
Cloud Documents Storage Correctness

Aspen Olmsted

Department of Computer Science, College of Charleston

Charleston, SC 29401

e-mail: olmsteda@cofc.edu

Abstract— In this paper, we investigate the problem of

providing correctness guarantees when representing

transaction data in semi-structured documents in cloud-based

systems. We compare traditional relational database

correctness guarantees including normalization and domain

constraints with our correctness guarantees for document-

oriented databases. In this research, we specifically focus on

transactional data that would have traditionally been stored in

a relational database system. We ensure that our new

guarantees improve the data quality while not reducing the

availability of the systems.

Keywords-web services; distributed database; modeling

I. INTRODUCTION

In this work, we investigate the problem of representing

transactional data in a platform as a service (PAAS) cloud-

based document storage system. Document-oriented storage

systems are excellent in providing availability to client

applications. Unfortunately, they sacrifice consistency and

durability to achieve this availability. The CAP theory [1] [2]

states that distributed database designers can achieve at most

two of the properties: consistency (C), availability (A), and

partition tolerance (P).
In traditional relational databases, database normalization

is used to ensure that redundant data is not stored in the
system. Redundant data can lead to update anomalies if the
developer is not careful to update every instance of a fact
when modifying data. Normalization is also performed to
ensure unrelated facts are not stored in the same tuples
resulting in deletion anomalies.

Relational databases also provide data correctness
guarantees through the use of constraints. Constraints can
take the form of domain constraints where the value of an
attribute is limited using either the specific attributes data
type, check constraints or referential integrity. Out of the box,
document-oriented databases allow each document to have its
own structure. The designer can write validation code, but
that code cannot check other records stored in the system.

There are two major document-oriented database systems
in production today. They are named CouchDB [3] and
MongoDB [4]. Both systems store schema-less semi-
structured data with the goal of providing high availability and
redundancy. International Business Machines (IBM) offers a
cloud service based on CouchDB named Coudant [5].

Our goals in this research are to allow the developer the
high availability provided by these cloud-based document-
oriented data storage systems and also have a higher level of
correctness guarantees. In this work, we provide
normalization algorithms and domain checks for both data
types and referential guarantees.

The organization of the paper is as follows. Section II

describes the related work and the limitations of current

methods. In Section III, we give a motivating example where

our normalization and correctness algorithms will be helpful.

Section IV describes standards used for semi-structured data

validation. Section V explores breaking our model into a

directed graph and how to partition that graph for

normalization. Section VI contains information on how we

can add semantics to the data model to help in our partitioning

algorithm. Section VII describes how we generate the

validation function to ensure the correctness of documents on

creation and modification. We conclude and discuss future

work in Section VIII.

II. RELATED WORK

Constraint specification and enforcement have been a part
of relational database model research since Codd [6]
originally wrote the specification. Recently work on the auto-
generation of SQL code to enforce these constraints from the
UML model has been done by Heidenreich, et al. [7] and
Demuth, et al. [8]. In both these works, the focus is on the
generation of the SQL code for relational databases for the
invariants. Document-oriented databases require additional
work to ensure the constraints can be guaranteed while not
decreasing the availability of the service.

Research in the distributed database community has been
conducted for decades on finding a balance between
availability and consistency. Recent research can be grouped
into one of three goals: 1.) to increase the availability with
strict replication, 2.) to increase consistency with lazy
replication, and 3.) to use a hybrid approach to increase the
availability. Document-oriented databases were developed to
allow the implementer to have a high availability while
sacrificing immediate consistency. We can group the
consistency and availability research into four groups.

1) Increasing Availability of Strict Replication: Several

methods have been developed to ensure mutual consistency

in replicated databases. The aim of these methods is

eventually to provide one-copy serializability (1SR).

Transactions on traditional replicated databases are based on

reading any copy and writing (updating) all copies of data

items. Based on the time of the update propagation, two main

approaches have been proposed. Approaches that update all

replicas before the transaction can commit are called eager

update propagation protocols; approaches that allow the

propagation of the update after the transaction is committed

are called lazy update propagation. While eager update

propagation guarantees mutual consistency among the

replicas, this approach is not scalable. Lazy update

103Copyright (c) IARIA, 2018. ISBN: 978-1-61208-607-1

CLOUD COMPUTING 2018 : The Ninth International Conference on Cloud Computing, GRIDs, and Virtualization

propagation is efficient, but it may result in a violation of

mutual consistency. During the last decade, several methods

have been proposed to ensure mutual consistency in the

presence of lazy update propagation (see [9] for an

overview.) More recently, Snapshot Isolation (SI) [10] [11]

has been proposed to provide concurrency control in

replicated databases. The aim of this approach is to provide

global one-copy serializability using SI at each replica. The

advantage is that SI provides scalability and is supported by

most database management systems.

2) Increasing Consistency in Lazy Replication: Breitbart

and Korth [12] and Daudjee, et al. [13] propose frameworks

for master-slave, lazy-replication updates that provide

consistency guarantees. These approaches are based on

requiring all writes to be performed on the master replica.

Updates are propagated to the other sites after the updating

transaction is committed. Their framework provides a

distributed serializable schedule where the ordering of

updates is not guaranteed.
The approach proposed by Daudjee et al. provides multi-

version serializability where different versions of data can be
returned for requests that read data during the period that
replication has not completed.

3) Hybrid Approach: Jajodia and Mutchler [14] and

Long, et al. [15] both define forms of hybrid replication that

reduce the requirement that all replicas participate in eager

update propagation. The proposed methods aim to increase

availability in the presence of network isolation or hardware

failures. Both approaches have limited scalability because

they require a majority of replicas to participate in eager

update propagation. Most recently, Irun-Briz et al. [16]

proposed a hybrid replication protocol that can be configured

to behave as eager or lazy update propagation protocol. The

authors provide empirical data and show that their protocol

provides scalability and reduces communication cost over

other hybrid update protocols. In addition to academic

research, several database management systems have been

developed that support some form of replicated data

management. For example, Lakshman and Malik [17]

describe a hybrid system, called Cassandra, which was built

by Facebook to handle their inbox search. Cassandra allows

a configuration parameter that controls the number of nodes

that must be updated synchronously. The Cassandra system

can be configured, so nodes chosen for synchronous inclusion

cross data center boundaries to increase durability and

availability.

4) Buddy System: In our previous work [18]-[20], we

provide an architecture and algorithms that address three

problems: the risk of losing committed transactional data in

case of a site failure, contention caused by a high volume of

concurrent transactions consuming limited items, and

contention caused by a high volume of read requests. We

called this system the Buddy System because it used pairs of

clusters to update all transactions synchronously. The pairs

of buddies can change for each request allowing increased

availability by fully utilizing all server resources available.

Consistency is increased over lazy-replication because all

transactional elements are updated in the same cluster

allowing for transaction time referential integrity and

atomicity.

An intelligent dispatcher was placed, in front of all

clusters, to support the above components. The dispatcher

operated at the OSI Network level 7. The high OSI level

allowed the dispatcher to use application specific data for

transaction distribution and buddy selection. The dispatcher

receives the requests from clients and distributes them to the

WS clusters. Each WS cluster contains a load balancer, a

single database, and replicated services. The load balancer

receives the service requests from the dispatcher and

distributes them among the service-replicas. Within a WS

cluster, each service shares the same database. Database

updates among the clusters are propagated using lazy-

replication propagation.

After receiving a transaction, the dispatcher picks the two

clusters to form the buddy pair. The dispatcher selects the

pair of clusters based on versioning history. If a version is in

progress and the request is modifying the data, then the

dispatcher chooses set containing the same pair currently

executing the other modify transactions. Otherwise, the set

contains any pair with the last completed version. The

primary buddy receives the transaction along with its buddy's

IP address. The primary buddy becomes the coordinator of a

simplified commit protocol between the two buddies. Both

buddies perform the transaction and commit or abort

together.

The dispatcher maintains metadata about the freshness of

data items in the different clusters. The dispatcher increments

a version counter for each data item after it has been

modified. Any two service providers (clusters) with the latest

version of the requested data items can be selected as a

buddy. Note, that the database maintained by the two clusters

must agree on the requested data item versions but may be

different for the other data items.

Unfortunately, the buddy system required greenfield

engineering to leverage the new algorithms. This current

work allows a developer who has deployed a document-

oriented database in the hope of high availability to regain

some consistency.

III. MOTIVATING EXAMPLE

We demonstrate our work using a Ticketing Reservation

System (TRS). The TRS uses web services to provide a

variety of functionalities to the patrons who are attending a

performance. To understand the impacts on a real

organizations’ data we used the New York Philharmonic

Orchestra’s data for the past 10 years. We simplified their

relational data model to allow for a better illustration of the

challenges in moving from the relational to a semi-structured

data model. Figure 1 shows the Entity Relationship (ER)

model we used for our experimentation. In the model, each

104Copyright (c) IARIA, 2018. ISBN: 978-1-61208-607-1

CLOUD COMPUTING 2018 : The Ninth International Conference on Cloud Computing, GRIDs, and Virtualization

individual customer can have many addresses, many phone

numbers and many orders tracked by the system. Each order

can have many order lines entities and many payments

entities. The order table stores a record of each order for

tickets purchased by the individual customer. The order line

entity has a many-to-one relationship to a performance

record. The performance record represents a specific

performance of the orchestra of a production. The production

has the description of the pieces performed and the orchestra

members. For example, on a weekend one production would

have two performances. This relationship is represented by a

many-to-one relationship from the performance table to the

production table. In our research, we take the relational model

in Figure 1 and convert the model into a CouchDB [3] data

model.

IV. SEMI-STRUCTURED DATA, SCHEMAS & VALIDATION

There are two main formats used in semi-structured data

stores; JavaScript Object Notation (JSON) and Extensible

Markup Language (XML). JSON documents are in a format

that is easily read by the JavaScript programming language.

XML documents are an older format that allows any language

to create well-formed documents by creating a language of

tags to mark the data. The XML Schema format has matured

to the level of being governed by a standards body where the

JSON Schema [21] is relatively new and is not governed by

a standards body as of yet. XML Schema is governed by the

World Wide Web Consortium (W3C) [22].

Both Schema formats allow you to define custom entities,

attributes, and the hierarchy of the entities stored in a single

document. The two formats diverge in relation to references

across documents. XML Schema allows one document to

reference the existence of data in another document where

JSON schema validation is only within a single document.

The two document-oriented databases we analyzed in this

research use the JSON document format but do not support

JSON schemas. Both systems support a document validation

function that fires before a document is inserted or updated.

In the case of MongoDB, there is a declarative structure that

can limit the domain of the data type using enumerations and

regular expressions. CouchDB and the Cloudant system

allow unlimited validation functions that parse the records

using JavaScript code. The functions can throw exceptions

that stop the data operation from completing.

V. ROOTED TREES AND PARTITIONING

The data model shown in Figure 1 can be partitioned in

many ways. We could store every object in a single

document representing the complete hierarchy. The problem

with this approach is normalization. We will have many

copies of the same facts if the graph is not a complete directed

Figure 1. Relational Model

Figure 2. Directed Graph of Data Model

105Copyright (c) IARIA, 2018. ISBN: 978-1-61208-607-1

CLOUD COMPUTING 2018 : The Ninth International Conference on Cloud Computing, GRIDs, and Virtualization

acyclic rooted graph [23]. This type of graph can be referred

to as a rooted tree.

We can turn the ER diagram into a graph by using foreign

keys as direct edges that travel from the one node to the many

nodes. Each table in the ER diagram becomes a node in the

graph. Once we have the graph, our algorithm can try each

node, and if it can visit every other node and we do not have

a cycle then our start node can be the root, and we have a

rooted tree. If we have a cycle, then we had foreign keys that

pointed in both directions between two entities. Cycles are

only possible if we are starting from a relational database that

allows constraint validation at transaction time instead of

action time. Most relational databases do not allow

transaction time constraint enforcement. In the case of

cycles, we can merge the entities as they are truly one-to-one

relationships. Figure 2 shows a directed graph generated from

our data model in Figure 1.

In the case of Figure 1, we do not have a single rooted

tree. We have three subtrees each with their own root;

starting from customers, payment types, and productions. In

this case, we would be required to store duplicate values

across several documents depending on the root we choose.

If we choose customers for the root node, then we will

duplicate payment type, production, and performance

information. This can lead to an update anomaly if we

modify an attribute in one of those nodes but do not update

all nodes that contain the duplicate information.

To eliminate the vulnerability of an update anomaly we

need to partition the document into 3 sperate documents.

Clearly, the three possible roots belong in their own

document. We can continue traversal from these nodes to

include other nodes in the separate documents.

Unfortunately, we end up with two nodes (payments and

order lines) that are placed into two separate documents. To

decide which document these nodes should be stored in we

will turn to the design documents and pull the required

semantics from those documents.

VI. UML SEMANTICS

Additional semantics for the data model can be acquired

from the integration of the matching UML Activity and Class

diagrams. UML provides an extensibility mechanism that

allows a designer to add new semantics to a model. A

stereotype allows a designer to extend the vocabulary of

UML in order to represent new model elements [24]. We

utilize this mechanism to understand the read and write

semantics of activities that consume and generate the data in

our data model. Figure 3 is an activity diagram with two

stereotypes used to model activities that are read-only and

activities that write and update data. The activity model is

the main type of transaction that reads and writes the data in

our data model. This transaction model is the process of

purchasing a ticket for a specific performance. The “Write

Order” activity modifies data as part of the transaction. This

ability is represented by the stereotype of “Mutation” The

Figure 3. UML Activity Diagram for a Transaction

Figure 4. Class Diagram for “Write Order” Activity

Algorithm 1. Partition Algorithm

INPUT: ER Diagram, Activity Diagrams (XMI

representation of UML class diagram) and Class

Diagrams (XMI representation of UML class

diagram)

OUTPUT: document partition

1 docPartions = empty array
2 foreach activityDiagrm in activityDiagrams
3 foreach activity in activtiyDiagram
4 if activity is a mutation
5 foreach rootedSubtree
6 documentFound = FALSE
7 foreach entity in rootedSubtree orderby tree nav
8 if entity in activity and class is a mutation
9 if NOT documentFound
10 push new curDocument on docPartitions
11 documentFound = TRUE
12 else
13 add readonlyMidBranches to curDocument
14 add entity to curDocument
15 else
16 if documentFound
17 add entity to readonlyMidBranches

106Copyright (c) IARIA, 2018. ISBN: 978-1-61208-607-1

CLOUD COMPUTING 2018 : The Ninth International Conference on Cloud Computing, GRIDs, and Virtualization

“Write Customer” activity can also mutate data but is not

required in every execution path.

Each activity in the activity diagram has a matching UML

class diagram that represents the internal structure of the code

that manages the activity. Figure 4 displays the matching

class diagram for the “WriteOrder” activity. We utilize the

same stereotypes as we used in the activity diagram to model

which elements are read-only and which can be modified in

the activity. We use Algorithm 1 to choose the proper

document partition based on the semantics of the UML

model.

Algorithm 1 first creates an empty array to hold the

document partitions. The algorithm takes a complete set of

activity diagrams and matching class diagrams and navigates

through the activity diagrams. The UML diagrams are passed

into the algorithm in XMI format. XMI is a standard XML

format for representing UML diagrams. Having the model in

XML allows us to automate our algorithm, as any

programming language can read the XML representation of

the model. If the activity diagram is a mutation, then the

algorithm will loop over the rooted subtrees from the ER

diagram and will add the path from the beginning mutated

document to the last mutated document. In our example

application, we did not have overlap across the partitions.

There is the possibility of overlap, and in that case, the

documents will need to be merged to ensure each entity is

only in one document. The overlap should be straightforward

as it should represent different workflows to generate similar

data. For example, in the motivating example for this

research, we could have an activity diagram for a self-service

web transaction to purchase a ticket and a phone order

transaction with a back-office system operator. In both

workflows, the partition documents would be almost exact.

In our example four partitions were created:

1. customers, addresses, phones

2. orders, orderlines, payments

3. payment types

4. performances, productions

The new structure eliminates both update and deletion

anomalies. Deletion anomalies occur when a fact is lost

because all related facts are deleted. With the rooted tree

structure, the parent’s facts need to exist by definition for the

child facts to exists.

VII. DOCUMENT VALIDATION

Now that we have solved the normalization problem

through the partitioning of our documents, we want to ensure

that updates are validated for domain consistency. There are

three types of domain consistency we are concerned with:

1. Simple Data Types – Simple data types including

integers, floats, dates, times and strings.

2. Enumerations – Enumerations are limitations of the

valid instances of a simple data type. For example,

we could have an attribute of enumeration type color

that takes in three possible strings: ‘Blue,' ’Red,'

’Green.'

3. Referential Integrity – In relational databases, we

used foreign keys to link column values to tuples

stored in another table.

In CouchDB and the IBM cloud-hosted version Cloudant,

design documents are just JSON documents stored in the

database. This means we can add design documents via the

HTTP interface programmatically. We developed an

application that will iterate through our relational model and

generate a design document per partitioned document to

enforce our three domain consistency types. JSON Schema

could be used for the first two domain consistency concerns

but not for referential integrity. JSON Schema does not have

the notion of referential integrity, and the validation function

does not have access to other documents. So instead of trying

to implement JSON schema validation in the JavaScript

validation function, we took a novel approach that allows us

to solve all three of the potential domain consistency issues.

To enforce the simple data types, we were able to use the

built-in JavaScript parse methods such as parseInt,

parseFloat.and Date.parse. To enforce the enumerations, we

read the enumerations from the information schema of the

database model and generate a validation test such as is

shown in Figure 5. The left-hand side of the code includes a

list of the possible enumerated values.

Referential integrity is handled in two ways depending on

the partitioning of the document. If the foreign entity is

stored in a separate document, then we handle the situation

similarly to how we handled the enumerations. For each read

all the possible values from the document store and generate

validation check to ensure the new value is one of the possible

options. If the foreign entity is in the current document tree,

we navigate the document to check for its existence.

The challenge with our foreign key solution is in timing.

For example, in our motivating example when a new

performance is created, no new “orderlines” entities can be

written without a new version of the design document being

generated that includes the new performance in the valid list.

To solve this problem, we implemented a client application

that was written in Java. The application executes on a local

machine in the end-user organization location. The

application utilizes the continuous changes API in CouchDB

and Cloudant to receive change notifications on the lookup

tables. The continuous changes API allows the application to

see the changes as they come in using a single HTTP

connection between the application and the database service.

When the application sees a change in the lookup data, it will

generate a new revision of the design document to include the

changed values in the validation function for the foreign key

checks. This allows our validation function to have a low

latency between the time new facts are inserted into the

Figure 5. Enumeration Validation

107Copyright (c) IARIA, 2018. ISBN: 978-1-61208-607-1

CLOUD COMPUTING 2018 : The Ninth International Conference on Cloud Computing, GRIDs, and Virtualization

document store and the time they can be used in related

documents.

Our solution works well except in the case of surrogate

identifiers in parent entities. Surrogate ids are used when

there is not a natural identifier. Entities that use surrogate

identifiers tend to have a large number of entities in the

collection, and our solution does not work when the foreign

key list is large. In our motivating example, the customer's

entity has a surrogate identifier for the id attribute. When we

partitioned the document so that the orders entity is stored in

a different document from the customer entity the validation

function for the orders needs to have a list of valid customers.

In practice, the number of customers would be too large to

handle this way. To solve this problem, we merge the two

documents, so we end up with a single document that covers

the complete rooted tree consisting of customers, addresses,

and payments. This solution does not break the

normalization and simplifies the validation so that the

validation can happen in a single document.

VIII. CONCLUSION

In this paper, we propose algorithms for semi-structured

document normalization and domain value correctness and

validation. We develop a test implementation to automate our

implementation and validate that your solutions provide the

guarantees for the normalization of the semi-structured data

and for the consistency of domain values. Our solutions are

based on navigating the relationships in both ER and UML

diagrams and using additional semantics applied to the

models.

In this research, we studied a specific application domain

related to the entertainment industry. We believe the

algorithms can be applied to other application domains

without a significant amount of modification. Future work

needs to test our algorithms in other application domains to

ensure the work applies across different application domains.

We also plan to add additional guarantees of correctness for

these semi-structured documents.

REFERENCES

[1] S. Gilbert and N. Lynch, "Brewer’s conjecture and the

feasibility of consistent, available, partition-tolerant web

services," SIGACT News, vol. 33, pp. 51-59, 2002.

[2] D. Abadi, "Consistency tradeoffs in modern distributed

database system design: Cap is only part of the story,"

Computer, vol. 45, pp. 37-42, 2012.

[3] The Apache Software Foundation, "couchDB relax," 2017.

[Online]. Available: http://couchdb.apache.org/. [Accessed 27

August 2017].

[4] MongoDB, Inc., "MongoDB for Giant Ideas," 2017. [Online].

Available: https://www.mongodb.com/. [Accessed 31 August

2017].

[5] International Business Machines, "IBM Cloudant," 2017.

[Online]. Available:

https://www.ibm.com/analytics/us/en/technology/cloud-data-

services/cloudant. [Accessed 31 August 2017].

[6] E. F. Codd, The Relational Model for Database Management,

Boston, MA: Addison-Wesley Longman Publishing Co., Inc.,

1990.

[7] F. Heidenreich, C. Wende, and B. Demuth, "A Framework for

Generating Query Language Code," Electronic

Communications of the EASST, 2007.

[8] B. Demuth, H. Hußmann and S. Loecher, "OCL as a

Specification Language for Business Rules in Database

Applications," in The Unified Modeling Language. Modeling

Languages, Concepts, and Tools., Springer, 2001, pp. 104-

117.

[9] M. T. Ozsu and P. Valduriez, Principles of Distributed

Database Systems, 3rd ed., Springer, 2011.

[10] H. Jung, H. Han, A. Fekete and U. Rhm, "Serializable

snapshot isolation," PVLDB, pp. 783-794, 2011.

[11] Y. Lin, B. Kemme, M. Patino Martiınez and R. Jimenez-

Peris, "Middleware based data replication providing

snapshot isolation," in Proceedings of the 2005 ACM

SIGMOD international conference on Management of data,

ser. SIGMOD ’05, New York, NY, 2005.

[12] Y. Breitbart and H. F. Korth, "Replication and consistency:

being lazy helps sometimes," Proceedings of the sixteenth

ACM SIGACT-SIGMOD-SIGART Symposium on Principles

of database systems, ser. PODS ’97, pp. 173-184, 1997.

[13] K. Daudjee and K. Salem, "Lazy database replication with

ordering," in Data Engineering, International Conference

on, Boston, MA, 2004.

[14] S. Jajodia and D. Mutchler, "A hybrid replica control

algorithm combining static and dynamic voting," IEEE

Transactions on Knowledge and Data Engineering, vol. 1,

pp. 459-469, 1989.

[15] D. Long, J. Carroll and K. Stewart, "Estimating the reliability

of regeneration-based replica control protocols," IEEE

Transactions on, vol. 38, pp. 1691-1702, 1989.

[16] L. Irun-Briz, F. Castro-Company, A. Garcia-Nevia, A.

Calero-Monteagudo and F. D. Munoz-Escoi, "Lazy recovery

in a hybrid database replication protocol," in In Proc. of XII

Jornadas de Concur-rencia y Sistemas Distribuidos, 2005.

[17] A. Lakshman and P. Malik, "Cassandra: a decentralized

structured," SIGOPS Oper. Syst. Rev., vol. 44, pp. 35-40,

2010.

[18] A. Olmsted and C. Farkas, "High Volume Web Service

Resource Consumption," in Internet Technology and

Secured Transactions, 2012. ICITST 2012, London, UK,

2012.

[19] A. Olmsted and C. Farkas, "The cost of increased

transactional correctness and durability in distributed

databases," in 13th International Conference on Information

Reuse and, Los Vegas, NV, 2012.

[20] A. Olmsted and C. Farkas, "Coarse-Grained Web Service

Availability, Consistency and Durability," in IEEE

International Conference on Web Services, San Jose, CA,

2013.

108Copyright (c) IARIA, 2018. ISBN: 978-1-61208-607-1

CLOUD COMPUTING 2018 : The Ninth International Conference on Cloud Computing, GRIDs, and Virtualization

[21] Jjson-schema Organisation, "JSON Schema," 2017.

[Online]. Available: http://json-schema.org/. [Accessed 27

August 2017].

[22] World Wide Web Consortium, "Schema," 2017. [Online].

Available: https://www.w3.org/standards/xml/schema.

[Accessed 27 August 2017].

[23] Wikipedia, "Rooted graph," 2017. [Online]. Available:

https://en.wikipedia.org/wiki/Rooted_graph#CITEREFGros

sYellenZhang2013. [Accessed 30 August 2017].

[24] O. M. Group, "Unified Modeling Language: Supersturcture,"

05 02 2007. [Online]. Available:

http://www.omg.org/spec/UML/2.1.1/. [Accessed 08 01

2013].

109Copyright (c) IARIA, 2018. ISBN: 978-1-61208-607-1

CLOUD COMPUTING 2018 : The Ninth International Conference on Cloud Computing, GRIDs, and Virtualization

