
namely the “cloud forensic problem”. All computer systems
are the subject of attack, and cloud systems are no exception.
Unfortunately, no system is immune to attack, and that is
certainly true for cloud systems.

The primary goal of an attacker is to breach a system.
This can involve quite a considerable amount of work on
the part of a serious attacker. They will perform surveillance
and compile many analyses of how the company systems
are organised. Many will carry out huge amounts of work
to understand the people of the organisation, since they are
usually the weakest link. This intelligence gathering will be
very extensive, usually covering every possible aspect of all
the systems of the company in order to discover everything
they can about the business architecture before they start their
attacks.

Other attackers, are much less organised. They will simply
try to hack in to company systems, without a thought of
the overview of the company concerned. They will merely
look for known vulnerabilities and try to attack them. Yet
other attackers will attack the people of the company through
social engineering, email attacks through malicious links and
malware payloads, web based drive by attacks, phishing,
vishing and many other approaches.

No matter which type of attacker they are, they all share
one fundamental goal — to penetrate the system in order to
become an intruder. The aim here is not just to get in, and out,
as quickly as possible, but to develop a long term foothold
inside company systems which will allow them to return, time
and again, to help themselves to whatever they wish, as they
escalate privileges more and more, the longer they remain
inside the system.

It is rather unfortunate that they are often greatly aided in
this quest by the companies themselves. Usually, this occurs
through a degree of laziness whereby the companies are clearly
failing to monitor server logs properly. Looking at previous
cyber breach reports [15], at which time there was a global
average of 6 months between breach and discovery, it is clear
that had these companies been more rigorous about reading

and analysing their server logs, they would have been in a
better position to discover intruders rather more quickly. Even
last year, where the time between breach and discovery has
dropped to a number of weeks rather than months [16], this is
still not good enough. Some companies contribute further by
refusing or failing to update security patches to both operating
systems and software systems, usually under the guise of “last
time I did a security update, all the systems crashed”.

This all leads towards the, as yet unresolved, cloud forensic
problem — namely, that once an intruder is in the system, and
has escalated sufficient privileges, there is absolutely nothing
to prevent them from deleting the forensic trail, which allows
them to hide all evidence of their successful penetration.
Worse, by this stage they will also have control of all the
system logs and audit trails, and there is nothing to prevent
them from deleting every last trace of their intrusion and
ongoing ex-filtration of private data.

Surely that has nothing to do with the GDPR you might
ask? Sadly, that is not the case. In the event of a breach, you are
required to report the breach within 72 hours of discovering
the breach. You must be able to report how many relevant
records have been compromised, whether by having been read,
amended, deleted or ex-filtrated from the system. Given that
many system logs are not even turned on by default, this means
identifying which records have been compromised, whether by
having been read, amended, deleted or ex-filtrated from the
system, will present a serious enough challenge in the first
place. However, given that the intruder will likely have done a
complete job on all forensic trails in the system, the likelihood
of being able to realise that a breach has occurred in the first
place will be very slim, let alone having the ability to properly
identify which records have been compromised.

From a holistic perspective, it would have been helpful
if these matters might have been addressed by the Cloud
implementation itself. However, no such attempt has taken
place during the past decade, no doubt due to the massive
challenge involved. Consequently, all organizations subject to
the provisions of the GDPR are required to safeguard their
own systems and therefore take such steps as are necessary to
ensure adequate privacy is achieved.

This will mean non-compliance with the GDPR, which can
then trigger fines which can rise to the greater of e20,000,000
or 4% of global turnover. This will certainly catch the attention
of top management within organisations. Considering that
these fines can be levied for every single breach, and that the
upper limit is based on turnover rather than profit, that should
be sufficiently concerning to get some serious attention. Of
course, all sensible Cloud users should have been thinking
about this long before now, and we are aware of many who
on hearing that notification ‘within 72 hours of discovery of a
breach’, rathr than ‘within 72 hours of occurrence of a breach’,
heaved a collective sigh of relief and stopped worrying about
implementing a solution. This is what motivates our work.

III. HOW DO WE TACKLE THE PROBLEM?
At this time, no system is fully secure. Operating sys-

tems, transport protocols, software applications — all of this
software has evolved during previous decades. Any relevant
standards were defined decades ago. The primary goal at that
time was functionality. Security and privacy were very much
an afterthought, which has remained the case for decades.

72Copyright (c) IARIA, 2018. ISBN: 978-1-61208-607-1

CLOUD COMPUTING 2018 : The Ninth International Conference on Cloud Computing, GRIDs, and Virtualization

Security and privacy has very much been a case of “Let
us bolt something on to tackle that”. Default settings are
geared for ease of setting up, not for security and privacy.
This means proper security and privacy presents a massive
challenge, which increases exponentially for cloud, Internet of
Things and Big Data.

We could opt to use Containers, such as Docker, LXD or
Rocket. However, Bratterud et al [17] warn of some security
issues with this approach, and Ktatzke [18] also warns of
the unexpected, and unwelcome overhead these solutions can
bring.

In previous work, [19], we considered how well unikernels
might be used to improve on dealing with our target list
of security goals, and found the potential for an improved
approach. In [20], we developed a suitable framework, pro-
viding detailed definitions of how this might be tackled. In
[21], we demonstrated how a unikernel based solution could
reduce complexity, while improving security and privacy. We
also considered in [22], whether unikernels could help address
some of the key weaknesses introduced by use of the Internet
of Things (IoT). In each case, we build on the work of the
previous papers, in order to ensure we do not miss anything
important as we develop the system.

Unikernels run natively on cloud, they have an exception-
ally small footprint, they run without many of the conventional
“toys” associated with normal web based cloud instances.
This means a seriously minimal attack surface. They are
lightweight, can be activated “on demand”, and are extremely
difficult to attack. Virtually every single conventional attack
fails due to there being a heavily restricted means of accessing
the running unikernels. A typical cloud instance will be over
150MB in size. Even Docker containers will be a minimum
of 24MB in size, whereas a unikernel instance can be as little
as 2MB in size.

Given the limitation we face in terms of most software
being insecure, how can we approach developing a potential
solution for this problem? In [23] [24] Duncan and Whittington
proposed that all cloud based systems which would be subject
to compliance under the GDPR, should have ALL audit trails
and forensic logs captured and stored off-site in a highly secure
immutable database running on a dedicated and highly secure
server.

These proposals suggest the immutable database be set up
off-site from the cloud instance. While we accept that advice
might be highly appropriate given the pervasive extent of the
cloud forensic problem, could there be any other way that we
might be able to find a cloud based solution? As we shall see
in the next section, there may be a way to achieve just that
objective.

IV. FINDING A CLOUD BASED SOLUTION

We certainly do accept the sensible logic proposed by
Duncan and Whittington [23] [24] to keep the immutable
database separated from all running cloud instances. While
that makes perfect sense, there is no reason, other than the
cloud forensic problem, why the immutable database should
not run on a cloud system. However, we do agree that it should
not run on the same system as the company system it is trying
to protect.

So the question we must first address is how we might go
about solving this problem. This is where the unikernel based
system might be able to help.

Let us first consider the advantages from a security point
of view of unikernels:

• The larger a piece of software, the more vulnerabilities
are usually present. As we already stated, a unikernel
instance can be as little as 2MB;

• The smaller an instance is, the faster a new instance
loads;

• The smaller instances are, the cheaper they are to run;
• There is no terminal to log into. The terminal presents

one of the easiest attack routes into any system and is
usually not well protected from attack. If the attacker
cannot log in, achieving a successful attack will be
rather difficult to perpetrate;

• The running instance of any unikernel runs with
immutable code, meaning no user may inject code into
the running unikernel instance.

And now, let us look at any potential disadvantages of
unikernels:

• No terminal to log into — a disadvantage for most
sys admins. We view this as a huge advantage. If the
sys admin cannot login, the attacker has no chance of
doing so;

• The running instance is immutable, so it cannot handle
changes. We view this as a positive. We are partic-
ularly keen to be able to log all changes, system,
forensic and audit trail data in a persistent and im-
mutable storage medium off-site. If we cannot change
anything, neither can the intruder.

In our view, every item in the above list of advantages and
disadvantages are all positive attributes. From a performance,
cost, reduced latency and minimised attack surface perspective,
all the attributes are highly beneficial for our purposes. In
the next section, we will look at how we might deploy these
instances to help solve our security challenge.

V. OUTLINE TECHNICAL SOLUTION PROPOSED

We have seen that our unikernel instances can be extremely
lightweight, are immutable in operation, have a very small
attack surface, perform well, are cheap to run with reduced
latency. Because of these advantages, we can use a number of
these instances to build a much more robust system.

If we use the analogy of a bee hive, we can apply this
approach as part of our solution. In a bee hive, there are a
number of specialised bees — there is a single queen bee,
hundreds of male drones (whose responsibility is to mate with
a queen, after which they die), anything up to 80,000 female
worker bees, who look after developing eggs, larvae and pupae,
as well as the whole hive, gathering food from flowers outside
the hive and defence duties, which they perform to the death,
if needed. Each bee performs a specialised function depending
on its age. And in the event a queen leaves, gets lost, or
dies accidentally, the colony is capable of generating new
queens, either full queens, or temporary queens. The ultimate
in sustainability.

73Copyright (c) IARIA, 2018. ISBN: 978-1-61208-607-1

CLOUD COMPUTING 2018 : The Ninth International Conference on Cloud Computing, GRIDs, and Virtualization

Figure 1. A Unikernel Based Solution to the Cloud Forensic Problem.

Our main company system will have a presence on a cloud
platform, using one or more cloud instances as needed, which
will be running on a conventional cloud setup. The cloud
instance will have the capability to replicate at scale as demand
increases and also to shut down instances when demand falls.
The main cloud instance system will not be able to be shut
down from within. We shall call this the front end Cloud
Instance 1.

A conventional database management system will be in-
cluded in all cloud instances in the normal way except they
will instead be removed from within these instances and will
run inside a single instance with every non-required function
removed from that running instance in order to reduce the
attack surface. Should database replication be later required,
this can be accommodated through setting up similar database
instances. We shall call this original Database Instance 1.

Thus Database Instance 1 will only accept input from the
known running front end Cloud Instance 1. There will be no
direct access allowed from outside the cloud environment.
In the event that replication is required, Cloud Instance 1
will setup as many replicated instances as needed, including
Database Instance 2..n, which will all be replicated, expanding
to deliver the required resources.

Worker unikernels will be assigned to each Cloud Instance
as they are spooled up, and shut down as no longer needed.
They will have specific tasks to perform, such as policing,
audit, or whatever. Killer unikernels will be assigned to the
task of protecting database systems. Their primary goal will
be to ensure the safety of both the forensic trail and the audit
trail for all database components, which will be safely stored
in the immutable database. These records cannot be deleted.
If required, these killer unikernels can turn on attackers trying
to breach the systems. All unikernel instances will be tracked,
with forensic data collected also for them.

As we can see, each different type of instance is spe-

cialised, sticking to its own designated tasks. So what is special
about this, apart from splitting up the functions? When a cloud
instance runs with a variety of different types of software
running on it, this can present a big challenge to configure
the overall package in a secure way. By specialising each
instance, it becomes much easier to configure securely, because
every single unused port can be shut down. Security controls
can focus on only what they have to, thus cutting down the
potential attack surface.

Any new front end instance, if not registered with the
control instance, will not be allowed access to any database
instance. Likewise where any new database instance is not
registered with the control instance, the front end instances
will refuse to connect with it.

The secure immutable database for storing system logs,
forensic and audit trail data. These should not be directly
visible to the client browser. Each running instance will send
a copy of all system logs, forensic and audit trail data to the
immutable database instance as it is generated. The source and
timing of all events will be logged by the immutable database.

With the unikernel instances, because they are so
lightweight, we can deploy as many of them as we need to
carry out very specific tasks. We can have some to police
various events, some to carry out audit tasks, some to keep a
track of what is live within the system. Each of the components
of the main system can be looked after by a number of
dedicated unikernel instances, whose sole function will be
dedicated to looking after the one conventional cloud instance.
Since these unikernels are self sufficient, there is unlikely to
be any real adverse impact on the running main instances.

Figure 1 shows a cross-section of the proposed solution.
The Client browser will see the front end which provides
conventional running cloud instances, with controllers hidden
behind the scenes. These controllers can be protected by ‘killer
bee’ unikernels. The external Immutable Database instances
will be hosted elsewhere, and can also be protected by ‘killer
bee’ unikernels. The ‘worker bee’ unikernels clustering around
the conventional cloud instances will carry out normal policing
and other required tasks. Additional ‘bee workers’ of whatever
kind needed can be spooled up as required. They are fast to
provision, take little space and will carry out their programmed
task.

As to the question of how many of each type of unikernel
we should aim to use, we believe that it would be pointless to
speculate at this stage until we can test what will be optimal
after we carry out some live experimentation to establish what
works well in various loading scenarios. With the use of proper
control systems, we can ensure that each new instance is
properly registered, constantly and properly monitored, with
the control system having the capability to spool up new
instances as needed qhickly and efficiently, as well as shutting
down those which are no longer required. We expect that such
flexibility will allow a highly scalable system to be developed,
which can offer minimal running cost, in conjunction with a
low latency approach to dealing with attacks. This testing will
form part of our future work.

VI. POSSIBLE ATTACK VECTORS TO CONSIDER

Since we are mostly working with web services, we will
look at the Open Web Application Security Project (OWASP)
2017 Top 10 Web Vulnerabilities [25].

74Copyright (c) IARIA, 2018. ISBN: 978-1-61208-607-1

CLOUD COMPUTING 2018 : The Ninth International Conference on Cloud Computing, GRIDs, and Virtualization

A1:2017-Injection Vulnerability: Injection flaws, such as
Structured Query Language (SQL), Not Only SQL (NoSQL),
Operating System (OS) injection and Lightweight Directory
Access Protocol (LDAP) injection, occur when untrusted data
is sent to an interpreter as part of a command or query. The
attacker’s hostile data can trick the interpreter into executing
unintended commands or accessing data without proper autho-
rization. Solution: Use a strong Application Programming In-
terface (API), separate content from commands in the database,
and sanitise ALL user input.

A2:2017-Broken Authentication Vulnerability: Applica-
tion functions related to authentication and session manage-
ment are often implemented incorrectly, allowing attackers to
compromise passwords, keys, or session tokens, or to exploit
other implementation flaws to assume other users’ identities
temporarily or permanently. Solution Implement multi-factor
authentication; no default passwords, especially from admins;
reject all top 10,000 worst passwords.

A3:2017-Sensitive Data Exposure Vulnerability: Many
web applications and APIs do not properly protect sensitive
data, such as financial, healthcare, and PII. Attackers may
steal or modify such weakly protected data to conduct credit
card fraud, identity theft, or other crimes. Sensitive data may
be compromised without extra protection, such as encryption
at rest or in transit, and requires special precautions when
exchanged with the browser. Solution: Encrypt all PII.

A4:2017-XML External Entities (XXE) Vulnerability:
Many older or poorly configured eXtensible Markup Language
(XML) processors evaluate external entity references within
XML documents. External entities can be used to disclose
internal files using the file Uniform Resource Identifier (URI)
handler, internal file shares, internal port scanning, remote code
execution, and denial of service attacks. Solution: Whenever
possible, use less complex data formats such as JavaScript
Object Notation (JSON), and avoiding serialization of sensitive
data.

A5:2017-Broken Access Control Vulnerability: Restric-
tions on what authenticated users are allowed to do are often
not properly enforced. Attackers can exploit these flaws to
access unauthorized functionality and/or data, such as access
other users’ accounts, view sensitive files, modify other users’
data, change access rights, etc. Solution: With the exception
of public resources, deny by default; no unrestricted access to
users; log all failures.

A6:2017-Security Misconfiguration Vulnerability: Secu-
rity misconfiguration is the most commonly seen issue. This is
commonly a result of insecure default configurations, incom-
plete or ad hoc configurations, open cloud storage, misconfig-
ured Hypertext Transfer Protocol (HTTP) headers, and verbose
error messages containing sensitive information. Not only must
all operating systems, frameworks, libraries, and applications
be securely configured, but they must be patched/upgraded in a
timely fashion. Solution: Secure installation processes should
be implemented. Keep it simple and log all errors.

A7:2017-Cross-Site Scripting (XSS) Vulnerability: XSS
flaws occur whenever an application includes untrusted data
in a new web page without proper validation or escaping, or
updates an existing web page with user-supplied data using
a browser API that can create Hyper Text Markup Language
(HTML) or JavaScript. XSS allows attackers to execute scripts

in the victim’s browser which can hijack user sessions, deface
web sites, or redirect the user to malicious sites. Solution:
Preventing XSS requires separation of untrusted data from
active browser content.

A8:2017-Insecure Deserialization Vulnerability: Inse-
cure deserialization often leads to remote code execution. Even
if deserialization flaws do not result in remote code execution,
they can be used to perform attacks, including replay attacks,
injection attacks, and privilege escalation attacks. Solution:
The only safe architectural pattern is not to accept serialized
objects from untrusted sources or to use serialization mediums
that only permit primitive data types.

A9:2017-Using Components with Known Vulnerabili-
ties Vulnerability: Components, such as libraries, frameworks,
and other software modules, run with the same privileges as
the application. If a vulnerable component is exploited, such an
attack can facilitate serious data loss or server takeover. Appli-
cations and APIs using components with known vulnerabilities
may undermine application defenses and enable various attacks
and impacts. Solution: There should be a patch management
process in place to ensure known vulnerabilities are never used.

A10:2017-Insufficient Logging&Monitoring Vulnerabil-
ity: Insufficient logging and monitoring, coupled with miss-
ing or ineffective integration with incident response, allows
attackers to further attack systems, maintain persistence, pivot
to more systems, and tamper, extract, or destroy data. Most
breach studies show time to detect a breach is over 200
days, typically detected by external parties rather than internal
processes or monitoring. Solution: This paper is all about
solving this problem!

And for no 11 of 10, go check out your site and make
sure your system is not vulnerable.

There are, of course, many more vulnerabilities you can
check out, and you should. The more you eliminate, the
stronger and more robust your system becomes. You can be
sure the attacker already knows all the potential vulnerabilities,
so you need to make sure you do too, and plug them.

VII. DISCUSSION

We strongly believe that a unikernel based system would
have a positive and robust impact because of the extra muscle
offered to check and log everything that is happening within
the system. Given that unikernel instances have a very low
attack surface, no conventional attacker ‘toys’, are immutable
in operation, and highly compact, as well as everything being
logged to the immutable database - we are cutting out a
huge range of vulnerabilities from existing cloud systems. By
ensuring the cloud instance running can also withstand the
OWASP top ten web vulnerability test, we are in a very strong
position to resist a great many attacks.

Some experimentation will be required to identify what the
optimal setup of the ‘unkernal hive’ instances will be in order
to obtain the most effective approach. We need to ensure the
cotroller instances are efficiently organised to allow scalability
of the overall cloud installation, while at the same time
ensuring maximum security and privacy can be achieved. At
this time, the Cloud Forensic Problem means that conventional
cloud systems cannot guarantee GDPR compliance for cloud
users. Container based solutions are likely to be sugject to
the same issues as conventional cloud instaces. While they

75Copyright (c) IARIA, 2018. ISBN: 978-1-61208-607-1

CLOUD COMPUTING 2018 : The Ninth International Conference on Cloud Computing, GRIDs, and Virtualization

may very well offer some improvement, it is likely that
improvement will come at an overhead cost.

Using the unikernel approach, it is likely that it will
certainly be possible to be compliant with the GDPR, that the
overhead of running the unikernel instances will be minimal,
and that the system can be highly responsive to the need for
scalability. Not only that, but the ability to provide a means
for compliance for cloud systems has to be big improvement
on the status quo.

While we have carried out a number of minor tests on
various aspects of our proposal, we have still to carry out any
serious testing, which will form the main thrust of our next
stage of the work. We are very keen to develop something that
can provide a proper solution.

VIII. CONCLUSION AND FUTURE WORK

As we have already stated, the Cloud Forensic Problem
presents a very serious challenge for all cloud users, especially
in light of the forthcoming GDPR. We have proposed a
possible solution for this problem, which is a little different
from conventional approaches. However, it offers a highly
robust solution to a major challenge for all organisations who
will be subject to compliance with the GDPR.

We believe this solution offers such merit that we plan
to run a pilot test to establish just how well it will be able to
cope with a system under serious attack. Initially, it will run on
a private network, under attack from professional penetration
testers. Once we are sure of how well the solution is likely to
perform, we will set up a real live cloud instance to see just
how well it might perform.

When the GDPR comes on stream, there will not be time
for organisations to mess about. If they cannot comply with
the regulation, and they are breached, resulting in a loss of PII,
then they can expect huge fines, the like of which they have
never seen before. It is time to wake up and smell the coffee.

REFERENCES

[1] EU, “EU General Data Protection Regulation (GDPR),” 2017. [Online].
Available: http://www.eugdpr.org/ [Retrieved: December 2017]

[2] EU, “Reform of EU data protection rules,” 2016. [Online]. Available:
http://ec.europa.eu/justice/data-protection/reform/index en.htm
[Retrieved: December 2017]

[3] N. Kratzke and P.-C. Quint, “Understanding cloud-native applications
after 10 years of cloud computing-a systematic mapping study,” Journal
of Systems and Software, vol. 126, 2017, pp. 1–16.

[4] N. Kratzke, P.-C. Quint, D. Palme, and D. Reimers, “Project cloud
transit-or to simplify cloud-native application provisioning for smes by
integrating already available container technologies,” European Project
Space on Smart Systems, Big Data, Future Internet-Towards Serving the
Grand Societal Challenges. SCITEPRESS. In print, 2017.

[5] R. K. L. Ko, P. Jagadpramana, M. Mowbray, S. Pearson, M. Kirchberg,
Q. Liang, and B. S. Lee, “TrustCloud: A framework for accountability
and trust in cloud computing,” Proceedings - 2011 IEEE World Congress
on Services, SERVICES 2011, 2011, pp. 584–588.

[6] R. K. L. Ko, B. S. Lee, and S. Pearson, “Towards achieving account-
ability, auditability and trust in cloud computing,” Communications in
Computer and Information Science, vol. 193 CCIS, no. PART 4, 2011,
pp. 432–444.

[7] N. Papanikolaou, S. Pearson, and M. C. Mont, “Towards Natural-
Language Understanding and Automated Enforcement of Privacy Rules
and Regulations in the Cloud: Survey and Bibliography,” Analysis, 2011,
pp. 1–9.

[8] S. Pearson, “Taking account of privacy when designing cloud computing
services,” Proceedings of the 2009 ICSE Workshop on Software Engi-
neering Challenges of Cloud Computing, CLOUD 2009, 2009, pp. 44–
52.

[9] S. Pearson, “Towards Accountability in the Cloud,” IEEE Internet
Computing, vol. 15, no. 4, jul 2011, pp. 64–69.

[10] W. Jansen and T. Grance, “Guidelines on Security and Privacy
in Public Cloud Computing,” NIST, Tech. Rep. 7, 2011. [Online].
Available: http://csrc.nist.gov/publications/nistpubs/800-144/SP800-
144.pdf [Retrieved: December 2017]

[11] NIST, “Security and Privacy Controls for Federal Information Systems
and Organizations Security and Privacy Controls for Federal Information
Systems and Organizations,” Natioinal Institute of Standards and Tech-
nology, Gaithersburg, MD, Tech. Rep. February, 2014. [Online]. Avail-
able: http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-
53r4.pdf [Retrieved: December 2017]

[12] S. Pearson, “Privacy and Security for Cloud Computing,” in Privacy
and Security for Cloud Computing. e: Springer, 2013, pp. 3–42.

[13] S. S. Shapiro, “Privacy by Design,” Communications of the ACM,
vol. 53, no. 6, jun 2010, p. 27.

[14] J. Singh, T. F. J. M. Pasquier, and J. Bacon, “Securing tags to control
information flows within the Internet of Things,” 2015 International
Conference on Recent Advances in Internet of Things, RIoT 2015, 2015.

[15] Verizon, “2012 Data Breach Investigations Report,” Verizon, Tech. Rep.,
2012.

[16] Verizon, “2016 Verizon Data Breach Report,” Tech. Rep., 2016.
[17] A. Bratterud, A.-A. Walla, H. Haugerud, P. E. Engelstad, and K. Beg-

num, “IncludeOS: A Minimal, Resource Efficient Unikernel for Cloud
Services,” 2015 IEEE 7th International Conference on Cloud Computing
Technology and Science (CloudCom), 2015, pp. 250–257.

[18] N. Kratzke, “About microservices, containers and their underestimated
impact on network performance,” arXiv preprint arXiv:1710.04049,
2017.

[19] B. Duncan, A. Bratterud, and A. Happe, “Enhancing Cloud Security
and Privacy: Time for a New Approach?” in Intech 2016, Dublin, 2016,
pp. 1–6.

[20] A. Bratterud, A. Happe, and B. Duncan, “Enhancing Cloud Security
and Privacy: The Unikernel Solution,” in Cloud Computing 2017: The
Eighth International Conference on Cloud Computing, GRIDs, and
Virtualization, 2017, pp. 1–8.

[21] A. Happe, B. Duncan, and Alfred Sewitsky Bratterud, “Unikernels for
Cloud Architectures: How Single Responsibility can Reduce Complexity,
Thus Improving Enterprise Cloud Security,” in COMPLEXIS 2017 -
Proceedings of the 2nd International Conference on Complexity, Future
Information Systems and Risk, Porto, Portugal, 2017, pp. 1–12.

[22] B. Duncan, A. Happe, and A. Bratterud, “Enterprise IoT Security
and Scalability: How Unikernels can Improve the Status Quo,” in 9th
IEEE/ACM International Conference on Utility and Cloud Computing
(UCC 2016), Shanghai, China, 2016, pp. 1–6.

[23] B. Duncan and M. Whittington, “Creating an Immutable Database for
Secure Cloud Audit Trail and System Logging,” in Cloud Computing
2017: The Eighth International Conference on Cloud Computing, GRIDs,
and Virtualization. Athens, Greece: IARIA, ISBN: 978-1-61208-529-6,
2017, pp. 54–59.

[24] B. Duncan and M. Whittington, “Creating and Configuring an Im-
mutable Database for Secure Cloud Audit Trail and System Logging,”
International Journal On Advances in Security, vol. 10, no. 3&4, 2017,
pp. 155–166.

[25] OWASP, “OWASP home page,” 2017. [Online]. Available:
https://www.owasp.org/index.php/Main Page [Retrieved: December
2017]

76Copyright (c) IARIA, 2018. ISBN: 978-1-61208-607-1

CLOUD COMPUTING 2018 : The Ninth International Conference on Cloud Computing, GRIDs, and Virtualization

