
Shade: Addressing Interoperability Gaps Among OpenStack Clouds

Samuel de Medeiros Queiroz
1
, Monty Taylor

2
, Thais Batista

1

1
DIMAp, Federal University of Rio Grande do Norte, Natal, Brazil

2
Infrastructure Team, OpenStack Community

e-mail: samueldmq@gmail.com, mordred@inagust.com, thais@dimap.ufrn.br

Abstract— As much as OpenStack promised a utopian

future where an application could be written once and target

multiple clouds that run OpenStack, the reality was that

vendor choice leaked through the abstractions to the point

where the end user must know about deployment and

configuration details, compromising interoperability and

favoring vendor lock-in. Shade is a middleware written in

Python by the OpenStack community which stands between

users and clouds, abstracting vendor differences in order to

allow a seamless experience in multi-cloud environments. It

is widely used by OpenStack Continuous Integration systems

nowadays, booting thousands of servers every day in

numerous deployments distributed around the globe. This

paper enumerates, categorizes and exemplifies the

interoperability issues found in OpenStack deployments and

then describes how Shade addresses most of them.

Keywords-Interoperability; IaaS; OpenStack.

I. INTRODUCTION

Cloud computing is a model for enabling ubiquitous,
convenient, on-demand self-service access to a shared pool
of configurable computing resources over the network [1].

Infrastructure as a Service (IaaS) is the cloud
computing model that allows users to consume processing,
storage, and networking resources from a data center,
providing users the ability to deploy and run arbitrary
software. Such resources may be served in a private,
public or hybrid deployment model. OpenStack [2] is the
largest open source IaaS solution nowadays, empowering
hundreds of companies around the globe to run production
environments with no license cost.

With many options available, users may benefit from
the ability of moving between providers when convenient,
avoiding vendor lock-in. In order to make that possible,
different OpenStack clouds must be interoperable. As an
open source project, OpenStack is designed to support
various use cases and configurations via highly flexible
and configurable services. By allowing such a flexibility in
its use cases, the responses returned by different clouds
may vary significantly, compromising both syntactic and
semantic interoperability.

After identifying syntactic and semantic
interoperability issues, this paper presents Shade [3], a
middleware standing between the clouds and end users
that was proposed in the OpenStack ecosystem to abstract
such issues. Shade is a library that exposes the most
common cloud operations, making deployment and
configuration choices transparent to end users. This paper

classifies the identified issues, and then shows how Shade
addresses them. Despite the fact that Shade is able to
perform many use cases in OpenStack clouds, the
examples in this paper focus on creation and management
aspects of servers.

The next sections of this paper are organized as
follows: Section II is a background section highlighting
interoperability definitions, what OpenStack is and what
syntactic and semantic gaps exist in it; Section III presents
Shade, the technical solution abstracting those gaps in
OpenStack clouds; Section IV presents related work,
describing how this study is unique; and Section V
presents the final remarks.

II. BACKGROUND

This section describes what interoperability and

OpenStack are, and then enumerates the syntactic and

semantic interoperability issues that exist in OpenStack.

A. Interoperability

Interoperability is the capability to communicate,
execute programs, or transfer data among various
functional units in a manner that requires the user to have
little or no knowledge of the unique characteristics of
those units [4]. In an interoperable environment, great user
experience is achieved because users are able to
communicate with all functional units seamlessly,
disfavoring vendor lock-in.

There are two levels of interoperability: (i) syntactic:
all functional units use the same data formats and
communication protocols; and (ii) semantic: the results
returned by all functional units have the same accurate
interpretation, i.e., after performing requests to the units,
users understand that they have executed the same
functions and thus have been put into the same state.

Interoperability is a characteristic that may be achieved
in different phases of the system lifecycle, in two manners:
by design and post-facto. The former is when the
functional units are all designed to be interoperable, and
then built to comply with the well-defined interoperability
syntactic and semantic specifications; while the latter is
when the functional units exist and, without being prior
designed to, are redesigned to become interoperable. The
latter is expected to be much more complex, since there
will be very well defined use cases using protocols, data
formats and semantics particularities that will need to be
given away for the sake of interoperability, affecting end
users.

139Copyright (c) IARIA, 2018. ISBN: 978-1-61208-607-1

CLOUD COMPUTING 2018 : The Ninth International Conference on Cloud Computing, GRIDs, and Virtualization

Figure 1. Users want to transparently create servers across

multiple clouds via a single application.

Figure 2. Users need to figure out vendor specific deployment and

configuration choices to communicate to multiple clouds.

B. OpenStack

OpenStack is an open source IaaS platform, consisting
of interrelated services exposing REST APIs to control
diverse, multi-vendor hardware pools of processing,
storage, and networking resources throughout a data
center. In this context, interoperable functional units may
represent clouds run by multiple vendors, where the user
can communicate to all of them, equally; or a single cloud,
where users are able to communicate seamlessly upon
upgrade or downgrade. In both cases, deployment and
configuration choices must be transparent.

Achieving and keeping interoperability within a single
cloud is much simpler and more natural, as vendors do not
want to break their customers. On the other side, however,
not all vendors struggle to be interoperable with its
competitors, favoring vendor lock-in.

From a cloud user point of view, interoperability
translates into the utopian use case represented in Figure 1,
where users create servers with 3 steps: (i) create an
image, (ii) get a server configuration (flavor) and then (iii)
boot the server; without any specific logic depending on
what deployment and configuration choices have been
made by vendors. In this model, the code would be written
once and target multiple clouds that run OpenStack.

In reality, however, choosing a vendor leaks through
the abstractions to the point where the end user must know
about what deployment and configuration choices were
made. This causes logic to require a-priori knowledge
about clouds, as well as conditional complex logic even on
discoverable differences, which would result in many extra
API calls and conditional statements in the user
application, as illustrated in Figure 2.

By analyzing multiple OpenStack clouds from
different vendors, we were able to identify several
syntactic and semantic interoperability issues.

1) Syntactic: when different clouds expose a

functionality that is semantically equivalent, but it is

exposed in a noninteroperable manner because there are

differences in the communication protocols or data

formats, i.e., the REST parameters or payloads,

respectively.

The two patterns for the occurrence of strictly syntactic

issues are listed below. Let A and B be two OpenStack

clouds.

 The functionality is exposed through different
APIs. Cloud A deploys the Nova Network service
for networking operations. Cloud B deploys the
Neutron service. As a user, how may you write an
application that shows floating IPs in both clouds?

 The underlying functionality mechanism is
pluggable, such as when a vendor requires
password authentication and another requires a
proprietary authentication mechanism. Both would
return a token upon successful authentication, but
each require specific REST payloads. How do you
get a token in both clouds?

2) Semantic: when different clouds expose behaviors

through syntactically equivalent protocols and data

formats, but the results returned do not have the same

accurate interpretation.

The five patterns for the occurrence of strictly semantic

issues are listed below. Let A and B be two OpenStack

clouds.

 Different authorization requirements for the
functionality: cloud A requires a user to have
member role in order to upload an object, whereas
cloud B requires admin role. As a user with
member role in both clouds, how may you upload
an object in both A and B?

 Cloud-wide restrictions on resources: cloud A sets
the maximum size of an image to 512 megabytes,
while cloud B sets it to 1 gigabyte. How do you
upload your 700-megabyte Linux image to both
clouds?

 User account-wide restrictions on resources: you
need to boot 20 servers, of which 10 go in cloud
A, and 10 in cloud B. Your quota in cloud A
allows you to boot up to 6 servers, and your

140Copyright (c) IARIA, 2018. ISBN: 978-1-61208-607-1

CLOUD COMPUTING 2018 : The Ninth International Conference on Cloud Computing, GRIDs, and Virtualization

Figure 4. Discovery of the GET API for a resource and

normalization of the retrieved resource.

Figure 3. User executing the same program seamlessly across

multiple clouds, with Shade as a middleware.

account in cloud B allows you to boot up to 12
servers. How do you boot 10 servers in each
cloud?

 Inconsistent resource discovery: how do you
discover the latest version of your preferred Linux
image in both A and B?

 Pluggable underlying mechanism: all users in
cloud A are backed by an LDAP server which is
read-only by OpenStack. Cloud B uses a read-
write SQL backend. How do you write an
application that needs to create users in both
clouds?

3) Syntactic and Semantic: there are two patterns for

issues affecting both syntactic and semantic

interoperability simultaneously. Let A and B be two

OpenStack clouds.

 Multiple workflows for complex operations:
booting a server with a floating IP attached to it is
a functionality that involves many API calls and
may happen in many manners, depending on how
the cloud is configured, and what services are
available. How do you boot a server in both cloud
A and B without needing to know what
deployment and configuration choices were made?

 Functionality is not provided: you write an
application that uses Database as a Service
(DBaaS) to create and configure a database at
execution time. How do you deploy that
application in both clouds A and B, given only
cloud A deploys the OpenStack DBaaS solution?

III. SHADE

OpenStack has a large Continuous Integration (CI)
system that launches thousands of servers every day to run
tests on. It spins up servers in several clouds distributed
around the globe. As a result, the CI team has learned a lot
about what needs to be done to communicate with multiple
clouds. Shade emerges as a promise of sharing that
knowledge as a reusable library, as opposed to keeping it
all inside CI scripts.

Shade is a library written in Python standing between
the user and the OpenStack clouds, abstracting most of the
interoperability gaps. A consumer of Shade should never
need to put in logic, such as “if my cloud supports X, then
do Y, else Z”. Shade will handle all the differences
between clouds when possible, allowing users to
seamlessly run applications across multiple OpenStack
clouds, regardless what deployment choices were made.
This is illustrated in Figure 3, which makes the use case in
Figure 1 possible without adding complexity to the user
application, as shown in Figure 2.

The next subsections will go through the issues
described in Section II-B, detailing how Shade fix most of
them. For the issues Shade cannot fix, we will give
suggestion on how they can be addressed in the user side.

A. Syntactic

The mechanism Shade developed to abstract vendor
choices on protocols and data formats to its users is by
discovering what underlying APIs are available to serve
the requested functionality and then standardizing resource
representation through a normalization process. The
normalization process consists of mapping attributes of
different data representations to a common data format,
which in this case is a JSON representation format that is
exchanged in the REST calls, allowing users to safely rely
on it. The overall process is illustrated in Figure 4.

1) Functionality is exposed through different APIs:

when the functionality is exposed through different

services or by the same service but in different versions, it

is implemented by different OpenStack REST APIs,

meaning multiple URLs and payload formats to be

handled. As the URLs are not equal, the request protocol

is not the same. Since the input or output payloads

change, the data format is affected as well.

In order to solve this, Shade identifies what service and

version are available in the service catalog, then proceed

141Copyright (c) IARIA, 2018. ISBN: 978-1-61208-607-1

CLOUD COMPUTING 2018 : The Ninth International Conference on Cloud Computing, GRIDs, and Virtualization

Figure 5. Normalizing a floating IP returned by Nova Network

(bottom left) and another returned by Neutron (bottom right).

{

 "auth": {

 "identity": {

 "methods": ["password"],

 "password": {

 "user": {

 "name": "admin",

 "domain": {"name": "Default"},

 "password": "devstacker"

 }

 }

 }

 }

}

Figure 6. Payload for a POST /v3/auth/tokens API call to get a

token using the password authentication plugin.

{

 "auth": {

 "identity": {

 "methods": ["xpto"],

 "xpto": {

 "id": "0a33--"

 "sequence": "2",

 "secret": "230"

 }

 }

 }

}

Figure 7. Payload for a create token POST /v3/auth/tokens API

call to get a token using a proprietary plugin.

with the appropriate call. After getting the return from the

service, it normalizes the result before returning to the

user.

Networking capabilities were initially supported by

Nova, the OpenStack Compute Service, via a subservice

named Nova Network. Later on, Neutron, the OpenStack

Networking Service, was created to centralize all those

capabilities.

If an application requests Shade to show a floating IP, it

identifies if Nova Network or Neutron is available, then

proceed with the appropriate API call. After getting the

return from the service, it normalizes the floating IP

resource by mapping attributes from the heterogeneous

data format to attributes in the normalized format, as

shown in Figure 5 for both Nova Network and Neutron.

2) Pluggable underlying mechanism: OpenStack is

designed to be flexible, supporting multiple vendors and

technical solutions in most of its functionalities via

plugins. While the semantic is preserved, different plugins

may take different payloads to perform the requested

operation. Since vendors are in charge of defining what

plugins are available in a cloud, if the sets of plugins in

different clouds are mutually exclusive, the user would

need to use multiple payload formats to communicate to

multiple clouds.

In order to communicate with OpenStack services,

users must use tokens. As the authentication mechanisms

are provided by plugins, there are multiple ways to

authenticate and get a token.

Consider A and B are two OpenStack clouds, both will

return a token upon successful authentication. Cloud A

provides a password authentication plugin, that expects a

request payload as in Figure 6, while cloud B provides a

proprietary plugin that takes specific arguments,

expecting a request payload as in Figure 7.

If the sets of plugins are mutually exclusive, there is

absolutely nothing that can be done to get around and

authenticate the user seamlessly across clouds with the

same arguments. However, most OpenStack cloud

providers support at least the password authentication

plugin, which is what Shade uses.

B. Semantic

The purely semantic issues found in OpenStack are
related to how the cloud and the user account are
configured, thus they cannot be solved by a technical
workaround. Despite the fact Shade not being able to
workaround them, there are some approaches users may
take to avoid such issues when negotiating their contracts
with cloud vendors and when developing their
applications.

1) Different authorization requirements for the

functionality: OpenStack uses Role Based Access Control

(RBAC) to protect its functionalities. For each API

exposed, the roles required to access it are configured by

the cloud provider. When different providers configure

142Copyright (c) IARIA, 2018. ISBN: 978-1-61208-607-1

CLOUD COMPUTING 2018 : The Ninth International Conference on Cloud Computing, GRIDs, and Virtualization

access control differently, a user with the same set of

roles in multiple clouds will get unauthorized errors when

performing the same operations in the cloud with least

privilege.

Let A and B be two OpenStack clouds, both support the

upload and storage of objects. However, cloud A requires

the admin role, while the cloud B is more permissive and

requires the admin role or the member role. A user with

member role trying to upload an object in both clouds will

get an unauthorized error when trying to upload an image

to cloud A, because they do not own the required

permissions.

In this case it is up to the user to negotiate with the

cloud vendor what functionalities will be available to their

account.

2) Cloud-wide restrictions on resources: due to

nonfunctional requirements such as reducing complexity

and optimizing available storage, vendors have to

configure some options that establish upper limits for

resources upon creation. When clouds have different

limits for a given resource, a user may get an error when

trying to create resources in the cloud with the lowest

limit.

When requested to create a resource, Shade makes the

appropriate call to the underlying services. If different

clouds have different limits for resource creation, such as

the maximum disk size an uploaded image may use or

how deep a project hierarchy may go, there is nothing

Shade can do to work around that.

It is up to the user to understand what limits the cloud

vendor sets and decide if they are acceptable. If not, try a

different vendor.

3) User account-wide restrictions on resources:

restrictions on resource creation in a user account basis

are called quotas. They define how much resources a user

may use up to, such as number of virtual machines that

can be instantiated. They are assigned by the vendors to

users upon request. If the limits are not consistent across

different clouds, the user may get errors in a cloud with

lower limits when trying to perform the same create

operation across clouds.

When Shade tries to perform a create call and the user

quota is not enough, Shade will simply raise to the user

the error it got from the underlying service.

An example is when a user needs to boot more servers

than what they are allowed. In that case, the user would

need to negotiate a consistent quota for booting servers

across cloud vendors.

4) Inconsistent resource discovery: some resources

are created by the vendors and are cloud-wide, such as the

public network, user roles and default images. The lack of

standardization on what is available by default and how

those cloudwide resources are labeled disfavors users to

programmatically discover them in a multi-cloud

environment.

How can Shade find the latest Ubuntu image available

in all clouds? There is no standardization in resources

names across clouds, neither helpful metadata to make it

possible. Image metadata is entirely vendor-defined, thus

there is no way Shade can understand it precisely in a

multi-cloud environment.

Despite the fact the user cannot fully understand the

default cloud-provided resources, they can create and

name their own resources. Thus, a possible solution for

this issue is that the users create their own resources. In

the example above, the user could upload the same image

to all clouds in use, ensuring both the image contents and

name are the same.

5) Pluggable underlying mechanism: as stated in

Section III-A2 Pluggable underlying mechanism,

OpenStack supports multiple vendors and technical

solutions via plugins. Plugins act as backends for the

REST APIs, whose are always available, regardless the

plugin implementing the operation for that API or not. An

error stating the functionality is not implemented may be

raised, or the API call may be silently ignored. In that

case, multiple clouds using different plugins might have

inconsistent behaviors when requested to execute the

same API call.

It is very common to organizations to maintain a central

source of truth for authentication, such as an LDAP

server, when they need to have a consistent user

management across the whole organization, including its

applications. OpenStack provides a mechanism to

integrate LDAP servers for authentication purposes.

Companies do not want, however, that a deletion of an

OpenStack user propagate and delete that user for all their

applications. In this scenario, OpenStack would have

read-only access to the LDAP server.

Consider A and B two OpenStack clouds, both will

return an access token upon successful authentication.

Cloud A uses a read-only LDAP backend, while cloud B

communicates with a read-write SQL backend.

When performing a create user call, Shade would be

successful when calling cloud B. However, it would get

an exception in the call to cloud A. There is nothing

Shade can do about it, since it is a functionality that is not

supported by some vendors depending on how they

configure their clouds.

The users need to understand what plugins the vendors

support and if those meet their needs. If not, they would

need to try a different vendor.

C. Syntactic and Semantic

1) Multiple workflows for complex operations:

providing IaaS involves non-trivial operations, such as

instantiating a virtual machine on a hypervisor and

assigning a public IP address to it. By supporting many

vendors and technical solutions, there are multiple

manners to solve such complex tasks, each one taking a

143Copyright (c) IARIA, 2018. ISBN: 978-1-61208-607-1

CLOUD COMPUTING 2018 : The Ninth International Conference on Cloud Computing, GRIDs, and Virtualization

 import shade

for cloud_name, region_name in [

 ('cloud-a', 'region-a'),

 ('cloud-b', 'region-b')]:

 # Initialize the cloud

 cloud = shade.openstack_cloud(

 cloud=cloud_name,

 region_name=region_name)

 # Upload an image to the cloud

 image = cloud.create_image(

 'devuan-jessie', wait=True,

 filename='devuan-jessie.qcow2')

 # Find a flavor with at least 512MB

 # of RAM

 flavor = cloud.get_flavor_by_ram(512)

 # Boot a server, wait for it to boot,

 # and then do whatever is needed to

 # attach a public IP to it.

 cloud.create_server(

 'my-server', image=image,

 flavor=flavor, wait=True,

 auto_ip=True)

Figure 8. Using Shade to boot a server with a public IP attached to

it in multiple clouds.

different workflow involving multiple API calls. Even if

the final semantic result is the same, executing such

operations does not consistently use the same data formats

neither have the same accurate interpretation throughout

the process.

In the example of booting a server and assigning a

public IP to it, the first step is to figure out what is the

networking service in the cloud: Nova Network or

Neutron. In this example, let’s assume Neutron is

available. The second step is to query Neutron in order to

figure out if there is a public network to boot the server

on. If there is, then a single API call to Nova, the

Compute Service, may be performed requesting the

virtual machine to be instantiated and be put directly in

that public network. If there is not, the solution will be

first to create a virtual machine with a private IP and then

to assign a floating IP later on via NAT mechanism.

In order to assign a floating IP via NAT mechanism,

first try to pass the port ID of the private IP of the server

to the floating IP create call. If that is not possible, create

a floating IP and then attach it to the server. Executing all

this complex functionality with Shade is as simple as

shown in Figure 8.

Another complex example is the upload image

functionality, managed by Glance, the Image Service.

There are two mechanisms for that: (i) upload data

directly to Glance via HTTP PUT, or (ii) upload the data

to the Object Storage service, Swift, and then import it to

Glance with an import task. Both alternatives are

available in every Glance version 2 service. In some

clouds, upload via PUT is disabled, and in other clouds

the task import mechanism does not do anything, just

ignores the requested action.

More specifically in the task import path, the accepted

payloads are all vendor or plugin specific, presenting the

issues described in Section III-A2 Pluggable underlying

mechanism.

2) Functionality is not provided: cloud vendors may

opt to not deploy or to remove some of the OpenStack

services for whatever reason, such as it is not part of their

market strategy. In that case, users would not be able to

use the same functionality across multiple clouds.

As an example, Trove, the Database as a Service

(DBaaS) service may not be available in all clouds. That

would make it unfeasible to deploy an application that

needs DBaaS in the clouds that do not deploy it.

Before choosing what cloud vendors to go with, the

users need to understand well their service catalog to

make sure all the expected functionalities are provided.

D. Validation

Shade is currently the library handling all the clouds

differences for the whole Continuous Integration system

of OpenStack, which spins up thousands of servers every

single day across many non-interoperable clouds. It is a

project developed by the OpenStack community and the

authors work on this project, which is also used in a

master’s thesis.

In addition to the above mentioned use, Shade is also

used in Ansible modules, which enable several cloud

providers to orchestrate their clouds via scripts. Such

modules were used to make the program The

Interoperability Challenge possible, where multiple cloud

vendors were challenged to run the same workloads

against their clouds, live, in front of thousands of

attendees at two editions of the OpenStack Summit.

In the Barcelona edition, there were 16 participating

companies: Canonical, Cisco, DreamHost, Deutsche

Telekom, Fujitsu, HPE, Huawei, IBM, Intel, Linaro,

Mirantis, OVH, Rackspace, Red Hat, SUSE and VMware.

In the Boston edition, the 15 participants were IBM,

VMware, Huawei, ZTE, SUSE, EasyStack, T2Cloud, Red

Hat, Rackspace, Canonical, VEXXHOST, Deutsche

Telekom, Platform9, Wind River and NetApp.

All companies, in both editions, were successful on

running the workloads defined by the community and

144Copyright (c) IARIA, 2018. ISBN: 978-1-61208-607-1

CLOUD COMPUTING 2018 : The Ninth International Conference on Cloud Computing, GRIDs, and Virtualization

implemented via orchestration scripts using the Ansible

modules. Without Shade, there would be no way to

communicate to all those clouds transparently without

implementing the Shade logic in the Ansible modules

themselves.

The patterns for the interoperability gaps detailed in

this paper are enumerated in Table I, which summarizes

what is solved by Shade and what requires user

intervention, be it negotiate with the service provider or to

use a work around when writing applications. Despite the

fact that Shade solves fewer issues in terms of quantity,

the ones it solves are the most impeditive for

interoperability in OpenStack, because they bring a lot of

complexity to the user side, while the issues solved by the

users are related to understanding what functionalities are

available in the clouds and how their accounts are

configured.

TABLE I. PATTERNS ADDRESSED BY SHADE

Pattern
Action

Shade User

3.A.1 Functionality is exposed through different
APIs

X

3.A.2 Pluggable underlying mechanism X

3.B.1 Different authorization requirements for the

functionality
 X

3.B.2 Cloud-wide restrictions on resources X

3.B.3 User account-wide restrictions on resources X

3.B.4 Inconsistent resource discovery X

3.B.5 Pluggable underlying mechanism X

3.C.1 Multiple workflows for complex operations X

3.C.2 Functionality is not provided X

IV. RELATED WORK

Even in 2010, when cloud computing was growing as a
concept, Dillon et al. already signaled that interoperability
deserved substantial further research and development [5].

In a literature review, we were able to identify studies
focusing on interoperability among different IaaS cloud
platforms. Zhang et al. [6] conducted a comprehensive
survey on the state-of-the-art efforts for understanding and
mitigating interoperability issues. Parák et al. [7] discussed
challenges in achieving IaaS interoperability across
multiple cloud management frameworks.

No study reporting that interoperability issues occur
within a single platform was found, and that is the case
being reported in this paper with OpenStack.

As opposed to defining open protocols and making the
existing vendor adapt their deployments to it, the solution
as presented in this paper is a post-facto high-level end-
user broker for facilitating effective interoperability in the
cloud, as clarified in by Parák et al. [7].

 Loutas et al. [8] highlighted that creating different
interoperability standards and frameworks can possibly

lead to different interoperability solutions which are not
interoperable between each other. However, we found that
creating platform-specific interoperability frameworks
such as Shade is a good strategy because another
middleware could be built on the top of it and consider all
OpenStack deployments interoperable, without caring
about particularities of the OpenStack world, and then
solve interoperability limitations between different cloud
platforms. Creating multiple solutions of that higher level
middleware would certainly be a problem.

V. CONCLUSION AND FUTURE WORK

As an open source platform, OpenStack is deployed by

numerous vendors. By allowing great flexibility in its

functionalities, it compromised interoperability, with the

issues reported in this paper.

Shade is a Python library that was implemented to

solve the issues when there is a programmatic way to

discover how to perform the operations and how to

interpret the results accurately. In the other cases where

the issues are inherent to the platform, such as the lack of

standardization on what is available by default, how

cloud-wide resources are labeled and what is the available

quota for a given resource, this paper recommended that

the users should workaround themselves when possible,

otherwise analyze the cloud offering and negotiate with

the vendor directly.

Since interoperability was developed post-facto, being

fully interoperable in OpenStack will never become a

reality because that would mean giving up flexibility and,

for that, backward incompatible changes would need to be

introduced. One of the key attributes of OpenStack is that

it strives to always be backwards compatible.

Furthermore, it would require vendors to standardize their

deployments, changing their market strategy and breaking

their customers for the sake of being interoperable with

their competitors.

This study was important because it showed that

interoperability issues may emerge even within a single

cloud platform. The issues were categorized, exemplified

and a solution was proposed, allowing further

improvements and studies to be placed on the top of it.

Future work may include creating another middleware

on the top of Shade that is not language-specific, such as a

Remote Procedure Calls (RPCs) or a REST API, allowing

users to consume Shade in other languages than just

Python.

Another important study would be to investigate other

open source IaaS platforms to report what interoperability

issues they present, then compare with OpenStack and

analyze if a solution similar to Shade would apply.

Example of platforms are Apache CloudStack, Eucalyptus

and OpenNebula.

REFERENCES

[1] P. Mell and T. Grance, “The NIST definition of Cloud
Computing”, NIST Special Publication, USA, 2011.

145Copyright (c) IARIA, 2018. ISBN: 978-1-61208-607-1

CLOUD COMPUTING 2018 : The Ninth International Conference on Cloud Computing, GRIDs, and Virtualization

[2] OpenStack, https://www.openstack.org, [Online; accessed 14
January 2018].

[3] Shade Git, https://github.com/openstack-infra/shade, [Online;
accessed 14 January 2018].

[4] ISO/IEC 2382:2015, "Information technology -- Vocabulary".
Switzerland: ISO/IEC JTC 1, 2015.

[5] T. Dillon, C. Wu, and E. Chang, “Cloud computing: Issues and
challenges”, Proceedings of the 24th IEEE International
Conference on Advanced Information Networking and
Applications. USA: IEEE, 2010, pp. 27-33.

[6] Z. Zhang, C. Wu, and D. W. Cheung, “A survey on cloud
interoperability: Taxonomies, standards, and practice”, ACM
SIGMETRICS Performance Evaluation Review, vol. 40, no. 4, pp.
13-22, Mar. 2013.

[7] B. Parák and Z. Šustr, "Challenges in achieving IaaS cloud
interoperability across multiple cloud management frameworks”
Proceedings of the 7th IEEE/ACM International Conference on
Utility and Cloud Computing. USA: IEEE, 2014, pp. 404-411.

[8] N. Loutas, E. Kamateri, F. Bosi, and K. Tarabanis, “Cloud
computing interoperability: The state of play”, Proceedings of the
Third IEEE International Conference on Cloud Computing
Technology and Science. USA: IEEE, 2011, pp. 752-757.

146Copyright (c) IARIA, 2018. ISBN: 978-1-61208-607-1

CLOUD COMPUTING 2018 : The Ninth International Conference on Cloud Computing, GRIDs, and Virtualization

