

Efficient Virtual Machine Consolidation Approach Based on User Inactivity

Detection

Jan Fesl

 Institute of Applied Informatics

Faculty of Science

University of South Bohemia

České Budějovice, Czech Republic

email: jfesl@prf.jcu.cz

Vineet Gokhale

 Institute of Applied Informatics

Faculty of Science

University of South Bohemia

České Budějovice, Czech Republic

email: vgokhale@prf.jcu.cz

Marie Feslová

 Institute of Applied Informatics

Faculty of Science

University of South Bohemia

České Budějovice, Czech Republic

email: dolezm05@prf.jcu.cz

Abstract—Large cloud architectures consist of numerous

high-performance servers, each hosting a multitude of Virtual

Machines (VMs). Naturally, the server resources for processing

and storage are shared among VMs, which, in turn, could be

simultaneously accessed by several authorized users. Resource

reallocation takes place after a session terminates. However,

failure of systematic session termination causes blockage of

resources resulting in severe under-utilization. In order to

mitigate such scenarios, one needs to efficiently detect user

inactivity for timely release of the resources. This is a non-trivial

task. To this end, we propose a hybrid resource-desktop

monitoring technique, which involves capturing of user

interaction with the client computer, in addition to monitoring

the client-server network activity. The rationale behind this

approach is that even in case of lightweight applications, the user

interactions cause continuous changes in the visual contents

being displayed. Periodic screenshots of the client screen and

network activity between client and server provide crucial

information about the user inactivity. Our preliminary

investigation suggests that such self-organizing virtualization

infrastructure is a promising direction for the design of modern

cloud-based services.

Keywords – cloud; consolidation; neural network.

I. INTRODUCTION

Cloud-based provisioning of memory and computational

resources has proved to be one of the profound inventions of

modern-day computer science. Such resources are typically

available for usage to clients round the clock. One such

example of cloud-based applications is Virtual Machine

(VM). Entities known as virtualization servers host multiple

VMs, hosted on, allowing multiple users to share the server

resources simultaneously. Typically, the resources allocated

to a VM are pre-configured by the system administrator. The

degree of resource utilization of a VM depends solely on the

type of applications being executed by its clients. Naturally,

when the resources are underutilized it makes sense to re-

allocate them to other VMs hosting more resource demanding

applications. Moreover, very often, it is imperative to relocate

certain VMs to another virtualization server with spare

resources for optimization of power consumption. Such live

migration of VMs, as well as re-allocation of resources across

VMs in the same virtualization server is commonly referred

to as consolidation.

 After the completion of a virtual session, the virtualization

server consolidates the resources tied to the inactive VMs to

other VMs. However, in a vast majority of cases the human

user leaves the session without properly terminating it,

resulting in severe underutilization of the server resources. In

order to mitigate such sub-optimal utilization of resources,

one needs to monitor the utilization of VM, and be able to

distinguish between durations of user activity and inactivity.

In case of active VM, the resource configuration remains

unchanged, whereas for instances of substantially long user

inactivity, the VM can be characterized as inactive and

subsequently subjected to the resource reallocation process.

 Once a VM is characterized as inactive, it can be

hibernated or powered off. Occasionally, if all the VMs in a

virtualization server are relocated or powered off, the entire

virtualization server itself can be hibernated. This step

dramatically reduces the overall power consumption. In an

earlier work, we proposed a novel consolidation technique

[1]. However, literature also contains a fair volume of work

in this domain; see, for example, [12]-[14].

 The detection of state (active, inactive) of a VM is a non-

trivial problem, since it is characterized by complex

combinations of a gamut of parameters. The existing works

take into account the parameters like memory and processor

consumption of VM, network throughput of VM, login

metadata, among others. Although the aforementioned works

demonstrate that these parameters characterize the VM-state

fairly well, we identify two more parameters that can be used

for VM-state detection with higher efficiency and reliability -

VM screenshot variations and VM-client network traffic

profile. In this paper, we propose a novel scheme for reliable

detection of VM-state that integrates the proposed new

parameters with the existing ones in order to efficiently detect

the current VM-state with high reliability. Our scheme treats

VM as a black box, in the sense that no virtual machine

introspection [2] needs to be done. All parameters used for

VM-state detection are retrieved directly from hypervisors or

external network devices. This simplifies the design

considerations significantly.

 The organization of the paper is as follows. In Section II,

we provide an overview of the existing literature relevant to

our work. In Section III, we describe in detail our approach

for characterization of the VM state, and in Section IV, we

explain our proposed approach for inactivity detection of

VMs. We present preliminary measurements in Section V,

and finally state our conclusions in Section VI.

II. RELATED WORK

VM-state detection is a topic that is actively being researched

in the recent past; see, for example, [3]-[6]. Literature

suggests that there exist primarily three main approaches of

VM-state detection as follows.

A. Utilization-based approach: This approach is the most

intuitive of all. The VM monitor, known as hypervisor, is able

105Copyright (c) IARIA, 2019. ISBN: 978-1-61208-703-0

CLOUD COMPUTING 2019 : The Tenth International Conference on Cloud Computing, GRIDs, and Virtualization

to provide certain information on the run-time behavior of a

VM. The VM characteristics (VMC) are mostly represented

as 4-D vector of items.

VMC = {CPU utilization [%], memory utilization [MB],

network throughput [Mbit/s], and I/O operation count

[number]}.

 The existing works use a subset of VMC parameters for

VM-state detection. Solution like Pulsar [7], which is a part

of OpenStack-Nova, uses just only the CPU utilization. When

the CPU utilization is below a specific threshold, the system

marks the VM as “inactive”. Another scheme [8] leverages

CPU utilization, memory utilization, and network throughput

for determining the state of a VM.

B. Rule-based approach: This approach means that the data

center operators define some set of heuristics, which help to

identify the unused virtual machine. Typical example of such

approach implementation is the NetFlix service Janitor

Monkey [9]. The similar approach is used in the next

solution, which is called Poncho [10]. In Poncho, the rules are

not defined as global, but only for a specific workload.

C. Graph-based approach: This approach has been inspired

by some programming languages like Java, C# or Python.

Such languages use virtual environment for the execution of

byte code compiled applications. Their garbage collectors for

automated memory management identify objects “to be

cleaned” by examining object references. The resource

dependencies are mostly represented by acyclic graphs. In

many cases, standalone cloud resources – having no

dependency on other cloud resources – cannot necessarily be

identified as unused resources by only using resource

dependencies. In other words, some VMs can cooperate with

others, but this situation cannot be easily represented in the

graph. Some graph-based systems are Pleco [4] and Garbo

[5].

III. CHARACTERIZATION OF VM-STATE

In this section, we describe in detail the rationale behind the

selection of important features for characterization of the

VM-state and explain the VM-state detection metric for each

feature.

A. Resource utilization of VM: Many existing works [7][8]

in the literature have experimentally demonstrated that

monitoring the local resources of VM like CPU and RAM

usage, as well as the overall network activity can characterize

the VM-state detection fairly accurately. In this work, we

adopt the strategies proposed by the aforementioned prior

works. Let C denote CPU usage of VM, M denote the ratio of

memory currently being utilized to total memory capacity of

VM. Let N denote the current network throughput related to

maximal network throughput. The overall VM utilization (U)

can then be expressed as shown Eq. (1).

𝑈 =
1

(1 − 𝐶)(1 − 𝑁)(1 − 𝑀)
 (1)

B. Client-VM network activity: In order to optimally utilize

the communication network between client and VM, any

standard terminal service, like Remote Desktop Protocol

(RDP) and Secure SHell (SSH), transfers only incremental

information. For example, when the user continuously

interacts with the VM, the contents to be displayed to the

client change relentlessly, and hence large number of packets

are exchanged. On the other hand, when the changes are

insignificant, packets are transmitted occasionally. For

instance, when the user is reading a document with

negligible/less amount of mouse scrolling, the displayed

contents remain predominantly unchanged. Since no

significant information needs to be exchanged, the packet

transmissions are sparse. On the other hand, if a multimedia

file is being played at VM, irrespective of the display contents

packets need to be constantly exchanged. Note that the overall

network activity discussed previously subsumes the network

activity between client and VM. However, it should be noted

that some activities, like installation of software updates at

VM that generate substantial network activity, may not be of

interest from the client’s perspective. Therefore, monitoring

the network activity between client and VM, in addition to

overall network activity, provides fine-grained network

information which can be utilized in precisely characterizing

the current state of VM. Terminal service activity can be

expressed as follows. TRh is an empirically set number of

packets, which must be reached for flow activity detection.

TRh is an empirical value related to a specific time interval (t).

The overall measurement time consists of K number t

intervals. For each t interval, can be measured current count

of packets Ct. If Ct < TRh then such TI is marked as “inactive”.

The total inactivity T [%] can be deduced as shown in Eq. (2).

𝑇 =
 # 𝑜𝑓 𝑖𝑛𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙𝑠

𝑜𝑓total 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙𝑠
 (2)

Necessary information about the traffic from network devices

alike switches or routers can be provided via

NETFLOW/IPFIX protocol, which does not affect the routers

performance.

C. VM screenshot: We refer to the contents of the VM that

are currently being displayed to the client. The Hypervisor

creates a VM screenshot from the content of virtual graphic

card memory. The idea behind using VM screenshot as an

important parameter in VM-state detection is that whenever

the user interacts actively with VM, the display contents keep

changing continuously. Therefore, as a preliminary the

differential information in consecutive screenshots can be

utilized to detect the VM-state. Screenshots with same

dimensions are generated periodically by the Hypervisor. Let

Sk denote the kth screenshot. It is important to remark that our

approach considers only the differential information in

consecutive screenshots, and not the actual display contents

themselves. This also reduces the computational load

significantly. Let Dk denote the differential information

between Sk+1 and Sk as shown in Eq. (3).

𝐷𝑆(𝑥, 𝑦) = 𝐶(𝑥, 𝑦) − 𝑃(𝑥, 𝑦) (3)

An example of differential screenshot can be seen in Figure

1. From single differential screenshots, it is possible to

assemble the sequence of differential screenshots.

 We created a supervised learning-based classifier which is

capable of analyzing if a screenshot change indicates the

activity/inactivity of the user, as shown in Figure 2. For the

analysis, we used deep convolutional network, which is able

automatically to take into the account the position of change

- for example clock on the desktop taskbar can cause the

misinterpretation.

106Copyright (c) IARIA, 2019. ISBN: 978-1-61208-703-0

CLOUD COMPUTING 2019 : The Tenth International Conference on Cloud Computing, GRIDs, and Virtualization

Fig. 1: Pixel differential image, which serves as an input for deep
convolutional network. Such neural networks are able to detect the change

and position of change as well.

Fig. 2: Deep convolutional network used for image change classification is

able to take into the account the position of change.

All differential screenshots from DS are being classified by

the neural network. The result of classification is N-1 D

vector of values, which expresses the probability (PI) of user

inactivity for every screenshot as shown in Eq. (4).

 PI = {PI1, PI2, …, PIN} (4)

The average probability (P) for entire period can be computed

as shown in Eq. (5).

𝑃 = (
1

𝑁 − 1
) ∗ ∑ 𝑃𝐼𝑖

𝑁−1

𝑖=1

(5)

P value is used in the decision three, which will be described

in the next section.

IV. VM-STATE DETECTION

In this section, we present the description of the design and

working principle of the proposed VM-state detection

scheme.

 In Figure 3, we present the architecture of a typical

distributed virtualization infrastructure, along with the

proposed VM-state detection elements. The clients connect to

their respective VMs via a specific terminal service, like RDP

or SSH. All these connections go via an IPFIX-enabled router

and are monitored by a firewall. In order to relieve the VMs

of monitoring the traffic stream from VM to clients, we use

IPFIX [11] - a standard protocol for capturing network flows

crossing the routers. The router can capture specific flow

information, and subsequently report to VM Consolidator

(VMC) - the principal component of the architecture. VMC

coordinates with VMs and virtualization servers in order to

receive vital parameters necessary for characterization of

VM-state discussed in Section III. The possibility to see user

screen must be supported by hypervisor.

 As mentioned previously, we consider the following

parameters for detection of the current state of VM: user-

induced on-screen changes, network activity between client

and VM, processing and memory resource consumption of

VM, and overall network activity of VM. We now move to

the characterization of VM-state based on the measurement

of the aforementioned parameters. We propose a hierarchical

VM state detection technique based on learning via ANN that

classifies the current state of the VM through the

aforementioned parameters using the decision tree shown in

Figure 4.

 Let pn and pTn denote the decision metric and the

corresponding threshold at the nth
 stage of the decision tree.

In the first stage, we take the VM screenshot variation as the

evaluation parameter for decision making. On-screen visual

changes refer to the changes reflecting on the VM screen

when the user interacts with the virtual computer. Therefore,

if on-screen changes are significantly high, then the VM is in

use with higher likelihood. If p1 < pT1 (indicating that VM

screenshot variations are significant), we treat this as the

sufficient condition to infer that the VM is active. Hence,

further analysis is unnecessary, thereby relieving the

monitoring node (MN) of resource-heavy computations. If p1

≥ pT1 (indicating negligible variations), we trigger subsequent

stages of analysis.

Fig. 3: Architecture of the proposed distributed virtualization infrastructure
featuring clients, VMs, virtualization servers, VM consolidator, and IPFIX-

enabled router.

 In the second stage, we consider the client-VM network

traffic profile, in addition to p1 for characterizing the VM-

state. If p2 < pT2 (indicating that the network activity is

significant), then we infer that the VM is in active state.

However, if p2 ≥ pT2 (indicating negligible network activity),

we move to the last stage of analysis.

107Copyright (c) IARIA, 2019. ISBN: 978-1-61208-703-0

CLOUD COMPUTING 2019 : The Tenth International Conference on Cloud Computing, GRIDs, and Virtualization

Fig. 4: Decision tree illustrating the working of proposed hierarchical VM
state detection. pn denotes the probability of VM being inactive as per the

parameters considered in nth stage.

 In the last stage, we consider the resource utilization profile

of VM for the decision making. If p3 < pT3 (indicating that the

resource utilization is significant), then we infer that the VM

is in active state. However, if p3 ≥ pT3 (indicating negligible

resource utilization), we conclude that the VM is in inactive

state. This results in the hibernation of VM, and subsequent

re-allocation of the resources across other VMs located in the

virtualization server.

V. MEASUREMENTS

In this section, we report a preliminary measurement of

packet count from VM to client for demonstrating the proof-

of-concept of the proposed VM-state detection. We initiated

a session between a VM and a client. In order to be able to

notice the packet count variation between client and VM, we

divide the user interaction into three types - active, semi-

active, and passive. In active interaction, the user

continuously performs certain tasks on VM through I/O

devices. In semi-active interaction, the user only plays a

multimedia content in VM, but performs no other interaction

through input devices. Finally, tin passive interaction, the

user simply reads a document without scrolling through it.

Figure 5 presents the histogram of transmitted packets

recorded during the session.

Fig. 5: Architecture of the proposed distributed virtualization infrastructure

featuring clients, VMs, virtualization servers, VM consolidator, and IPFIX-

enabled router.

 We ask the user to perform active, semi-active, and passive

interactions sequentially. In the first part of the plot, it can be

seen that the packet count is significantly high indicating

dense packet transmissions between VM and client during

active interaction. Next, the packet transmissions are

relatively sparse but non-negligible, indicating considerable

traffic during semi-active interaction. Finally, the packet

transmissions are near-zero indicating negligible traffic

during passive interaction. This suggests that monitoring the

traffic profile between VM and client could play a crucial role

in accurately and efficiently determining the VM-state.

 As a next step of this work, we plan to implement the

proposed scheme on a real cloud infrastructure and compare

its performance with state-of-the-art techniques in the

domain.

VI. CONCLUSIONS

In this paper, we proposed a novel VM-state detection

strategy in which two new parameters were introduced - VM

screenshot and VM-client traffic profile. We described how

these new parameters can improve up on the state-of-the-art

techniques. We proposed the architecture of our scheme, and

also proposed the usage of deep convolutional neural network

for classification of VM-state. Through preliminary

measurements, we demonstrated that monitoring the network

activity between VM and client could lead to efficient

performance. In the next phase of the project, we intend to

perform extensive verification of our proposal and also

improve the neural network classifier.

ACKNOWLEDGEMENT

The authors would like to thank the Technological Agency of

Czech Republic for financing the current research, and Mr.

Jiří Cehák for his assistance in system administration and

management.

REFERENCES

[1] J. Fesl, J. Cehák, M. Doležalová, and J. Janeček, “New approach for

virtual machines consolidation in heterogeneous computing systems”,
International Journal of Hybrid Information Technology, vol. 9, pp. 321–332,
2016.

[2] K. Nance, B. Hay, and M. Bishop., “Virtual Machine Introspection:
Observation or Interference?”, IEEE Security & Privacy, 6(5), pp. 32–37,
September 2008.

[3] K. Kim, S. Zeng, Ch. Young, J. Hwang, and M. Humphre, “iCSI: A Cloud

Garbage VM Collector for Addressing Inactive VMs with Machine
Learning”, IEEE International Conference on Cloud Engineering, 2017.

[4] Z. Shen, Ch. C. Young, S. Zeng, K. Murthy, and K. Bai, “Identifying

Resources for Cloud Garbage Collection”, 12th International Conference on
Network and Service Management (CNSM), Montreal, 2016.

[5] B. Zhang, Y. Al-Dhuraibi, R. Rouvoy, F. Paraiso, and L. Seinturier

“CloudGC: Recycling Idle Virtual Machines in the Cloud”, IEEE
International Conference on Cloud Engineering (IC2E), Vancouver, 2017.

[6] N. Cohen and A. Bremler-Barr., “Garbo: Graph-based Cloud Resource
Cleanup”, ACM Symposium on Cloud Computing (SoCC ’15), Kohala

Coast, Hawaii, USA, August 2015.

[7] D. Breitgand et al. “An Adaptive Utilisation Accelerator for Virtualized
Environments”, 2nd IEEE International Conference on Cloud Engineering
(IC2E ’14), Boston, MA, USA, March 2014.

[8] T. Wood, P. Shenoy, A. Venkataramani, and M. Yousif, “Black-box and

Gray-box Strategies for Virtual Machine Migration”, 4th USENIX

Symposium on Networked Systems Design and Implementation (NSDI ’07),
Cambridge, MA, USA, April 2007.

[9] Netflix, Janitor Monkey,

https://github.com/Netflix/SimianArmy/wiki/Janitor-Home, available
online, Jan. 2015.

[10] S. Devoid, N. Desai, and L Hochstein, “Poncho: Enabling Smart
Administration of Full Private Cloud”, 27th USENIX Large Installation

System Administration Conference (LISA ’13), Washington D.C., USA,
November 2013.

108Copyright (c) IARIA, 2019. ISBN: 978-1-61208-703-0

CLOUD COMPUTING 2019 : The Tenth International Conference on Cloud Computing, GRIDs, and Virtualization

[11] IPFIX protocol specification, https://tools.ietf.org/html/rfc7011,
available online, Sep. 2013.

[12] F. Farahnakian, P. Liljeberg, and J. Plosila, “Energy-Efficient Virtual
Machines Consolidation in Cloud Data Centers using Reinforcement

Learning”, 22nd Euromicro International Conference on Parallel,
Distributed, and Network-Based Processing, 2014.

[13] Z. Cao and S. Dong, “An energy-aware heuristic framework for virtual

machine consolidation in Cloud computing”, The Journal of
Supercomputing, Volume 69, Issue 1, pp 429–451, Springer, 2014.

[14] E. Feller, L. Rilling, C. Morin, “Energy-aware ant colony-based
workload placement in Clouds”, Proceeding GRID’11 proceedings of the

2011 IEEE/ACM 12th international conference on grid computing. IEEE
Computer Society, Washington, DC, pp 26–33, 2011.

109Copyright (c) IARIA, 2019. ISBN: 978-1-61208-703-0

CLOUD COMPUTING 2019 : The Tenth International Conference on Cloud Computing, GRIDs, and Virtualization

