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Abstract—Reliable oceanic and climate analysis depend on
high-quality sensor readings, yet these systems commonly en-
counter significant sensor limitations, leading to missing data.
Addressing this issue is critical for ensuring accurate forecasts
and analyses. In this work, the data gap problem is studied
by developing physics-regularized machine learning models with
multiple-location modeling to forecast missing sensor data. Uti-
lized are recurrent statistical surrogate models that generate
hourly 24-hour forecasts. To train these models, we use a selection
of five sensor features collected over three years. Introduced is
a multi-location modeling scheme that uniquely combines sensor
data from nearby buoys as a novel methodology. This approach
allows for more stable and accurate predictions compared to
forecasting with single buoy data alone. Our experiments reveal
that grouping six buoys yields the best forecasting performance.
Furthermore, we improve model accuracy by integrating buoy
data with numerical ocean models and applying a physics-
regularized loss function. This technique mitigates the impact
of missing or erratic data, leading to more dependable 24-
hour forecasts. Our findings demonstrate that the combination
of multiple-location modeling and physics-based regularization
enhances the stability and accuracy of oceanic data forecasting.

Keywords-Buoy Forecast; Multiple Location Forecast; Physics-
Regularized; Numerical Models; Surrogate Models.

I. INTRODUCTION

Accurate forecasting of ocean and climate parameters is
useful in industry and research. Climate analysis, ocean pollu-
tion management, extreme weather event tracking, and marine
life monitoring, as examples, benefit from ocean modeling
techniques [1][2]. Numerical models use initial data collected
by observation sensors through buoys, ships, or satellites
as inputs to their underlying physical equations. The result
is a full coverage analysis of the physical features used
to describe ocean and climate states. The European Centre
for Medium-Range Weather Forecasts (ECMWF) research
institute provides such forecast models for use in decision-
making and analysis problems. These models rely on accurate
observations of physical phenomena in two major ways. The
first is the initialization values used as initial conditions for

the physical equations. Then, after producing an analysis
based on those initial conditions, a historical re-analysis of
the model is generated by integrating the results with real-
world sensor data through Data Assimilation (DA) techniques
[3]. ECMWF’s fifth reanalysis experiment (ERA5) dataset is a
popular example of this and often used in statistical surrogate
modeling tasks [4]. One source of observations is the fleet of
free-floating ocean buoys anchored to fixed locations which
are maintained by the National Data Buoy Center (NDBC).
The processes of initialization and DA both require reliable,
consistent, and high-quality observed sensor measurements
to maintain accurate representations. Technical limitations or
poorly calibrated sensors can yield noisy interpretations, and
physical damage or scheduled maintenance can completely
halt data collection in that location. Ocean and climate analysis
or reanalysis, which rely on the steady stream of ocean
sensor data provided by the NDBC, might benefit from short
to midterm regional and sparse forecasts in this situation.
This gives justification to investigate deep learning surrogate
models to conduct sparse observation forecasting for data
assimilation and other uses.

The sensor data is geographically sparse in the sense that
there are collections of buoys within the same region which are
separated by up to hundreds of kilometers. A surrogate model
might be trained for individual analysis using single buoy data
or multiple buoy data [5][6]. In both cases, only a single
buoy is modeled at a time, ignoring any spatial complexities
between surrounding buoys. Therefore, it is reasonable to
investigate methodologies for modeling buoys at multiple lo-
cations within a shared context. One method for implementing
spatial and temporal frequencies in a deep learning model is
by introducing a graph neural network that leverages graph
convolutions based on a buoy’s spatial relations [7]. However,
this approach relies on additional training and space overhead
that is undesirable in a lightweight framework. Instead, we
focus on less specialized deep learning frameworks. To apply
a higher degree of spatial awareness in the model, all buoys in
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a region of interest are included simultaneously. By expanding
the radius to include more buoys, it can be demonstrated
whether the machine learning surrogate benefits from the
collective information. In addition, the impact on a specific
buoy is investigated to determine if contextual clues from
surrounding buoys aid in forecasting current conditions at the
chosen location.

Surrogate modeling of ocean observations is useful in sce-
narios where fast and relatively accurate forecasts are needed.
One problem with these models is that forecasts are accurate
on short leads but lose accuracy as the time horizon increases
[8]. For this reason, research into ways to combine the
surrogate model with data assimilation, physical equations, or
other numerical models have been investigated. The main goal
is to reduce surrogate model error by incorporating physics
understanding through alternative data sources. For example,
machine learning models have been successfully incorporated
with DA techniques for improved results [9][10]. Similarly,
the concept of the Physics-Informed Neural Network (PINN)
uses physical Partial Differential Equations (PDEs) solved
in the loss function at training time to improve physical
understanding [11]. This is similar to our methodology because
both simulations and observations are used in the loss function.
In contrast, our work seeks to find the best combinations of
the contributions of precalculated models and observations.
PINNs notably try to optimize the loss from observations to
fit a particular model. The paradigm explored in this work is
the combination of full-coverage numerical data and sparsely
collected sensor data to produce a more stable model. To this
end, NDBC data and ERA5 reanalysis data are combined to
train surrogate models to forecast buoy-derived geographically
sparse ocean observations.

Noisy data derived from sensors has a significant impact
on training forecast models. Missing data is a compounding
concern when analyzing individually collected sensor obser-
vations. To combat this problem, a methodology to combine
sensor derived data with numerically modeled data at near-
point locations was proposed in [12]. The surrogate model
training procedure uses both numerical data and sensor derived
outputs when calculating the loss score. These values are
combined using a ratio of the two error scores and then
back propagated through the architecture. The previous work
is extended by using a modified forecasting methodology
and data representation to see if similar increases in model
accuracy are achieved. Also, numerically modeled features are
removed from the model input to reduce numerical reliance
post-training. In this way, the underlying physical calculations
of the numerical models regularize the statistical surrogate
models at training time alone.

The main considerations of this research are in improving
techniques of machine learning with ocean data for the predic-
tive modeling of observed phenomena. Specifically, the goal
is to investigate whether a geographically sparse set of data
can be structured in such a way that the predictive ability
of the model is stabilized over 24-hour forecast cycles. The
viability of combining sensor data with numerically derived

data at training time is consequently explored to verify if
further improvements to the surrogate models can be made.
Combining data in this way is a new technique which has only
been evaluated in two experimental situations [12][13]. This
raises the question of whether the combined approaches are
better used in unison or separately. So, our main contributions
are listed as follows:

• We describe a novel training scheme that uses multiple
buoys and their observed parameters as input into the
model;

• Using the physics-regularized loss function, we use a grid
search to find the best ratio of data for each combined
feature;

• By identifying methodologies to improve surrogate model
performance, we give further justification to the use of
statistical models in an oceanographic context.

The paper begins with a summary of existing related work
in Section II. Section III introduces the specific methodology
used. The data sources, chosen data representation, physics-
regularized loss function, and the selected architectures for
the neural networks are detailed. The section concludes with
the setup of the executed experiments. In Section IV, the
experimental results are presented. The paper concludes with
a summary and suggestions for future work in Section V.

II. RELATED WORK

Research into forecasting ocean parameters using machine
learning methodologies is abundant in literature. Review-
ing recent innovations in modeling the physical parameters
yield methodologies for wind modeling [14], ocean wave
height/direction [6][15][16], air temperature [17], and sea
surface water temperature [18][19]. Popular models for surro-
gate ocean forecasting include the Long-Short Term Memory
(LSTM) model and the attention head transformer model
[20][21]. Their use is highlighted in recent ocean parameter
forecasting, so the use of these layers are adopted in this
research [6][12][22]–[26].

The availability and quantity of ERA5 data make it a suit-
able choice for machine learning-based surrogate models. In
recent years, surrogate models trained or otherwise supported
specifically by ERA5 data are studied for use for regional
wave modeling [15], weather forecasting [27][28], earth sur-
face temperature modeling [29], and sea surface temperature
forecasting [30][18]. The data is also used when enhancing
sensor predictions, for example, in the case of satellite sensor
models [31][32]. Notably, the focus is usually on one oceanic
feature or phenomenon.

To better analyze real-world conditions at a specific lo-
cation, ocean buoys are modeled. Traditionally, this can be
done by training a statistical model on the data collected from
a single location for prediction [5][16]. Otherwise, multiple
observation locations are combined into a single time series
to train and predict an individual location. This incorporates
a sense of spatial awareness into the model [14]. With the
advent of deep learning, dozens of locations are used to train
a single model for a more generalized approach. The model is
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trained and used to forecast multiple single-location buoys, for
example [6][12]. Specialized architectures, like graph neural
networks, are also used to increase spatial awareness [30].

Combining both physically collected and numerically mod-
eled data together in an ML context is a wide-reaching
methodology. PINNs combine PDE solutions with collected
data at training time [11]. This approach is usually used to
solve numerical equations directly [33]. Forecasting physical
parameters such as sea surface temperature [34] or physical
phenomena such as storm surges [35] are also explored. DA
for machine learning models is also becoming a popular topic
to improve surrogate results [10][28]. Most similar to our
research is the use of both modeled and observed data in
the training and/or inference of ocean parameters, as seen
in [12]. That work differentiates itself from typical DA by
combining the data during the training scheme itself, instead
of as a reanalysis step. It is different from typical PINN
models through the lack of modeling of differential equations
in the training scheme, instead using pre-calculated numerical
outputs.

The methodologies proposed in this research are novel with
respect to surrogate ocean parameter forecasting because the
highlighted works typically combine fewer ocean features
for forecasting, while we use all buoy sensors available and
combine with ERA5 data. This work is novel in the context of
buoy forecasting because a Multiple-Location Model (MLM),
as defined in this work, either has not been investigated or is
difficult to find in literature. Lastly, this extends the previous
work of [12] by examining the proposed loss function in a
different context, modeling multiple buoys with a different
feature set, instead of single buoys. A significant difference is
the use of numerically modeled features only in the training
dataset and not as an input into the surrogate at inference
time. This better aligns the methodology as a class of DA that
combines data observations and models at training time to
improve model performance when initial conditions are poor
at inference time.

III. METHODOLOGY

Introduced are methodologies to verify the following re-
search goals. One aim is to see if it is possible to improve
the forecasting result for the collection of selected buoy
observations. The MLM technique is expected to improve
accuracy when increasing the number of modeled buoys. If
so, this will give insights on whether the model weights can
internalize connection in spatially sparse regions of interest.
The physics-regularized loss function is improved by using
modeled features in the training scheme while removing them
from the inference input. Thus, it must be investigated if the
method still improves model accuracy and whether it can be
combined with the new sparse modeling scheme.

A. Sources of Data

The National Data Buoy Center (NDBC) is a United States-
based organization and a division of the National Oceanic and
Atmospheric Administration (NOAA). NDBC is responsible

for collecting real-world observations of a wide range of ocean
and climate feature measurements. In total, 1311 stations are
deployed with 243 owned and maintained directly by NDBC
[36], and they have been collecting the observation data since
1970. Within the framework of this project’s experiments, the
utilization of standard meteorological historical data (STD-
MET) is employed. As the data is of real-world origin, not
every station provides feature data for every year. Furthermore,
the available data may contain missing values [37]. Sensors in
real-world settings may experience malfunctions or localized
noise that are not helpful in a model training context.

TABLE 1. CONSIDERED NDBC FEATURES AND ERA5 EQUIVALENTS

Measurement NDBC
Feature ERA5 Equivalent

Air Temperature (◦F) ATMP 2m temperature

Air Pressure (hPa) PRES Mean sea level
pressure

Dewpoint Temperature (◦F) DEWP 2m dewpoint tem-
perature

Water Temperature (◦F) WTMP Sea surface temper-
ature

Wind Speed (kts) WSPD 10m v-component
of wind,
10m u-component
of wind

The ERA5 dataset, generated by the ECMWF, represents
the latest advancement in a series of global atmospheric
reanalysis datasets. Reanalysis entails the assimilation of ob-
servational data and model simulations to generate a coherent
and extensive dataset. Data assimilation leverages observations
from ships, buoys, and satellites with physical laws to ensure
historical data is modeled as accurately as possible. Within this
project, the ERA5 dataset, specifically identified as “ERA5
hourly data on single levels from 1940 to present”, is utilized
[4]. Hourly estimates are offered for a diverse set of atmo-
spheric and ocean circulation variables. This dataset consists
of a regridded subset extracted from the full ERA5 dataset
while preserving its native resolution.

NDBC standard meteorological dataset provides 14 mea-
surements [37] while ERA5 provides 262 variables [4]. Five
selected NDBC measurements are also modeled within the
ERA5 dataset, and therefore, are collected for further analysis
and use within the physics-regularized deep learning task.
Combining the five NDBC measurements with the correspond-
ing five ERA5 values yields the collection of data required
for the upcoming physics-regularized loss function. These five
selected features are the focus of the surrogate forecasting
task. The selection collected from NDBC and the ERA5
counterparts are depicted in Table 1. We use approximately
three full years of hourly data, from 2020 to 2022.

B. Multi-Location Modeling

Oceans are complex and elaborate systems with intercon-
nected dynamics. Therefore, it is hypothesized that enriching
training data with measurements from several locations will
empower the neural network to recognize spatial dependencies
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between nearby buoys. The spatial-temporal data from each
location is integrated in a unified dataset following a novel
design in which each instance encapsulates measurements of
multiple stations at a particular timestamp. That is, at N
buoy locations, the features in Table 1 are extracted and
combined into a single vector of one-hour increments to create
an MLM dataset. Corresponding locations for the buoys in the
ERA5 data are combined in the same way. The ERA5 data
is reserved separately for use in the specialized loss function
described in Subsection C. The example in Figure 1 shows the
partitioning process. Any number of buoys may be selected in
this generalized approach.

Figure 1. Example of the construction and final representation of the
Multi-Location Modeling scheme.

In the figure, buoys A, B and C represent unique locations
with a fixed buoy. Features [f1-f4] represent time series vectors
of length T . Features are combined in alphabetical order into
buoy N, such that sub-sampling a single element t gives the
current condition of each buoy. The vector size of buoy N(t)
is the number of features multiplied by number of buoys.
The geographical locations influence one another implicitly
through the neural network’s hidden layers. Model weights
take advantage of correlations learned at training time. This is
contrasted against grid-based numerical models where forward
regression is explicitly calculated with respect to adjacent grid
cells.

Once the dataset has been generated, preprocessing is com-
pleted to make the problem more suitable for the deep learning
architecture. First, we take the difference of each feature from
t to t+1. This simplifies the forecast problem by reducing it to
a gradient prediction problem. For each feature, the model only
needs to produce an inference representing the rate of change.
An inverse integration stage sums the recurrent predictions
with the initial condition to get the real-world result. The data
is normalized based on the mean and standard deviation seen
in the training data alone, and the inverse is completed when
investigating the results. Therefore, feature forecasts analyzed
in the results section are in their respective scales.

C. Physics-Regularized Loss Function

The loss function of our deep learning models compares
the training inference of the MLM vector with an individual
observed value and numerically modeled value. By comparing
the model inference to the NDBC and ERA5 data, two error
scores are generated from the same prediction. Depending on
interpolation or noise in the underlying data, one source will

better represent the true conditions. So, a ratio of the two error
scores is taken, and this error is used for back propagation in
the model. The method is first proposed in [12]. The result is
that, based on the ratio, the model is trained to approximate
either source more strongly.

The disagreement between the datasets is proposed to im-
prove the training procedure in two significant ways. The first
is that the disagreement prevents overfitting to either individual
source of training data. The second is that interpolated or
distorted values are less likely to be frequent in both sources
simultaneously. It is assumed that at least one source of data
reasonably represents the underlying conditions for a given
time step. Ultimately, the multi-location vector of buoy feature
predictions is given along with the numerically derived values.
Given the NDBC predictions and ERA5 values to be combined
in the training procedure, the loss function is defined as follows
in (1)-(6).

∆1 = |ŷNDBC − yNDBC | (1)

∆2 = |ŷNDBC − yERA5 | (2)

Ωcoupled loss = (α ∗∆1) + ((1− α) ∗∆2). (3)

In (1) and (2), ŷ represents the output vector of the surrogate
model, while y represents the training ground truth vector. The
source of modeling truth is determined by the subscript as yobs
or ymodel. The error for each feature is weighted by coupling
term α and represents a mixture of error calculated against
two sources, ERA5 and NDBC. Importantly, α is constrained
such that 0.0 ≤ α ≤ 1.0. When α = 0.0, the NDBC term
is completely shut off, and the model is only trained by
comparing the ERA5 estimations. Otherwise, when α = 1.0,
only the NDBC data is used in training the model. Additional
non-coupled features may be included in the surrogate and are
defined as,

Ωmodel loss = |ŷERA5 − yERA5 | (4)

Ωobservation loss = |ŷNDBC − yNDBC |. (5)

The remaining uncoupled features, as seen in (4) and (5),
are used to collect error by comparing the predicted value
with the relevant ground truth value. Each piecewise value is
summed into the final loss function (6),

Ωtotal loss = Ωcoupled loss +Ωmodel loss +Ωobservation loss. (6)

In this work, only the coupled loss is used. There are
no uncoupled model or observation features, so Ωtotal loss =
Ωcoupled loss.

D. Deep Learning Architecture

Two deep learning architectures are considered for the
forecasting task, given the prior defined multi-location dataset
and the physics-coupled loss function. A LSTM unit model
and an attention head transformer model are used. The two
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models are chosen for their complexity and ability to gen-
eralize complex and recurrent time series data [38]. LSTM
and attention head layers add more parameters to the hid-
den layers of the relatively shallow networks. The memory
unit in the LSTM model particularly excels at storing prior
knowledge for improved forecasts. The attention mechanism in
the Transformer model is known for statistically weighing the
importance of the previous input. The Transformer architecture
typically implements more weights in the hidden layers of
the model, so comparing this with the smaller LSTM model
is often insightful. Both model architectures are implemented
using the Python programming language and the TensorFlow
machine learning platform [39].

TABLE 2. LSTM MODEL ARCHITECTURE BY LAYER FOR STAGE 2. THE
TOTAL NUMBER OF TRAINABLE PARAMETERS IS 146,878.

Layer Type Shape Parameters
Input Variable 0

LSTM (N, 1, 128) 81,408
Dropout N, 1, 128 0
LSTM (N, 1, 64) 49,408

Dropout N, 1, 64 0
LSTM (N, 1, 32) 12,416

Dropout N, 1, 32 0
LSTM (N, 16) 3,136
Dense (N, Variable) 510

TABLE 3. TRANSFORMER MODEL ARCHITECTURE BY LAYER FOR STAGE
2. THE TOTAL NUMBER OF TRAINABLE PARAMETERS IS 602,526.

Layer Type Shape Parameters
Input Variable 3,968

Transformer Block (N, 1, 128) 297,344
Transformer Block (N, 1, 64) 297,344

Flatten (N, 128) 0
Dense (N, Variable) 3,870

Both models include dropout layers to prevent model over-
fitting during the training process. The dropout parameter is set
to 0.1. The exact implementation of the LSTM model is found
in Table 2 and the transformer model is in Table 3. In each
table, N represents the variable batch size when training the
model. The Variable input and output is equal to the product
of the number of features and the number of buoys in each
experiment. Therefore, each model’s input and output shape
is dependent on the number of ocean features and the number
of buoys, as described in Figure 1. The Transformer blocks
consist of multi head attention layers with four attention heads
and feed forward dense layers of size 128 and dropout layers.
Each model is trained for 100 epochs using a batch size of
64. The training procedure is set such that the model is given
conditions at t and produces a forecast at t+1. By setting the
input and output shape to the same length, the resulting model
can be used to generate recurrent forecasts for any number of
consecutive one-hour periods.

E. Experimental Test Case

Experiments using differing numbers of model locations
and α ratio values are examined to verify the proposed
methodology. The forecast results are centered on a particular
buoy with the identification value of 42002. Buoy 42002 is
located in the in the Gulf of Mexico. This buoy was chosen
because of its central location relative to other buoys and
because it has comparatively fewer missing values. Regardless
of the number of buoys modeled, focusing on only one buoy
assesses the hypothesis that the surrogate is improved when
given spatial context. Considering the forecast results of all
buoys is impactful, but outside the scope of this investigation.

When increasing the number of modeled buoys, results
that are similar or better to the single-buoy model validate
the proposed methodology for producing regional inferences.
Increasingly better results indicate that the MLM approach
either provides spatial context or model regularization through
additional data. Tuning the α ratio is proposed to improve
model forecast by combining observed and numerical data. So,
an α value which produces better results than when α = 1.0
(no regularization) is searched for.

For validation, the forecast ability of the surrogate models
is examined for 24-hour intervals over the test data. The
test data is comprised of the final three months of 2022.
A recursive forecast scheme that uses the output of the
proceeding inference as the input for the next inference is
employed. The temporal resolution of the data is in one-hour
increments, so 24 hourly forecasts are made for each interval.
The model only uses the real conditions when making the first
prediction in a cycle and when the test results are analyzed.

The Root Mean Square Error (RMSE) score (7) is used to
determine the accuracy of the 24 hour forecast compared to
the actual conditions at the buoy. The RMSE can be examined
on a per-time step basis or as an average of all predictions.

RMSE =

√√√√ 1

n

n∑
i=1

(yi − ŷi)2 (7)

The MLM methodology is tested by increasing the number
of buoys to forecast features in Table 1. Buoy 42002 is used
to analyze ATMP, PRES, and WSPD, while buoy 42020 is
analyzed for DEWP and WTMP. Two separate single-buoy ex-
periments are conducted because no examined buoy contained
all five features without extensive missing values. Using the
coordinates of the central station, buoy 42002, and the Great
Circle Distance [40] method, the distance to the remaining
stations in the area was calculated. To evaluate the hypothesis,
three datasets were created: one that exclusively covers a
central station (Stage 0), one that covers stations within 600
km (Stage 1), and one that covers stations within 900 km
(Stage 2). The exact specifications of the three experiments
is found in Table 4. The geographical location of each buoy
is displayed in Figure 2. To get baseline results, α = 1.0 is
selected, which means the entire training signal comes from
the NDBC buoy dataset and the ERA5 data has no influence
on the NDBC predictions.
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TABLE 4. INCLUSION OF BUOYS PER EXPERIMENT. GENERAL LOCATIONS
OF EACH BUOY ARE FOUND IN FIGURE 2. STAGE 0 USES TWO SEPARATE

INDIVIDUAL BUOYS TO CAPTURE FEATURES MISSING IN EITHER
EXPERIMENT.

Stage Distance (m) # of Buoys Buoy List

Stage 0 - 1 42002;
42020

Stage 1 600 4

42002,
42019,
42020,
42035

Stage 2 900 6

42002,
42003,
42019,
42020,
42035,
42040

42002

42020

42019

42035

42003

42040

Selection of Ocean Buoys Per Stage

Figure 2. The geographical location of each buoy used in experiments. Stage
0 is labeled yellow, Stage 1 is labeled orange, and Stage 2 is labeled red.

Once the best number of buoys has been identified, the
models re-examined with the physics-regularized loss. Finding
the value for hyperparameter α that minimizes the error score
is the main goal. A grid search of α ∈ [0.0, 1.0] with a step size
of 0.05 is conducted. The surrogate model is retrained using
the same random seed and for each α value. The minimal
RMSE score on the test dataset denotes the best performing
experimental setup.

For this experiment, the data collection and processing
pipeline is divided into four stages, as outlined in Figure 3.
First, the time series data is downloaded for each buoy from
NOAA. Similarly, the ERA5 data is retrieved after selecting
the appropriate geographical region and corresponding time
periods. Second, the buoy’s latitude, longitude, and time values
are used to match the buoy data with the ERA5 data. Since
these values may not align perfectly, we select the closest
possible location and time points. Third, the MLM scheme is
applied to format the forecast features as described in Figure
1. The same process is followed for the ERA5 data, which is
stored in a separate vector for use in the coupled loss function
(3). Finally, time series data processing is completed for all
features. Missing data is interpolated, differencing is applied
from t to t + 1, and each feature is normalized based on the
training data.

Figure 3. The data collection and processing pipeline.

IV. RESULTS

The results for the MLM data technique are found for the
LTSM model in Table 5 and the transformer model in Table
6. Each table displays the model, the examined buoy, and the
calculated RMSE rounded to three decimal places for each
stage. The average performance of all features is taken to
find the overall best performing stage. From the initial stage
experiments, a slight improvement is demonstrated for all
features when comparing Stage 0 to Stage 1 and/or Stage 2.
This implies that the additional data used in the MLM data
scheme has an impact on model stability.

One outlier in the experiments is found in water temperature
(WTMP), which yields almost the same result in each experi-
ment. We propose the behavior is due to two main factors. The
first is that most buoys are missing WTMP data, a differenced
forecast of near zero is preferred by the model. The second
is that the ERA5 WTMP data, used when α < 1.0, is only
updated every 24-hours. Therefore, the regularizing data is also
biased in the same way. This important lesson shows that poor
data, when collected for both sources, produces an uninformed
model. Neither the MLM scheme nor the physics-regularized
loss function can improve results in this case.

Model improvements when adding additional buoy data is
shown in Figure 4. In the figure, consecutive 24H forecasts
are generated for the air temperature (ATMP) feature for all
three stages. In Stage 0, the prediction is unstable for long
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Figure 4. Improvements in Transformer model stability when adding additional buoy data to the prediction vector. Increasing buoy count results in more
conservative predictive behavior.

TABLE 5. RESULTS OF CONSECUTIVE 24H FORECASTS USING THE LSTM
MODEL FOR EACH STAGE. ATMP, PRES, AND WSPD ARE TESTED USING

BUOY 42002 WHILE DEWP AND WTMP ARE COLLECTED FROM BUOY
42020.

LSTM Buoy Stage 0 Stage 1 Stage 2

ATMP 42002 1.909 1.736 1.733

PRES 42002 12.683 12.483 12.132

WSPD 42002 2.698 2.513 2.516

DEWP 42020 3.218 3.447 3.164

WTMP 42020 0.625 0.625 0.625

Average 4.227 4.161 4.034

forecast horizons. Applying more data via the MLM scheme
regularizes the behavior to a more stable outcome. Stage 1
shows results that are very stable with nearly no change. This
performs very well in low-change periods. In Stage 2, the
addition of more data to forecast yields a less stabilized result
overall. The stability is better than Stage 0, and the forecast
might be more useful in drastically changing systems.

TABLE 6. RESULTS OF CONSECUTIVE 24H FORECASTS USING THE
TRANSFORMER MODEL FOR EACH STAGE. ATMP, PRES, AND WSPD ARE
TESTED USING BUOY 42002 WHILE DEWP AND WTMP ARE COLLECTED

FROM BUOY 42020.

Transformer Buoy Stage 0 Stage 1 Stage 2

ATMP 42002 2.851 1.733 1.940

PRES 42002 12.677 12.460 12.302

WSPD 42002 2.560 2.595 2.514

DEWP 42020 6.262 3.158 3.160

WTMP 42020 0.625 0.625 0.625

Average 4.995 4.114 4.108

Following the stage experiments, various α values are
iterated over to validate whether the physics-regularized loss
function improves the MLM data scheme. The experiment is
conducted for both model architectures and all stages. Results
when α = 1.0 are equivalent to the MLM stage experiments.
The average results of these tests can be found in Table 7.
In the table, all but one model and stage combination yield
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TABLE 7. AVERAGE α RESULTS FOR ALL MODELS AND STAGES. THE MOST PERFORMANT EXPERIMENTS ARE SET IN BOLD.

Model: Stage 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

LSTM: 0 5.072 5.037 6.055 4.800 4.647 4.899 5.419 5.063 5.152 3.956 4.320
LSTM: 1 5.174 4.921 4.708 4.575 4.652 5.304 8.051 6.33 5.526 4.415 4.028
LSTM: 2 4.647 4.412 3.999 4.74 5.079 4.66 4.962 6.126 4.473 4.432 5.218

Transformer: 0 5.328 5.187 5.361 5.631 5.761 5.252 5.0140 5.088 4.9780 5.168 4.731
Transformer: 1 5.696 5.604 5.433 5.911 5.273 6.129 5.061 4.964 5.338 5.165 4.938
Transformer: 2 5.066 5.119 5.160 5.251 4.929 4.960 4.773 4.673 4.838 4.597 4.853

Model: Stage 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00

LSTM: 0 5.242 6.050 4.670 4.420 4.378 4.576 5.138 4.634 4.818 4.227
LSTM: 1 5.381 6.475 4.688 4.186 4.492 4.971 4.905 4.986 5.257 4.161
LSTM: 2 4.420 4.455 5.522 4.084 4.596 4.878 4.692 4.603 4.244 4.034

Transformer: 0 4.844 4.511 4.543 4.558 4.604 4.317 4.597 4.088 4.371 4.995
Transformer: 1 5.210 4.824 4.723 5.008 4.928 4.884 4.605 4.48 4.205 4.114
Transformer: 2 4.370 4.106 4.495 4.505 4.374 4.364 4.604 4.178 4.416 4.108

TABLE 8. RESULTS OF ITERATIVE α RATIO TESTING USING THE LSTM MODEL AT STAGE 0. WHEN α = 0.0, THE MODEL IS TRAINED USING
EXCLUSIVELY ERA5 DERIVED DATA. WHEN α = 1.0, THE MODEL IS TRAINED USING EXCLUSIVELY NDBC BUOY DATA. FOR 0.0 < α < 1.0, A MIXED

FORMULATION OF (3) IS USED.

Feature 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

ATMP 1.772 1.741 1.979 1.779 1.75 1.81 1.745 1.746 1.863 1.732 1.957
PRES 16.883 15.982 9.825 14.376 13.87 14.713 14.463 14.406 13.879 11.021 12.461
WSPD 2.541 3.311 14.571 3.466 3.453 2.689 2.543 3.061 5.158 2.784 3.355
DEWP 3.539 3.525 3.277 3.755 3.535 4.659 7.720 5.479 4.234 3.617 3.200
WTMP 0.625 0.625 0.625 0.625 0.625 0.625 0.625 0.625 0.625 0.625 0.625

Feature 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00

ATMP 1.731 1.757 2.027 2.319 1.752 1.789 1.807 2.441 2.127 1.909
PRES 13.09 13.33 13.670 12.738 12.212 11.694 12.877 12.738 13.072 12.683
WSPD 6.168 6.31 3.203 3.007 2.977 3.204 5.803 2.571 2.483 2.698
DEWP 4.597 8.223 3.820 3.413 4.325 5.568 4.577 4.794 5.782 3.823
WTMP 0.625 0.625 0.625 0.625 0.625 0.625 0.625 0.625 0.625 0.625

results that are superior to the α = 1.0 (all NBDC data) model.
However, typically the most significant reduction is found for
Stage 0. This implies that the stability gained from the MLM
modeling is significant enough that the additional regulariza-
tion gained from the coupled loss function is minimal. In other
words, when there is less available geographical context in the
data representation, numerical model regularization is more
impactful. The results from the LSTM Stage 0 experiment
are highlighted in Table 8. We highlight that the combination
of data may not be viable for all features at once. That
is, the feature yields minimal results at various α values.
This suggests that multiple α ratios may be used, one for
each feature. This idea is explored further in similar ongoing
research [13] but is outside the scope of this work.

To better understand how the error is reduced among the α
experiments, the absolute error generated from α = 1.0 and
α = 0.9 for the Transformer Stage 0 experiment is compared
in Figure 5. The bottom figure shows the difference between
the two errors. When the value is greater than zero, this
represents places where α = 0.9 is more performant than
the original α = 1.0 model. In general, the coupled loss
function regularizes the model in the same way as the MLM

data scheme. Less exaggerated forecasts keep the model stable
over longer horizons. In cases not highlighted in figures, it
was observed that α < 1.0 produced models that were better
aligned to general ocean conditions by proactively forecast-
ing changes in the environment. The final RMSE of these
forecasts were worse on average but showed the influence
of the ERA5 dataset on the models. Considering the results
of both experiments, we have improved the forecast error
and achieved roughly the best performance possible using the
model architecture and data set. The improvements to model
performance are capped because of the size of the models and
the amount of training data used. Three years of buoy data at
only six locations is not enough data to support a statistical
model with millions of parameters, hence the smaller model
architectures used in this experiment. Increasing the number of
model parameters and amount of training data should result in
a surrogate model that is more robust to real-world conditions,
allowing the RMSE to be reduced further. These changes
would provide diminishing returns once the model is large
enough. Additional feature engineering for more informative
features can also improve baseline results.

When comparing these baseline results to those generally

10Copyright (c) IARIA, 2024.     ISBN:  978-1-68558-325-5

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

COCE 2024 : The First International Conference on Technologies for Marine and Coastal Ecosystems



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
0

2

4

6

8

10

12

Ab
so
lu
te
 E
rro

r

Compariso  of Error i  Predictio s of α=0.90 a d α=1.0 for Feature Air Temperature
α=0.90
α=1.0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
24H Predictio  Cycle

−4

−2

0

2

4

Er
ro
r C

om
pa
ris
o 

↑ Improveme t

Figure 5. Difference in absolute error of the Transformer Stage 0 forecasts when comparing α = 0.9 and α = 1.0 (no regularization) for ATMP. The use of
model data when training the observation model helps to prevent large swinging changes in the recursive forecast.

achieved in the most similar research to this [12], they are
generally worse. This is explained by the smaller model size
and dataset. However, the increased number of forecast steps
is also a significant factor. The surrogate models in this
experiment forecast three times as many periods, 24 instead of
the previous eight, which means that general model stability
is more important. Also, the previous work considers the
combined result of over 100 buoys. Using a more similar
experimental setup would likely continue to improve the
results seen here. However, increasing the number of modeled
buoys would continue to increase the inference vector size to
a potentially cumbersome level. Since the input and output
vectors of our models is the product of the number of buoys
and number of features the required number of trainable
parameters would increase considerably. A future investigation
might select buckets of nearby buoys to model using the MLM
scheme. This would increase the data pool without modeling
hundreds of buoys in a single inference.

The MLM scheme improved model accuracy as the number
of buoys increased. The distance between the buoys in Stage 1
and Stage 2 is large enough that local conditions are unlikely
to affect one another. Therefore, it does not seem like a direct
geographical influence is the determining factor of inferences.
Instead, it seems most likely that utilizing more data in the
input vector improves stability when training the weights of the
neural network. To verify this hypothesis, further studies which
use the MLM scheme in a variety of ways can be examined.
First, using the MLM scheme on very distinct and far away
locations should reveal if model behaviors are stabilized from
the increased modeling space alone. Then, nearby observation

points, which are geographically relevant to one another, can
be added one-by-one until diminishing returns are found.
This would support that the neural network is internalizing
nearby behaviors. Although a more stable output is produced
in the context of this research, other mechanisms for adding
geospatial context should also be explored.

The physics-regularized loss function displayed the ex-
pected results of decreasing RMSE when the best α value
is found. This compares to the results in [12], where a similar
reduction in error through more stabilized results was seen.
Contrary to those results, the error reduction seen is lesser in
magnitude, most likely because the testing dataset is signifi-
cantly larger in that work. Similarly to the previous work, some
α values yielded results which were significantly worse than
when no regularization is provided. This is typically the case
when α = 0.0 and most often because of the poor performing
PRES feature. When α = 0.0 this is equivalent to only using
numerical model data to predict observation data. So, this
behavior is most likely explained by misalignment between the
observation ground truth and the numerically modeled PRES
values from ERA5.

Importantly, the ERA5 data was removed from the inference
input, and this is novel when comparing to the previous work.
This shows the methodology can be used without the use of
numerical models as an input parameter after the surrogate
has been trained. This was an important contribution because it
allows the methodology to be used more flexibly in real-world
examples. Numerically modeled data is likely to be available
when training a surrogate model, because this is almost always
done using historical data. However, numerical models can
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take hours to run for high-quality analysis. In situations where
observation forecasts are needed immediately, this bottleneck
would be extremely detrimental.

Finally, both techniques were separately found to regularize
the results below the baseline. When combining both MLM
and the physics-regularized loss, only a limited performance
increase was found. This supports the conjecture that the
model has reached a theoretical limit via the data selection and
model architecture. Therefore, the use of both methodologies
together should be reserved for those cases where more model
regularization is required or when the problem is well-suited
for both techniques. The MLM technique is recommended for
those tasks where a static number of observation points need to
be modeled. The physics-regularized loss can be implemented
in any problem where multiple sources of data representing
the same phenomenon are readily available.

V. CONCLUSION AND FUTURE WORK

In this paper, a novel combination of a MLM scheme and
a physics-regularized loss function was investigated for deep
learning models. Fixed-location ocean buoy observations were
used to validate this methodology in a real-world context. The
buoy inference model was used to recurrently forecast 24-
hour intervals over one month to validate results. Combining
multiple buoy locations and the relevant features into a shared
inference vector using the proposed MLM scheme improved
model performance by stabilizing the inferences over longer
time horizons. Multiple locations equaling four and six loca-
tions both yielded superior results over the single-buoy model.
Improving the physics-regularized loss approach by removing
numerical models from the surrogate input was also a success.
The grid search for the best α value increased the performance
the most in Stage 0 experiments. The combination of both
MLM and coupled loss produces more accurate forecasts,
but the magnitude of the improvement is lesser than when
using either technique alone. This implied we reached the best
results for this configuration of model architecture and data
set. Although the experimentation was focused on a single
buoy, the trends observed are expected to hold for the other
forecasted buoys.

All together, it is proposed that the findings demonstrate
enhanced stability and accuracy of oceanic data forecasting
when using MLM and the physics-regularized loss. This is a
practical surrogate for systems where multiple fixed-location
observations (e.g., buoys) need to be forecasted simultaneously
and in quick succession. Situations where a fleet of buoys
have some missing values, due to buoy damage or scheduled
maintenance, can benefit from this type of modeling. If only
some data is missing, known values can be injected as a model
input to support forecasts in regions where data is missing.
These approximate observations can be used in place of sensor
data while buoy maintenance is conducted. Finally, in this
work the ERA5 numerical model data was used when training
the model, but no features were used as part of the input
during inference time. Practically, this technique allows for

more flexibility in real world scenarios while still giving the
model some physics-based regularization.

In future work, the same methodology should be compared
against other data to verify if the combination of MLM and
coupled loss would see more significant increases in model
accuracy. Examinations considering all buoys in the forecast
model should be conducted. Further comparisons to other
geospatial context models, like graph neural networks, and
their integration with the coupled loss function would also be
extremely relevant. Explorations of the MLM structure and
physics-regularized loss should also be adapted for use with
other methods of combining physical knowledge or observa-
tions. Moreover, more complicated integration schemes like
Runge-Kutta can be implemented to further improve perfor-
mance/stability. Therefore, the use of the proposed method-
ology with PINNs or data assimilative machine learning is a
promising potentiality in the right circumstances.
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