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Abstract—Large cloud architectures consist of numerous 

high-performance servers, each hosting a multitude of Virtual 

Machines (VMs). Naturally, the server resources for processing 

and storage are shared among VMs, which, in turn, could be 

simultaneously accessed by several authorized users. Resource 

reallocation takes place after a session terminates. However, 

failure of systematic session termination causes blockage of 

resources resulting in severe under-utilization. In order to 

mitigate such scenarios, one needs to efficiently detect user 

inactivity for timely release of the resources. This is a non-trivial 

task. To this end, we propose a hybrid resource-desktop 

monitoring technique, which involves capturing of user 

interaction with the client computer, in addition to monitoring 

the client-server network activity. The rationale behind this 

approach is that even in case of lightweight applications, the user 

interactions cause continuous changes in the visual contents 

being displayed. Periodic screenshots of the client screen and 

network activity between client and server provide crucial 

information about the user inactivity. Our preliminary 

investigation suggests that such self-organizing virtualization 

infrastructure is a promising direction for the design of modern 

cloud-based services.   
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I. INTRODUCTION 

Cloud-based provisioning of memory and computational 

resources has proved to be one of the profound inventions of 

modern-day computer science. Such resources are typically 

available for usage to clients round the clock. One such 

example of cloud-based applications is Virtual Machine 

(VM). Entities known as virtualization servers host multiple 

VMs, hosted on, allowing multiple users to share the server 

resources simultaneously. Typically, the resources allocated 

to a VM are pre-configured by the system administrator. The 

degree of resource utilization of a VM depends solely on the 

type of applications being executed by its clients. Naturally, 

when the resources are underutilized it makes sense to re-

allocate them to other VMs hosting more resource demanding 

applications. Moreover, very often, it is imperative to relocate 

certain VMs to another virtualization server with spare 

resources for optimization of power consumption. Such live 

migration of VMs, as well as re-allocation of resources across 

VMs in the same virtualization server is commonly referred 

to as consolidation. 

 After the completion of a virtual session, the virtualization 

server consolidates the resources tied to the inactive VMs to 

other VMs. However, in a vast majority of cases the human 

user leaves the session without properly terminating it, 

resulting in severe underutilization of the server resources. In 

order to mitigate such sub-optimal utilization of resources, 

one needs to monitor the utilization of VM, and be able to 

distinguish between durations of user activity and inactivity. 

In case of active VM, the resource configuration remains 

unchanged, whereas for instances of substantially long user 

inactivity, the VM can be characterized as inactive and 

subsequently subjected to the resource reallocation process.   

 Once a VM is characterized as inactive, it can be 

hibernated or powered off. Occasionally, if all the VMs in a 

virtualization server are relocated or powered off, the entire 

virtualization server itself can be hibernated. This step 

dramatically reduces the overall power consumption. In an 

earlier work, we proposed a novel consolidation technique 

[1]. However, literature also contains a fair volume of work 

in this domain; see, for example, [12]-[14]. 

 The detection of state (active, inactive) of a VM is a non-

trivial problem, since it is characterized by complex 

combinations of a gamut of parameters. The existing works 

take into account the parameters like memory and processor 

consumption of VM, network throughput of VM, login 

metadata, among others. Although the aforementioned works 

demonstrate that these parameters characterize the VM-state 

fairly well, we identify two more parameters that can be used 

for VM-state detection with higher efficiency and reliability - 

VM screenshot variations and VM-client network traffic 

profile. In this paper, we propose a novel scheme for reliable 

detection of VM-state that integrates the proposed new 

parameters with the existing ones in order to efficiently detect 

the current VM-state with high reliability. Our scheme treats 

VM as a black box, in the sense that no virtual machine 

introspection [2] needs to be done. All parameters used for 

VM-state detection are retrieved directly from hypervisors or 

external network devices. This simplifies the design 

considerations significantly.  

 The organization of the paper is as follows. In Section II, 

we provide an overview of the existing literature relevant to 

our work. In Section III, we describe in detail our approach 

for characterization of the VM state, and in Section IV, we 

explain our proposed approach for inactivity detection of 

VMs. We present preliminary measurements in Section V, 

and finally state our conclusions in Section VI.   

II. RELATED WORK 

VM-state detection is a topic that is actively being researched 

in the recent past; see, for example, [3]-[6]. Literature 

suggests that there exist primarily three main approaches of 

VM-state detection as follows. 

A. Utilization-based approach: This approach is the most 

intuitive of all. The VM monitor, known as hypervisor, is able 
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to provide certain information on the run-time behavior of a 

VM. The VM characteristics (VMC) are mostly represented 

as 4-D vector of items. 

VMC = {CPU utilization [%], memory utilization [MB], 

network throughput [Mbit/s], and I/O operation count 

[number]}. 

 The existing works use a subset of VMC parameters for 

VM-state detection. Solution like Pulsar [7], which is a part 

of OpenStack-Nova, uses just only the CPU utilization. When 

the CPU utilization is below a specific threshold, the system 

marks the VM as “inactive”. Another scheme [8] leverages 

CPU utilization, memory utilization, and network throughput 

for determining the state of a VM. 

B. Rule-based approach: This approach means that the data 

center operators define some set of heuristics, which help to 

identify the unused virtual machine. Typical example of such 

approach implementation is the NetFlix service Janitor 

Monkey [9].  The similar approach is used in the next 

solution, which is called Poncho [10]. In Poncho, the rules are 

not defined as global, but only for a specific workload. 

C. Graph-based approach: This approach has been inspired 

by some programming languages like Java, C# or Python. 

Such languages use virtual environment for the execution of 

byte code compiled applications. Their garbage collectors for 

automated memory management identify objects “to be 

cleaned” by examining object references. The resource 

dependencies are mostly represented by acyclic graphs. In 

many cases, standalone cloud resources – having no 

dependency on other cloud resources – cannot necessarily be 

identified as unused resources by only using resource 

dependencies. In other words, some VMs can cooperate with 

others, but this situation cannot be easily represented in the 

graph. Some graph-based systems are Pleco [4] and Garbo 

[5].  

III. CHARACTERIZATION OF VM-STATE 

In this section, we describe in detail the rationale behind the 

selection of important features for characterization of the 

VM-state and explain the VM-state detection metric for each 

feature. 

A. Resource utilization of VM: Many existing works [7][8] 

in the literature have experimentally demonstrated that 

monitoring the local resources of VM like CPU and RAM 

usage, as well as the overall network activity can characterize 

the VM-state detection fairly accurately. In this work, we 

adopt the strategies proposed by the aforementioned prior 

works. Let C denote CPU usage of VM, M denote the ratio of 

memory currently being utilized to total memory capacity of 

VM. Let N denote the current network throughput related to 

maximal network throughput. The overall VM utilization (U) 

can then be expressed as shown Eq. (1). 

𝑈 =  
1

(1 − 𝐶)(1 − 𝑁)(1 − 𝑀)
 (1) 

B. Client-VM network activity: In order to optimally utilize 

the communication network between client and VM, any 

standard terminal service, like Remote Desktop Protocol 

(RDP) and Secure SHell (SSH), transfers only incremental 

information. For example, when the user continuously 

interacts with the VM, the contents to be displayed to the 

client change relentlessly, and hence large number of packets 

are exchanged. On the other hand, when the changes are 

insignificant, packets are transmitted occasionally. For 

instance, when the user is reading a document with 

negligible/less amount of mouse scrolling, the displayed 

contents remain predominantly unchanged. Since no 

significant information needs to be exchanged, the packet 

transmissions are sparse. On the other hand, if a multimedia 

file is being played at VM, irrespective of the display contents 

packets need to be constantly exchanged. Note that the overall 

network activity discussed previously subsumes the network 

activity between client and VM. However, it should be noted 

that some activities, like installation of software updates at 

VM that generate substantial network activity, may not be of 

interest from the client’s perspective. Therefore, monitoring 

the network activity between client and VM, in addition to 

overall network activity, provides fine-grained network 

information which can be utilized in precisely characterizing 

the current state of VM. Terminal service activity can be 

expressed as follows. TRh is an empirically set number of 

packets, which must be reached for flow activity detection. 

TRh is an empirical value related to a specific time interval (t). 

The overall measurement time consists of K number t 

intervals. For each t interval, can be measured current count 

of packets Ct. If Ct < TRh then such TI is marked as “inactive”. 

The total inactivity T [%] can be deduced as shown in Eq. (2).  

𝑇 =  
 # 𝑜𝑓 𝑖𝑛𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙𝑠

# 𝑜𝑓total 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙𝑠
 (2) 

Necessary information about the traffic from network devices 

alike switches or routers can be provided via 

NETFLOW/IPFIX protocol, which does not affect the routers 

performance. 

C. VM screenshot: We refer to the contents of the VM that 

are currently being displayed to the client. The Hypervisor 

creates a VM screenshot from the content of virtual graphic 

card memory. The idea behind using VM screenshot as an 

important parameter in VM-state detection is that whenever 

the user interacts actively with VM, the display contents keep 

changing continuously. Therefore, as a preliminary the 

differential information in consecutive screenshots can be 

utilized to detect the VM-state. Screenshots with same 

dimensions are generated periodically by the Hypervisor. Let 

Sk denote the kth screenshot. It is important to remark that our 

approach considers only the differential information in 

consecutive screenshots, and not the actual display contents 

themselves. This also reduces the computational load 

significantly. Let Dk denote the differential information 

between Sk+1 and Sk as shown in Eq. (3).   

𝐷𝑆(𝑥, 𝑦) = 𝐶(𝑥, 𝑦) − 𝑃(𝑥, 𝑦) (3) 

An example of differential screenshot can be seen in Figure 

1. From single differential screenshots, it is possible to 

assemble the sequence of differential screenshots. 

 We created a supervised learning-based classifier which is 

capable of analyzing if a screenshot change indicates the 

activity/inactivity of the user, as shown in Figure 2. For the 

analysis, we used deep convolutional network, which is able 

automatically to take into the account the position of change 

- for example clock on the desktop taskbar can cause the 

misinterpretation. 
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Fig. 1: Pixel differential image, which serves as an input for deep 
convolutional network. Such neural networks are able to detect the change 

and position of change as well.  

 

 

Fig. 2: Deep convolutional network used for image change classification is 

able to take into the account the position of change. 

All differential screenshots from DS are being classified by 

the neural network. The result of classification is N-1 D 

vector of values, which expresses the probability (PI) of user 

inactivity for every screenshot as shown in Eq. (4).  

 

   PI = {PI1, PI2, …, PIN}     (4) 

 

The average probability (P) for entire period can be computed 

as shown in Eq. (5). 

𝑃 =  (
1

𝑁 − 1
) ∗ ∑ 𝑃𝐼𝑖

𝑁−1

𝑖=1

(5) 

 

P value is used in the decision three, which will be described 

in the next section. 

IV. VM-STATE DETECTION 

In this section, we present the description of the design and 

working principle of the proposed VM-state detection 

scheme.  

 In Figure 3, we present the architecture of a typical 

distributed virtualization infrastructure, along with the 

proposed VM-state detection elements. The clients connect to 

their respective VMs via a specific terminal service, like RDP 

or SSH. All these connections go via an IPFIX-enabled router 

and are monitored by a firewall. In order to relieve the VMs 

of monitoring the traffic stream from VM to clients, we use 

IPFIX [11] - a standard protocol for capturing network flows 

crossing the routers. The router can capture specific flow 

information, and subsequently report to VM Consolidator 

(VMC) - the principal component of the architecture. VMC 

coordinates with VMs and virtualization servers in order to 

receive vital parameters necessary for characterization of 

VM-state discussed in Section III. The possibility to see user 

screen must be supported by hypervisor.  

 As mentioned previously, we consider the following 

parameters for detection of the current state of VM: user-

induced on-screen changes, network activity between client 

and VM, processing and memory resource consumption of 

VM, and overall network activity of VM. We now move to 

the characterization of VM-state based on the measurement 

of the aforementioned parameters. We propose a hierarchical 

VM state detection technique based on learning via ANN that 

classifies the current state of the VM through the 

aforementioned parameters using the decision tree shown in 

Figure 4. 

 Let pn and pTn denote the decision metric and the 

corresponding threshold at the nth
 stage of the decision tree. 

In the first stage, we take the VM screenshot variation as the 

evaluation parameter for decision making. On-screen visual 

changes refer to the changes reflecting on the VM screen 

when the user interacts with the virtual computer. Therefore, 

if on-screen changes are significantly high, then the VM is in 

use with higher likelihood. If p1 < pT1 (indicating that VM 

screenshot variations are significant), we treat this as the 

sufficient condition to infer that the VM is active. Hence, 

further analysis is unnecessary, thereby relieving the 

monitoring node (MN) of resource-heavy computations. If p1 

≥ pT1 (indicating negligible variations), we trigger subsequent 

stages of analysis.  

 
Fig. 3: Architecture of the proposed distributed virtualization infrastructure 
featuring clients, VMs, virtualization servers, VM consolidator, and IPFIX-

enabled router. 

 In the second stage, we consider the client-VM network 

traffic profile, in addition to p1 for characterizing the VM-

state. If p2 < pT2 (indicating that the network activity is 

significant), then we infer that the VM is in active state. 

However, if p2 ≥ pT2 (indicating negligible network activity), 

we move to the last stage of analysis. 
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Fig. 4: Decision tree illustrating the working of proposed hierarchical VM 
state detection. pn denotes the probability of VM being inactive as per the 

parameters considered in nth stage.  

 

  

 In the last stage, we consider the resource utilization profile 

of VM for the decision making. If p3 < pT3 (indicating that the 

resource utilization is significant), then we infer that the VM 

is in active state. However, if p3 ≥ pT3 (indicating negligible 

resource utilization), we conclude that the VM is in inactive 

state. This results in the hibernation of VM, and subsequent 

re-allocation of the resources across other VMs located in the 

virtualization server. 

V. MEASUREMENTS 

In this section, we report a preliminary measurement of 

packet count from VM to client for demonstrating the proof-

of-concept of the proposed VM-state detection. We initiated 

a session between a VM and a client. In order to be able to 

notice the packet count variation between client and VM, we 

divide the user interaction into three types - active, semi-

active, and passive. In active interaction, the user 

continuously performs certain tasks on VM through I/O 

devices. In semi-active interaction, the user only plays a 

multimedia content in VM, but performs no other interaction 

through input devices. Finally, tin passive interaction, the 

user simply reads a document without scrolling through it. 

Figure 5 presents the histogram of transmitted packets 

recorded during the session.  

 
Fig. 5: Architecture of the proposed distributed virtualization infrastructure 

featuring clients, VMs, virtualization servers, VM consolidator, and IPFIX-

enabled router. 

 We ask the user to perform active, semi-active, and passive 

interactions sequentially. In the first part of the plot, it can be 

seen that the packet count is significantly high indicating 

dense packet transmissions between VM and client during 

active interaction. Next, the packet transmissions are 

relatively sparse but non-negligible, indicating considerable 

traffic during semi-active interaction. Finally, the packet 

transmissions are near-zero indicating negligible traffic 

during passive interaction. This suggests that monitoring the 

traffic profile between VM and client could play a crucial role 

in accurately and efficiently determining the VM-state. 

 As a next step of this work, we plan to implement the 

proposed scheme on a real cloud infrastructure and compare 

its performance with state-of-the-art techniques in the 

domain. 

VI. CONCLUSIONS 

In this paper, we proposed a novel VM-state detection 

strategy in which two new parameters were introduced - VM 

screenshot and VM-client traffic profile. We described how 

these new parameters can improve up on the state-of-the-art 

techniques. We proposed the architecture of our scheme, and 

also proposed the usage of deep convolutional neural network 

for classification of VM-state. Through preliminary 

measurements, we demonstrated that monitoring the network 

activity between VM and client could lead to efficient 

performance. In the next phase of the project, we intend to 

perform extensive verification of our proposal and also 

improve the neural network classifier. 
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