
A Flexible Bufferless H-ARQ Processor Based on Dataflow Scheduling

Pierre-Henri Horrein, Christine Hennebert
CEA,LETI,Minatec
Grenoble,France

Email: pierre-henri.horrein@cea.fr

Frédéric Pétrot
TIMA Labs

CNRS,Grenoble-INP,UJF
Grenoble,France

Email: Frederic.Petrot@imag.fr

Abstract—Flexible radio is a challenging way to implement com-
munication standards. In theses standards, Hybrid ARQ (H-ARQ) is
admitted as a usual error control protocol. H-ARQ is a cross-layer
protocol, offering a number of different possible versions, with multiple
instantiations running concurrently. In this context, designing a flexible
H-ARQ component is a necessity. This paper presents an H-ARQ
processor able to cope with the possible versions of the protocol and
any number of instantiations. Based on a modified hardware/software
partitioning, it is able to dynamically reconfigure its operation mode.
Data representation is used to create codewords, associated to an
operation. A new buffer management scheme, based on software
buffers and independent of the number of protocol instantiations, is
proposed. The resulting architecture is able to process any H-ARQ
protocol with no throughput penalty, in MIMO or SISO environments,
and to support concurrent standards.

Keywords-H-ARQ; flexible radio; reconfigurable hardware.

I. INTRODUCTION

In the last few years, the flexible radio concept has become one
of the major research field in wireless networks. Rapidly evolving
standards, increased mobility, and technology advances are calling
for adaptable and flexible solutions.

Traditional radio devices, while very efficient for those com-
putational intensive applications, can not cope with the growing
number of connection methods offered by the standards. These
different standards evolve very quickly. This imposes a flexibility,
to keep pace with the advances included in the standards (update
flexibility). Telephone applications are very representative of this
two-dimensional expansion. Smartphones usually offer personal,
local and wide area network connection (PAN, LAN, WAN),
through different standards. All these standards are also evolving,
which, with traditional devices, means redesigning a new platform
to support the updates.

At the same time, the increasing requirements for quality in
wireless networks demand that error control through retransmission
(in addition to Forward Error Correction - FEC) be an unavoidable
part of new standards. The aim of error control is to guarantee
a controlled error probability during transmissions. Hybrid Auto-
matic Repeat and reQuest (H-ARQ), further described in Section
II, is now used in many wireless standards, such as 3GPP HSPA,
IEEE WiMax or 3GPP LTE.

Implementations of H-ARQ in a traditional (not flexible) radio
device has been described in several patents. Yet, the design of a
flexible H-ARQ processor usable in a flexible radio context has,
to the best of the authors’ knowledge, not been described before.
The aim of this article is to describe a solution to implement such
a H-ARQ processor.

This paper is organized as follows. First, H-ARQ and traditional
solutions, along with the challenges due to flexibility are presented

in Section II. Then, the concepts underlying the proposed solutions
are presented in Section III, while details on the actual solution
are given in Section IV. Finally, use cases and practical results are
presented in Section V, and the study concluded in Section VI.

II. H-ARQ DETAILS

The aim of this study is to describe a solution for flexible
implementation of H-ARQ. This section presents usual H-ARQ
schemes and existing implementations as well as challenges for a
flexible implementation.

A. H-ARQ processing

H-ARQ is an error control protocol based on two types of error
control methods:

• proactive methods, acting before transmission, basically using
FEC, integrated in the PHY layer;

• reactive methods, taking place after errors occur, using Auto-
matic Repeat reQuest (ARQ) protocols integrated in the MAC
layer (or between MAC and PHY).

The use of these two types of techniques in a single protocol
allows for enhanced error correction and reduced effect on perfor-
mance. The original protocol, described in [1], was simply an ARQ
protocol operating on FEC encoded packets. FEC was used as a
solution to lower the retransmission probability, thus reducing the
mean latency of a transmission, while ARQ was used to reduce
the overhead of FEC methods, since it is not necessary to provide
sufficient error correction for the worst case.

While the aim of the original H-ARQ protocol was to cope
with the respective problems of FEC and ARQ, the cooperation
of both methods is far more powerful. Several enhancements have
been proposed, which make use of this cooperation. Incremental
Redundancy [2] (IR) is a method used to further reduce the code
overhead. In the first transmission, only the raw packet or a very
high-rate code is sent. If errors occur, additional parity bits from
the code are sent in the retransmissions, for error correction.
This method is mainly used with punctured codes instead of the
straightforward partitioning.

Chase Combining (or Code Combining, CC) [3] aims at a better
efficiency of retransmissions, using confidence information on the
previously received packet (from previous transmissions). In this
scheme, no additional information is sent in retransmissions, but
the receiver combines all the retransmissions, to obtain the most
likely packet. This can be done at different levels. In this study, a
slightly different combining scheme using soft bits average is used.

Finally, Partial Incremental Redundancy is a scheme using both
approaches. Incremental Redundancy using punctured codes is the
most complex but the most efficient version of the protocol, but

48

COCORA 2011 : The First International Conference on Advances in Cognitive Radio

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-131-1

the retransmissions are not self-decodable. In Partial IR, the raw
packet is always included in the transmissions, with only the parity
bits changing.

Enhancements are also possible on the ARQ side but not neces-
sarily thanks to the cooperation. H-ARQ benefits from the classical
ARQ protocols, which mainly impact the way retransmissions
are scheduled. This study focuses on the most commonly used
protocol, N-Stop and Wait (N-SAW). SAW protocols are "send
and wait" protocols, in which the transmitter is in a waiting state
while waiting for the acknowledgement from the receiver. N-SAW
protocols are SAW protocols using multiple instances, meaning
that several SAW protocols can run concurrently. This increases
the required buffering capacity, as well as the packet ordering
complexity, but the available bandwidth is better used.

B. Integration and implementation

H-ARQ is a cross-layer operation. It must be integrated in the
transmission layer of a communication chain (Layer 1), to imple-
ment the combining methods, as well as in the protocol layer (Layer
2), to manage acknowledgement transmission and retransmission
scheduling. This study focuses on the layer 1 integration.

Two main operations must be implemented in the PHY layer
part of the protocol: the packet rebuilding based on the different
transmissions, and the buffering of received packets. Integration
of H-ARQ in a baseband processing chain is presented in Figure
1. The H-ARQ block processes soft-bits (estimated value, along
with confidence information) from the deinterleaving block, before
decoding. Data processed in the decoder is the enhanced results
from the H-ARQ protocol.

M
A

C
L

ay
er

Upper Layers

Sc
he

du
le

r

C
R

C
at

ta
ch

E
nc

od
er

Pk
t

B
ui

ld
er

Buffer

In
te

rl
ea

ve
r

M
od

ul
at

or
D

em
od

ul
at

or

D
ei

nt
er

le
av

er

R
eb

ui
ld

er

D
ec

od
er

C
R

C
C

he
ck

A
C

K
/N

A
C

K

Upper Layers Buffer

Figure 1. H-ARQ integration in a usual communication system

The rebuilding process uses several basic operations:
• a depuncturer to recover the punctured codes,
• a bit combiner for Code Combining, which can operate on

retransmissions, on transmissions from multiple channels, or
on repeated bits of a single transmission,

• retransmission concatenation for Incremental Redundancy, the
most complex operation.

Possible enhancements to the protocol may require other op-
erations to be implemented. These operations are simple. The

problem when dealing with the implementation of H-ARQ comes
from the scheduling of these operations. Yet, traditional device
usually implements a single version of the protocol. This reduces
the scheduling complexity, since it is predefined, allowing the H-
ARQ to be implemented as a part of the decoder, using hard-wired
control to manage the scheduling.

The real problem in these architectures lies in the buffer man-
agement. In a N-SAW protocol, the H-ARQ processor is required
to process up to N packets concurrently. This means that it must
be able to store the N received packets and select the buffer cor-
responding to the packet being received. Several, mostly patented,
solutions have been proposed to solve this issue. [4] presents a
method based on dynamic computation of addresses in a buffer to
manage memory, along with a method to decide whether a received
packet must be combined with an already received packet or not.
[5] presents a global method to process H-ARQ in a traditional
communication device.

Finally the emergence of Multiple Input Multiple Output
(MIMO) solutions, as opposed to Single Input Single Output
(SISO) solutions has led to research on the use of H-ARQ in such
environments. MIMO devices use several antennas for emission and
reception, leading to truly time-concurrent transmissions. Two main
possibilities are used for operation with H-ARQ. The first one uses
the multiple transmission possibility to send several retransmissions
concurrently. The second one sends different packets on each
channels, thus increasing the throughput when compared to SISO
solutions. The theoretical study of the different methods is out of
the scope of this study.

C. Flexible radio constraints

A lot of flexible radio platforms have been described in the
literature. This paper does not focus on pure software radio, but
on hybrid architectures, based on reconfigurable hardware and
on software. The study focuses on a dynamically reconfigurable
implementation of the H-ARQ (the hardware does not need to
be deployed with each configuration change). Figure 2 presents
a possible architecture of a flexible system, which will be used as
a reference in this study. A generic processor is available, used to
process high layers algorithms (especially layer 2). The processing
chain is implemented as a sequence of processing units, controlled
through a configuration controller, connected to the system bus,
and addressable by the processor.

CPU RAM Periph

Config

PU PU PU . . . PU

System Bus

To Out

Figure 2. Reference system architecture

Flexible devices must meet constraints that can be avoided when
dealing with more traditional, dedicated devices: in the develop-
ment process, the design of the device is done before a standard
is targeted, since the standard is dynamically chosen. While in
traditional devices, it is possible to optimize the processing chain

49

COCORA 2011 : The First International Conference on Advances in Cognitive Radio

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-131-1

since the precise implementation details are known, flexible devices
must take into account all the possibilities.

In the case of a flexible H-ARQ processor, two main constraints
appear.

• Any version of the protocol can be used, as well as mixed
version, and they can exist concurrently. The design must be
able to process any protocol based on a sequence of known
operations, regardless of the sequence, and to switch from one
to the other efficiently, meaning with minimal reconfiguration
overhead. It must also be able to stand MIMO operations;

• Buffers can quickly become a bottleneck. While in traditional
devices, the maximum number of buffers (usually around
8) is known before the implementation, in a flexible envi-
ronment, this upper bound can not be known. Selecting the
highest possible number is inefficient, since it can evolve with
standard updates. Furthermore, flexible radio is also used to
implement different standards concurrently, in order to reduce
the required silicon area in multiply connected devices.

Resolving these constraints is unavoidable in order to use H-
ARQ in a flexible radio environment. The next sections present
an efficient solution based on hardware/software partitioning and
configurable hardware.

III. DESIGN OF THE FLEXIBLE H-ARQ PROCESSOR

A. Hardware/Software partitioning

In order to meet the two flexibility constraints, the solution
proposed as a result of this study follows the flexible radio
philosophy:

• definition of an efficient hardware/software partitioning and
• design of an efficient reconfigurable hardware part to support

the processing.
In a traditional implementation, H-ARQ partitioning between

hardware and software usually follows the PHY/MAC partition-
ing. All the PHY elements are processed in hardware, offering
pipelining capabilities and high processing power, and all the MAC
protocols processed in software, offering the high level approach
best fitted to MAC operations. The need for flexibility in the PHY
elements (packet rebuilding) means that a new partitioning may be
benefiting.

First of all, the management of the content of the transmissions
is easier in software. While in a single standard, the sequence of
retransmissions is usually based on a predefined sequence, which
can be hard wired in the hardware part, this is not true in the
flexible case, since each standard has its own sequence.

Secondly, buffer management also becomes a software part. In
the presence of a single known standard, it is possible to manage
the buffers through a simple round-robin algorithm. When several
standards can be present at the same time, the algorithm is not so
simple anymore, since the association between the standards and
the buffers must be stored and controlled.

Thirdly, and to cope with the possibly high number of buffers,
buffering itself is easier in software: any software system has
memory. There are two main advantages to software buffering,
apart from cost. Management of buffers is easier, since it is possible
to use all the software mechanisms for buffers management. And
secondly, locating the buffers in the software memory would make
these buffers accessible to the processor, opening the door to more
complex and possibly more efficient H-ARQ protocols.

B. Operation sequence representation

Given this modified partitioning when compared to the usual
implementation, it is necessary to define the flexible hardware com-
ponent as well as the control required to use it, and the integration
of software buffers. The flexible H-ARQ processing presented here
relies on a per-bit operation based on data representation.

In a practical communication protocol, different operations can
be applied on the information. On the transmission part, the packet
is encoded, and then prepared for the H-ARQ protocol before
modulation for transmission. This preparation, made according to
different parameters such as the current transmission index, the
current estimated channel quality, or the H-ARQ protocol being
used, is also called rate-matching. The rate-matching algorithm can:

• puncture, meaning delete information from the packet. The
punctured information will not be transmitted.

• repeat, meaning send the same information any number of
time in a single packet. This is often done to fill unused
bandwidth.

• resend, meaning that information already sent in previous
transmissions will be resend in this transmission.

Rate-matching can be a destructive operation, which needs to be
reversed. To be able to use the received transformed packet, the
receiver needs this packet, as well as information on the meaning
of this packet: which operation has been applied to which part of
the packet. This representation is sent along with the packet.

The representation can take different forms. It defines the as-
sociation of each bits in the current transmission with the bits
of the complete packet being transmitted. One of the most used
representation is the puncturing pattern of the code. It is a binary
matrix shared between the transmitter and the receiver, and in
which a 1 means that the bit is present in the transmission,
and a 0 means that it has been punctured. Another method is
to use a shared parameterized algorithm, and to send only the
parameters. Regardless of the method used, each information bit
must be associated to the operation that was applied to it. When
no repetition of bits in a single packet is possible, a single bit is
sufficient, to signal whether a bit is present or not in the packet. If
repetition is possible, several bits are required, to give the number
of times the bit is sent. If a bit was punctured a neutral value must
be inserted to replace the deletion. This neutral value usually is a
"not trustworthy" value (meaning a soft-bit with the lowest possible
confidence value).

This representation is the key to H-ARQ operation scheduling.
It defines the sequence of operations to be executed by the H-
ARQ component. This is better shown with the exemple of an
Incremental Redundancy component, as in Figure 3. The control
sequence is the concatenation of the matrices representing the
current (new) and previous (prev.) transmissions. A neutral value
is also possible if none of the transmissions contain a bit. If the
scheme is Full Incremental Redundancy (no combination of bits),
when the matrix for the new transmission gives a "1", data is
consumed from the new transmission data source, else when the
matrix for the previous transmissions gives a "1", data is consumed
from the buffered data source, else when both matrices give a "0",
data is consumed from the neutral data source.

This concatenation method can be extended as a complete
scheduling method: when both matrices give a "1", data is read

50

COCORA 2011 : The First International Conference on Advances in Cognitive Radio

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-131-1

1

1

1

1

1

0

1

0

0

1

0

0

0

0

1

0

0

1

1

1

prev.
new

neutral
result

Figure 3. Dataflow operation

from both buffered and new data source, combined, and output. The
combination of the representations of all transmissions of a packet
creates a codeword, defining which operation must be applied to
recover a given information bit.

Using this representation of packets, implementation of H-ARQ
does not need prior knowledge of the version used. All inputs
become data flows, as well as outputs. The representation is
consumed by the component, which enables consumption of some
input data, and production of some output data. For each possible
representation value, a given input/output mapping is used.

The H-ARQ processor resulting from this hardware/software
partitioning and from the per-bit operation principle presented is
divided in three main parts, as shown on Figure 4, further presented
in the next sections:

• a control part, which computes the operation associated to the
current bit,

• an operating part processing data according to the operation
associated to the current bit,

• a buffer part to store the transmissions associated to each
instance of the protocol.

Ctrl. Operation Buffer

Software

I/Os

Figure 4. Dataflow scheduling architecture for H-ARQ

IV. IMPLEMENTATION DETAILS

A. Operating part

The operating part described in the previous section is responsi-
ble for the bit processing according to the control part instructions.
Since the atomic operations used by the H-ARQ component are
simple, each operation is implemented separately and a multiplexer
is used for control. A simple mux is not sufficient, because of
the possible number of inputs and outputs (especially in MIMO
operation). A specific configurable data switch has been designed to
implement the operation mux. It associates a specific input/output
mapping to a given codeword (transmitted by the control part). The
mappings may be dynamically modified if some standards require
different operations. The modification is done by writing values to
a look-up table, with a low latency. This latency is too high for
modification during processing of a packet, but is negligible for
reconfiguration between two packets.

The resulting architecture is presented in Figure 5. The opera-
tions are implemented between two data switches. The input switch

is sufficient to schedule any sequence of operations. It selects its
inputs (buffered data, a given input stream if several are possible,
or a neutral value), and maps them to the output corresponding to
the desired operations. The output switch is used to manage the
buffers, and the output streams if several are possible (for example,
a Viterbi decoder or a block code decoder). As a result, all dataflow
management, and thus all the configuration process, is performed
using the switches.

Input Switch

PU 1 PU 2

Output Switch

B
uf

fe
r

In. 1 In. 2

.

.

Out. 1 Out. 2

Ctrl

Figure 5. Dataflow scheduling architecture for H-ARQ

The configuration process only consists in giving the I/O map-
ping information to the switch, ie. associating a codeword (runtime
control associated to each byte) to a I/O mapping.

B. Control

The second part in the component design is the control part.
Control of H-ARQ processing, in this component, means sending
to the operating part the sequence of operations needed to build
the packet from all its transmissions. Different designs have been
envisioned for this part.

Two main operations must be processed when controlling H-
ARQ processing. First, recover the transmission representation,
meaning the information required to recover the received packet
based on the transmissions. This operation can be either very
straightforward (known puncturing patterns, which are applied to
the transmission), or they may require some computation (param-
eterized algorithm) in order to recover the complete transmission.

The second operation is the effective control of the operating
part, meaning the processing of the representations in order to
create the commands to be sent to the operating part. Once again,
this can be very straightforward, like in the example in Section
III-B, or it can require some computation when the rate-matching
process becomes more complicated. For example, if repetition of
information in a single transmission is allowed, the concatenation
of representations may not be the best choice, since it would be
necessary to add support for N-bits repetition in the operating part.
It is better to have only a 1 bit repetition operation, and to let the
control iterate the operation N times (iteration is typically control).

In order to support both control operations, different hard-
ware/software limit have been experimented.

• An "all hardware" solution, in which everything is processed
in hardware. This is an efficient solution for simple H-ARQ
schemes, since it frees the processor, and since it avoids the
need for synchronization between both targets. Yet, it sub-
stantially reduces the flexibility, since updates in processing

51

COCORA 2011 : The First International Conference on Advances in Cognitive Radio

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-131-1

becomes difficult, and it limits the component capabilities to
the implemented algorithms.

• A mixed solution, in which one operation is implemented
in software, and the other in hardware. This is inefficient,
since to avoid excessive data exchange between both domains,
this solution makes sense only if the hardware operation
is the second one, which benefits more from a software
implementation.

• The most flexible solution is the "all software" solution. In
this solution, everything is processed in software, and the
only hardware element is an interface with all the operations
to be processed by the operating part. This interface is a
small memory, and the size of the sequence being stored. If
the sequence is smaller than the packet being processed, the
control part iterates the sequence (no control, only a counter),
otherwise, the packet is fully represented in memory.

These experimentations are not shown in Section V, but the
preferred solution is the software solution in terms of flexibility.
The required processing is not time consuming for the processor,
while it is complex in hardware. The all hardware solution is useful
for a fast implementation of a non-flexible component.

C. Bufferless design

The previous design meets the first flexibility constraint, the
protocol-independence. But the second constraint is still not met.
The last part of the H-ARQ component is the buffer part. The goal
of the buffer part is to manage the storage, as long as required, of
received transmissions, which may still be used. This management
means that, along with the required buffer space, a control of which
information is stored, and where, is also required.

The buffer part, in an environment where the number of possible
concurrent transmissions is known, can be implemented in hard-
ware. The existing implementations of H-ARQ mostly uses small
and fast memory, with the control responsible for managing the
memory, and associating an address with a transmission number.
In this study, experimentations have been conducted with FIFOs
affected to a specific transmission through the use of a mux. The
resulting simplification of multiple buffers management comes at
the expense of increased single buffer size.

But with FIFOs or with addressable memory, the infinite buffer
constraints is still not met. In order to offer to the device as much
memory as required to store numerous transmissions, the hardware
buffer has been replaced with a software buffer, located in the
processor (software) memory, and managed by the software. This
offers multiple advantages:

• more available memory for the component.
• easier to manage. Memory management is an important task

in software, and all kernels offer a memory management API
to the applications

• accessible buffer. More efficient H-ARQ algorithms could be
used, through the use of software, since the buffer is made
visible to the software.

This extended flexibility has a cost: data transfer to and from
software must not be a blocking point. Figure 6 shows the buffer
part details. FIFOs are inserted at the input and at the output
to avoid stalling the transfer, and thus be able to use the burst
capacity of most RAM. These FIFOs are used as a local cache for

FIFO FIFO

To op. part
From op. part

System Bus

CPU RAM DMA

Figure 6. HW/SW interface for bufferless H-ARQ

buffer data. In order to avoid overloading the processor, a DMA is
required to implement the software buffers. The size of the FIFOs
depends on the bus throughput.

V. PRACTICAL RESULTS

A. Environment

Validation of the proposed architecture means validation of the
flexibility as well as validation in terms of performance (impact
on the global system, and reconfiguration overhead). In order to
experiment on both aspects, the proposed architecture has been
implemented and integrated in a complete communication chain,
and compared with non-flexible devices implementations of Chase
Combining and Incremental Redundancy.

The targeted communication environment is the Magnet high
data-rate communication chain [6], supporting up to 40 Mbps.
The hardware platform is based on an ATMEL AT91 (a System
on Chip integrating an ARM processor), and a Xilinx Virtex 4
(XC4VSX55). The maximum packet size allowed has been fixed
to 2kb per packet. The convolutive code used for FEC is a rate
1
3

code, leading to up to 6kb per encoded packet. The reception
chain uses soft bits to add confidence information to the received
packet. In the considered implementation, a soft bit is coded on 3
bits words, meaning 4 levels of confidence for each possible hard
bit value. All these choices are coherent with existing standards,
even if the size is rather smaller than usual.

Based on this implementation, two main lines have been fol-
lowed when conducting the experiments. First, the flexibility of
the platform is studied. While it is difficult to prove that any H-
ARQ variation can be implemented, extensive experimentations are
conducted in order to validate at least some flexibility. The second
point studied is the cost of flexibility. Both points are studied in
the next sections.

B. Flexibility: configuration examples

The implementation of the proposed architecture uses two pos-
sible processing units:

• a combiner, which combines the information coming from
two inputs selected according to the codeword. This combiner
outputs the resulting combined symbols.

• a voter, which outputs the most probable value among the two
selected inputs.

The voter has been implemented in order to validate the feasi-
bility of multiple dataflow operations management in the device.
When combining was required in a version of the protocol, both

52

COCORA 2011 : The First International Conference on Advances in Cognitive Radio

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-131-1

operations could be used. Based on these two units, several
configurations have been produced in order to process the different
versions.

When operating in Chase Combining mode, the output stream is
the result of the combination of previous and current transmissions,
which adds the need for a combining operation, applied on previous
and current transmissions. Incremental Redundancy operation adds
complexity, since data can be present in current or in previous
transmissions only. Combining of multiply received bits is optional
in Incremental Redundancy, but it comes at no cost using the
proposed component.

The most challenging operation in this architecture is the repe-
tition of bits. Two possibilities are used. In the first one, a loop is
introduced after the first switch, and after the last one, thus adding
two possible inputs for the component. Repetition of a bit is then
just a matter of selecting the corresponding input. In this case, a
delay is introduced during the processing if a bit is repeated more
than once, since the two first repetition must be combined before
combining with the third one. The second method uses a special
processing unit, able to accumulate the inputs, as long as the output
is not read.

In order to validate the flexibility of the architecture, experimen-
tations have been conducted on the physical platform. The purpose
of these experimentations is to evaluate the ability of this new
component to deal with numerous, concurrent and independent in-
stantiations of the H-ARQ protocol. For a given instantiation, either
a known version of the protocol is used, from existing standard,
or versions built using randomly generated puncturing/repeating
patterns may be chosen. While this is not sufficient to guaranty
that the proposed component is usable for any possible H-ARQ
scheme, it offers a good coverage of the possible cases.

This scenario has been used for big files transfers (1GB each).
The switch time from one instance to the others corresponds to
the time of two memory write. The component is able to stand
high data rates (up to 40Mb/s in simulation, the platform is not
able to stand more than 20Mb/s), including reconfiguration latency
between each packet. These results make this component fit for
real-time applications.

C. Performance and configuration overhead

The precedent section showed that the flexibility constraint is
met by the architecture. But it is important to study the cost of the
architecture, since flexibility usually means overhead.

In terms of slices cost in the FPGA, the addition of the H-
ARQ component and its control interface adds around 300 slices,
which means about 1% additional slices in the reference reception
chain. As a comparison, this cost is similar to the cost of an
Incremental Redundancy only component. In terms of buffer space,
the proposed H-ARQ component requires 64 bits of local buffer.
With a total available memory of 32MB, and a usable DMA engine,
the platform has been used to implement a 10-SAW adaptive H-
ARQ protocol. This implementation requires 18kb of free memory
for each protocol instance, but this memory is located in the system
memory, and no buffers are required in the hardware device, leading
to an important gain in silicon area requirements.

In terms of performance, the component processes 1 input bit
per clock cycle with no repetition. When there is repetition in the
scheme, with the accumulator solution, the throughput stays the

same, but control becomes more complicated because of the need
for synchronization at the output. If the loopback solution is used
and if a bit can be repeated only once, there is no overhead either. If
more repetition can occur, a delay is introduced in the processing.
This delay is equal to the length of the pipeline, ie. 6 clock
cycles, once every two repetitions. The configuration time, which
is the time required to change the codeword/mapping association,
is negligible, since it is only a write to a look-up table.

VI. CONCLUSION AND FUTURE WORK

An implementation of a H-ARQ processor fit for flexible radio
devices has been presented in this paper. Thanks to its design,
this component is able to cope with current and future envisioned
versions of the protocol. The buffer is virtually unlimited, and
the control management is flexible. The choice of operations,
implemented between the switches in the operative part, is open.
Managing multiple inputs or outputs, when parallel transmissions
are possible (OFDMA, MIMO, . . .) is intuitive thanks to the
dataflow view.

The component is based on a specific software/hardware parti-
tioning:

• memory and scheduling of required operations are managed
through software,

• actual computation is done in hardware, using configurable
codewords to describe the operation to be processed.

The codewords used to describe the different operations are
based on the representation of the different dataflow. The compo-
nent is able to use the sequence of operations applied on the original
packet and on the already received transmissions, and associate to
each combination an operation to process.

The resulting component is fast, small (about the same size
as other dedicated H-ARQ devices used for a single version of
the protocol), and flexible enough that any H-ARQ protocol can
be configured and processed. In the continuation of this work,
power consumption measures are planned, as well as a study of
new protocols using the flexibility property to enhance the error
correction capacity.

REFERENCES

[1] J. Wozencraft and M. Horstein, “Coding for Two-Way Channels,”
Research Laboratory of Electronics, MIT, Tech. Rep., 1961.

[2] D. M. Mandelbaum, “An Adpative-Feedback Coding Scheme Us-
ing Incremental Redundancy,” IEEE Transactions on Information
Theory (corresp.), vol. 33, pp. 388–389, 1974.

[3] D. Chase, “Code Combining - A Maximum-Likelihood Decoding
Approcach for Combining an Arbitrary Number of Noisy Packets,”
IEEE Transactions on Communications, vol. Vol. COM-33, pp.
385–393, 1985.

[4] B. Franovici, “Method and system for memory management in
a HARQ communication system,” European Patent 2 093 921 A1,
2009.

[5] M.-C. Tsai, W. Chowdiah, and W. Jing, “Packet decoding for H-
ARQ transmission,” World Patent 2009/108 516 A2, 2009.

[6] R. Prasad, My personal Adaptive Global NET (MAGNET).
Springer, 2010.

53

COCORA 2011 : The First International Conference on Advances in Cognitive Radio

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-131-1

