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Abstract—In this paper we present a method to improve
the performance of eigenvalue-based detection, facilitated with
eigenvectors of the sample covariance matrix. We focus on the
multi-sensor detection of a single source case. If the channel is
constant over adjacent sensing slots, it can be blindly estimated
by using the eigenvector associated to the largest eigenvalue
on condition of the source’s presence. We introduce a new
test where the eigenvector value, computed over some previous
auxiliary slots, is properly used by the detection algorithm.
The ROC curves show that the new test is able to outperform
popular algorithms like the Roy Largest Root Test and the
Energy Detection for both PSK and Gaussian sources, and
to approach the optimal Neyman-Pearson performance with a
very small number of auxiliary slots.
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I. INTRODUCTION

In Cognitive Radio (CR) scenario, secondary users can
use multiple spectrum sensing techniques to enhance the de-
tection performance of primary user’s absence or presence,
i.e., making a decision between the alternative hypothesis
of pure noise (H0) or signal plus noise (H1). The new CR
systems and standard will impose tight constraints on the
detection algorithm performance. As an example, the IEEE
802.22 WRAN (Wireless Regional Area Networks) standard
[1] requires very low values for the false alarm (Pfa lower
than 0.1) and high detection probability (Pd no less than
0.9). These requirements may be difficult to be obtained
with the popular energy detection (ED) [2], which simply
compares the energy of the received signal against the noise
level. ED performs very well in normal situations, but it can
be unable to match stringent requirements in some extreme
(but important) cases, like for example hidden nodes, where
the signal-to-noise ratio (SNR) may be -10 dB or lower.

For this reason, several eigenvalue-based detection al-
gorithms have been proposed in recent years, aiming to
improve the performance of ED. Non-parametric methods,
i.e., without a complete knowledge of all the system (signal,
noise and channel) parameters can be generally categorized
as (i) blind detectors, without knowledge of any parameter
- to name a few, the Generalized Likelihood Ratio Test
(GLRT) [3] and the Eigenvalue Ratio Test (ERT) [4]; (ii)
semi-blind detectors, where some parameters are known

- such as the Roy Largest Root Test (RLRT) [5] which
resorts to the noise level knowledge; (iii) trained detectors,
where some parameters are estimated outside the sensing
slots. These algorithms can be compared by studying the
ROC (Receiver Operating Characteristics) curves, plotting
the Pd as the function of Pfa. Most systems compute the test
threshold as a function of Pfa (to guarantee Constant False
Alarm Rate - CFAR). Then, a system outperforms another
if it achieves a higher Pd at the parity of a certain Pfa.

It is known that, among all possible detection tests, an
optimal solution exists. The likelihood ratio test derived
according to the Neyman-Pearson (NP) lemma [6] for an
alternative hypothesis, is the uniformly most powerful test.
Unfortunately, the NP test is a parametric method requiring
strong knowledge of the signal, noise, and channel parame-
ters. For the case of semi-blind detectors with known noise
level but unknown channel, the RLRT test is proved to be
the best algorithm [7]. However, as can be observed by
comparing their ROC curves, the gap between the NP and
the RLRT is rather large. This penalty is essentially due to
the gain/lack of the channel knowledge.

In single source case, if the channel is constant within ad-
jacent sensing slots, it can be blindly estimated (i.e., without
any use of pilot symbols) by using the eigenvector associated
to the largest eigenvalue of the sample covariance matrix of
the signal slots. The idea of this paper is to exploit this
to enhance the detection performance of eigenvalue-based
tests. To do this we propose a new test, called EigenVEctor
(EVE) test, that explicitly employs the eigenvector in the test
statistic. Simulation results shows the EVE test performs at
least as good as the RLRT and with increased prior available
auxiliary signal slots, is able to significantly cover the gap
between the NP and the RLRT test. The paper is arranged
as follows: The adopted model is presented in Section II.
NP and RLRT tests are reviewed in Section III. The new
EVE test is introduced in Section IV and its performance
is analyzed in Section V. The practical consideration and
future works are described in Section VI and Section VII.

II. MODEL

Denote by K the number of antennas or cooperative
sensors and by N the number of samples per sensing slot.
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We focus on a single source scenario, which is of interest
for many detection problems, including cognitive radio. The
K × 1 received vector at time n collects the baseband
complex (I/Q) samples from the K antennas:

y(n) = [y1(n) . . . yk(n) . . . yK(n)]
T
.

We have:

y(n) =

{
v(n) H0

hs(n) + v(n) H1

where v is a K × 1 circularly symmetric complex Gaussian
(CSCG) vector of noise samples with zero mean and vari-
ance σ2

v , i.e., v(n) ∼ NC(0K×1, σ
2
vIK×K). All the noise

vectors v(n) are assumed to be statistically independent.
The channel complex vector h = [h1 . . . hK ]

T is assumed
constant and memoryless within all the sensing window.

The signal samples s(n) are assumed to have constant
probability density function, zero mean and variance σ2

s . In
the following, we will focus on two case studies, where sig-
nal samples s(n) are independent Gaussian or PSK samples.

Under H1, we define the average SNR at the receiver as

ρ , E ∥hs(n)∥2

E ∥v(n)∥2
=

σ2
s∥h∥2

Kσ2
v

(1)

Given the K ×N received matrix

Y , [y(1) . . .y(n) . . .y(N)] . (2)

and the K ×K sample covariance matrix

R , 1

N
Y Y H (3)

we will denote by λ1 ≥ . . . ≥ λK the eigenvalues
of R sorted in decreasing order and by e1, · · · , eK the
corresponding normalized eigenvectors.

III. KNOWN TEST STATISTICS

To make the decision between H0 and H1, a test statistic
compares a quantity T against a pre-defined threshold t:
if T > t H1 is selected, otherwise H0 is chosen. The
test performance is evaluated by the false alarm probabil-
ity Pfa = Pr(T > t|H0) and the detection probability
Pd = Pr(T > t|H1). In practical, the decision threshold
t is typically computed as a function of the target Pfa, to
guarantee the aforementioned CFAR property.

The Neyman Pearson (NP) test is given by the following
likelihood ratio:

TNP =
p1(Y ;h, σ2

s , σ
2
v)

p0(Y ;σ2
v)

. (4)

and is known to be optimal, i.e., to achieve the maximum
possible Pd for any given value of Pfa.

As an example, under the considered model, if the signal
samples are independent Gaussian samples, the NP test is
obtained by using [3]:

p0(Y ;σ2
v) =

1

(πσ2
v)

NK
exp

(
−N trR

σ2
v

)

and

p1(Y ;h, σ2
s , σ

2
v) =

1

(πKdetΣ)N
exp

[
−N tr

(
RΣ−1

)]
.

where Σ = σ2
vIK + σ2

shh
H .

The NP test requires the exact knowledge of both the
channel vector h and the noise variance σ2

v . As pointed out
in [7], if only the noise variance is known and the SNR is
above the identifiability threshold:

ρcrit =
1√
KN

(5)

the best statistical test is the RLRT [5], which compares the
largest eigenvalue of the sample covariance matrix against
σ2
v :

TR =
λ1

σ2
v

. (6)

The RLRT outperforms all the other algorithms belonging
to the class of semi-blind algorithms [8], i.e., where the noise
level is assumed to be known, including the popular ED,
which is given by:

TED =
1

KNσ2
v

K∑
k=1

N∑
n=1

|yk(n)|2 (7)

Despite of the superiority in its class, the gap between the
RLRT and the NP test is not negligible, as it can be seen by
observing the ROC curves reported in Figure 2. The scope
of this paper is to cover the gap between RLRT and NP.
To do this, we intend to use the eigenvector of the sample
covariance matrix.

IV. THE NEW EVE TEST

Since the RLRT is the best test within the class of semi-
blind algorithms, the performance differences with respect
to the NP test must be due to the lack of channel knowledge.
The method proposed in this paper works for a static chan-
nel, or at least a channel that can be considered as flat fading
not only for the sensing slot but for some adjacent sensing
slots. Clearly, this prevents its application to any kind of
mobility. Despite of this, the results are extremely interesting
for all the cases where the channel can be considered as
static for some time because, as we will see, the new method
is indeed able to approach the NP optimal performance.

The starting idea of the new test is that, given a H1 slot,
the eigenvector e1 associated to the largest eigenvalue λ1

provides an estimation of the channel vector h. Given Naux

signal slots available before the current sensing slot, let us
denote by eaux the normalized (i.e., with unitary energy)
eigenvector computed by using Naux · N samples. Now,
the problem is how to properly use eaux during the current
sensing slot. To do this we want to introduce a new statistical
test that (i) uses eaux, (ii) is at least as strong as the RLRT,
(iii) is able to approach the NP test when Naux increases.
Given the matrix Y received in the current sensing slot, let
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Figure 1. False Alarm Probability

us compute the sample covariance matrix R and the largest
eigenvector e. Suppose that the quantity eaux computed
over Naux previous signal slots is available, the proposed
statistical test, called the EigenVEctor (EVE) test, is defined
as:

TEV E =
Naux

[
eHauxReaux

]
+
[
eHRe

]
σ2
v(Naux + 1)

(8)

Note that if Naux = 0, the test reduces to

TEV E =
eHRe

σ2
v

=
∥e∥2λ1

σ2
v

=
λ1

σ2
v

(9)

and has the same statistical power of the RLRT. We will
now show that, for increasing Naux, the test outperforms
the RLRT and is able to cover the gap with respect to the
NP test.

V. THE PERFORMANCE OF THE EVE TEST

Fixed a given threshold γ, the behavior of the false alarm
probability is shown in Figure 1 for N = 50, K = 5 and
Naux = 1, 3, 5. These curves can be used to compute the
threshold necessary to achieve a given false alarm rate. For
example, the threshold values corresponding to Pfa = 0.1
are identified in the figure.

The ROC curves of the EVE test are plotted in Figure 2, 3,
and 4 for N = 50, K = 5, SNR = −10dB, Naux = 1, 3, 5,
and compared against those of of the Neyman-Pearson, the
RLRT, and the Energy Detection. We can observe that (i)
the new EVE test significantly outperforms the RLRT test
and (ii) the EVE test approaches the Neyman-Pearson test
even with a limited number of auxiliary slots.

Given a false alarm probability value Pfa = 0.1 and
chosen the threshold γ according to it, fixed the SNR value,
the behavior of the detection probability as a function of the
number of antennas is reported in Figure 5, 6, and 7. It can
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Figure 2. ROC curve
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Figure 3. ROC curve

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Pr[False Alarm]

P
r[

D
et

ec
tio

n]

ROC: N=50, K=5, SNR=−10dB, N
aux

=5

 

 

NP −− QPSK
NP −− Gaussian
EVE −− QPSK
EVE −− Gaussian
RLRT −− QPSK
RLRT −− Gaussian

Figure 4. ROC curve
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be observe that, at the parity of Pfa and Pd values, the EVE
test requires a much lower number of antennas to achieve
the same performance.

Given a false alarm probability value Pfa = 0.1 and
chosen the threshold γ according to it, the behavior of the
detection probability as a function of the signal-to-noise ratio
is reported in Figure 8, 9, 10, and 11. By fixing a Pd value
(for example 0.9 in the figures) it is possible to appreciate the
improvement achieved by the EVE test in terms of received
SNR at the parity of Pfa and Pd values. In the figures, a
gain up to 2 dB is observed with respect to the RLRT, and
up to 4 dB with respect to ED.

VI. PRACTICAL CONSIDERATIONS: ADJACENT SLOTS
AND UNKNOWN NOISE VARIANCE

For practical applications, it is interesting to note that
the test does not really require dedicated training slots. The
eigenvectors can be computed by using the samples from the
slots marked as H1 by the running sensing algorithm with a
high reliability. Moreover, the EVE test can be modified to
cover the case of unknown noise variance. As an example,
the following modified test

T ′
EV E =

Naux

[
eHauxReaux

]
+
[
eHRe

](
1

K−1

∑K
i=2 λi

)
(Naux + 1)

(10)

Since 1
K−1

∑K
i=2 λi represents the Maximum Likelihood

estimation of the noise variance [9], the test is equivalent
to the GLRT for Naux = 0 and is able to improve it for
increasing Naux.

VII. CONCLUSIONS AND FUTURE WORKS

A new test using the eigenvector of the sample covariance
matrix has been presented and evaluated in this paper. The
test requires the channel to be constant over a number
of adjacent slots, so it can be used only for constant or
slowly changing channels. The improvement obtained with
respect to the popular RLRT and ED tests is significant and
the performances rapidly approach the optimal NP curves.
Future research will focus on the computation of closed-
form analytical formulas for the false alarm and detection
probability.
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Figure 5. Antenna Gain

29

COCORA 2011 : The First International Conference on Advances in Cognitive Radio

Copyright (c) IARIA, 2011.     ISBN: 978-1-61208-131-1



3 4 5 6 7 8 9 10
0.5

0.6

0.7

0.8

0.9

1

K

P
r[

D
et

ec
tio

n]

 N=100, SNR=−11dB, Pfa=0.1, N
aux

=3

 

 

NP −− QPSK
NP −− Gaussian
EVE −− QPSK
EVE −− Gaussian
RLRT −− QPSK
RLRT −− Gaussian
ED −− QPSK
ED −− Gaussian

Figure 6. Antenna Gain
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Figure 8. SNR Gain
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Figure 9. SNR Gain
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Figure 10. SNR Gain
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Figure 11. SNR Gain
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