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Abstract—In this paper, an optimal algorithm of spectrum 
decision making is presented for a real cognitive radio network 
with tree-based topology. All nodes of a subnet in such network 
have the capability in being aware of spectrum information by 
both energy detector based sensing and centralized cooperative 
sensing. After gathering sensed information, the master node 
will decide which frequency can be used by the subnet and 
which slave nodes should leave the subnet if there is no 
common frequency among all nodes. The problem is how to 
keep nodes staying in the subnet as many as possible. 
Traditionally, this is a combination-optimization problem. By 
mapping the node set and frequency set to be both parts of a 
bipartite graph respectively, the problem can be turned into a 
special case of searching for maximal bicliques. Based on a 
well-known LCM (Linear time Closed itemset Miner) 
algorithm, and using some new techniques in terms of dynamic 
thresholds and efficient management of closeness states, we 
have solved this problem for our application requiring real-
time performance. For some special cases where nodes in a 
subnet may have different weights, our algorithm can also find 
an optimal solution with maximal weights in real time.  

Keywords-cognitive radio network; spectrum decision 
making; maximal biclique; dynamic threshold. 

I. INTRODUCTION 
In this paper, we propose a new application in CRAHNs 

(Cognitive Radio Ad Hoc Networks) [1]. Suppose that there 
is a simple network consisting of a master node and several 
slave nodes. The constraint in such network is that the slave 
nodes only communicate with the master node directly and 
they must use the same channel parameters decided by the 
master node, such as frequency and power. There are two 
main steps for the network to complete its spectrum sensing 
process. According to a dedicated energy threshold, the first 
step is that all nodes begin a search for idle channels of local 
electromagnetic environment through energy detection 
method [2]. Then the idle information will be sent to the 
master by a control channel. The master then selects the most 
reliable channels for further examination by a waveform 
based bidirectional channel test with each slave. This test is a 
process of centralized cooperative sensing [3] to identify 
channels of false usefulness and capture truly useable 
channels. By a channel quality threshold, the master gathers 
all useful frequency (channel) sets from slave nodes, and 
then decides to use which frequency for communication and 
to backup several frequencies for use in future because of 
high cost of the sensing process. Certainly, the master does 
not need to backup too many frequencies as these selected 

frequencies will become stale over a certain long period. 
However, maybe there is no common frequency to be useful 
for all nodes since the electromagnetic surroundings, 
especially in variant terrains, are different here and there. 
Under this condition, how to choose the slave nodes and the 
frequency set is the problem called CSDM (Cognitive 
Spectrum Decision Making). It is obvious that we need solve 
CSDM twice during spectrum sensing process in our 
application.  

Traditionally, CSDM is a combination-optimization 
problem. We can adopt an exhausting algorithm of 
enumerating all combinations of nodes. If there are n nodes 
and each slave node have at most m useful frequencies with 
the mast node, then the algorithm may take time complexity 
of O(2n*m) to run. For bigger n or m, such algorithms have 
no chance to meet real-time requirements of applications.  

We can model CSDM by enumerating maximal bicliques 
from a bipartite graph in which one part represents a node set 
while the other part represents a frequency set useful for the 
node set to communicate [4]. 

Let G = <V, E> be a graph with vertex set V and edge set 
E. A pair of disjoint nonempty subsets V1 and V2 of V is 
called a biclique if (u, v)∈E for all u∈V1 and v∈V2. Define 
β(v) as the set of all vertices in G that are adjacent to v, i.e., 
β(v) = {u|(u, v)∈E }. For a nonempty subset X of vertices of 
a graph, β(X) is the set of common neighborhoods of all 
vertices in X. For an existing biclique sub-graph H = < V1∪
V2, E >, the biclique is a maximal biclique if β(V1) = V2 and 
β(V2) = V1. 

Enumerating maximal bicliques from a graph can be one-
to-one correspondence with the enumeration of closed 
pattern pairs [5]. A closed pattern pair is composed of two 
parts: a frequent closed item set and its support set. Many 
real-life applications can be modeled by the both conceptions 
such as associating rule mining, life science data analysis and 
inductive database [6]. One example is given here. For social 
relation, common characters of persons can be modeled by 
maximal bicliques which is useful in commercial activities. 
Surprisingly this idea has similar scenario in wireless 
communication filed. 

Either enumerating frequent closed item sets or 
enumerating maximal bicliques are long studied. There are 
several algorithms for these problems at present, such as 
CLOSED+ [7], LCM [8][9][10] and [11]. However, all these 
algorithms are enumerating all either maximal bicliques or 
closed pattern pairs. For CSDM problem, we are only 
interested in the best solution defined later in this paper. 

50Copyright (c) IARIA, 2012.     ISBN:  978-1-61208-197-7

COCORA 2012 : The Second International Conference on Advances in Cognitive Radio

mailto:mingxue,%20xiaoxin,%20xiaohong%7D@iscas.ac.cn


Considering good performance of LCM, we choose it as the 
base of our algorithm.  

What discussed above is based on a hypothesis that all 
nodes have the same importance or that all items are 
interchangeable. But in real applications, some nodes may 
play more important role in the network. Some importance is 
originated from the fact that different nodes have different 
functions in a concrete application context. Also in a view of 
a tree-formed network, some node inherently has more 
importance than other nodes.  

Take a two-layer network shown in Figure 1 for example. 
All nodes in the network have the same importance. Both 
node B and C want to connect node A, while B has three sub 
nodes at this time. After a cognitive process, A and B have 
found two common frequencies available, and A, C have 
three useful frequencies. But there are no common 
frequencies among A, B, C. Therefore, the master node A 
has two options to make: select either B or C. Obviously A 
will make a decision of deleting B and only keep C in its 
network, because it choose larger amount of common 
frequencies when the both options have the same number of 
node. Now the whole network has only two nodes, A and C. 
Certainly, this is not the best solution for the two-layer 
network as a whole. And by keeping B and deleting C, the 
whole network can have five nodes, which is larger. In this 
paper we solve this problem through adding a weight 
property to each node. 

 
Figure 1.  Two-layer network 

The remainder of this paper is organized as follows. In 
Section II, we describe the details of CSDM. In Section III 
and Section IV, we introduce the algorithm LCM and our 
algorithm EMBS (Extreme Maximal Biclique Searcher). In 
Section V, we talk about how to process the case of weighted 
nodes. The experiments and results are listed in Section VI. 
The last section will conclude this paper. 

II. CSDM PROBLEM 
Let Net=<N ∪ F, EN> be a network with a node set N, a 

frequency set F and a relationship E between both nodes. A 
pair (n, f) ∈ E if and only if a node n can use the frequency f 
to communicate with the master node. Any frequency by a 
node is detected by a bidirectional wave detection process 
between the node and the master node. A subset <Ni ⊆ N, Fi 
⊆ F, Ei> is a solution to CSDM if all conditions below are 
satisfied. The condition (2) declares that each node that can 
use all frequencies in Fi should be in the solution. (3) 
expresses a similar meaning: each frequency that can be used 
by all nodes in Ni should be in the solution.  

 Ni×Fi = Ει ⊆ EΝ (1) 

  ((∀f ∈ Fi) (n, f) ∈ Ει) →n ∈ Ni (2) 

 ((∀n ∈ Ni) (n, f) ∈ Ει) →f ∈ Fi (3) 

Let G = < V1 ∪ V2, EG > be a bipartite graph with vertex 
set V1, V2 and edge set EG. To model the network, let the 
node set N be V1 and the frequency set F be V2. If there is a 
pair of (n, f) in EN, add a corresponding edge into EG. 
Therefore, the graph can be modified to G = < N ∪ F, EN > 
and each solution to CSDM is a maximal biclique in G 
because the conditions satisfied by the solution are the same 
as to those satisfied by maximal bicliques. 

Proof. 
First, a maximal biclique <Ni ⊆ N, Fi ⊆ F, Ei> must be a 

solution to CSDM. 
If (n, f) ∈ Ei for ∀f ∈ Fi, then n∈β(Fi), by β(Fi) =Ni, n∈ 

Ni follows.  
If (n, f) ∈ Ei for ∀n ∈ Ni, then f∈β(Ni), by β(Ni) =Fi, f∈ 

Fi follows.  
Second, a solution to CSDM <Ni ⊆ N, Fi ⊆ F, Ei> must 

be a maximal biclique. 
If f∈β(Ni), then ∀n ∈ Ni, (n, f) ∈ Ei, f∈ Fi follows. 
If f∈ Fi, by Ni×Fi = Ei, then ∀n ∈ Ni, (n, f) ∈ Ei, f∈β(Ni). 
So β(Ni)= Fi. 
Similarly, β(Fi)= Ni.□ 

However, we are only interested in the best solution 
BBm=<Nm ∪ Fm, EBB >, i.e., the best maximal biclique (also 
called extreme maximal biclique), satisfying (4) and (5). 
The condition (4) is a condition to restrict the size of a 
solution. It states that the solution should have at least nm 
nodes and each node should have at least fm frequencies for 
communication with the master node. An optimal solution is 
defined by (5). Naturally, we hope that more nodes can be 
kept in the network. If two solutions have the same number 
of nodes, then the solution with more common frequencies is 
much better.  

 |Ni| ≥ Tn, |Fi| ≥ Tf (4) 

 ∀<Ni, Fi>, |Ni|<|Nm| ∨ (|Ni|=|Nm| ∧ |Fi|≤|Fm|) (5) 

III. LCM ALGORITHM 
In this section, LCM algorithm is described in graph 

format while it is described in the database format in original 
paper [8]. This work has been done in detail by [5] and here 
we only list the information needed.  

Let G=<V1∪V2, EG> be a bipartite graph. For a biclique 
sub-graph B = < X∪Y , EB>, the set X and Y are called closed 
sets if and only if B is a maximal biclique, or else they are 
called unclosed sets. For a vertex v ∈ V

B

1, id(v) is the index of 
v in V1 which is sorted by |β(v)| in decreasing order. 

Algorithm LCM()  
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Global: 
 a bipartite graph G with vertex set V1 and V2  
 p is the threshold of one part in a maximal biclique 
 q is the threshold of the other part in the biclique 
Description: 
1: sort {v ∈ V1}, {v ∈ V2} by |β(v)| in decreasing order 
2: for each v ∈ V1, set flag(v)=0 
3: T ← Ф 
4: for each v ∈V1 
5:     X← Ф 
6:     if β(v) ≥ q and LCM_CLOSED(X, v) = 0 
7:          then LCM_Iter(X, V2, v) /* β(Ф)= V2 */ 
 

Algorithm LCM_Iter() 
Input: 
 a vertex set X and β(X) 
 a vertex v to be added to X 
Description: 
1: Y ← X ∪ {v} 
2: for each u ∈ {ω|ω ∈ V1 ∧ ω∉Y ∧ id(ω) < id(v)}  
3:     if β(u) ⊇β(Y)   then Y←Y ∪ {u} 
4: Z←{ω|ω∈V1–Y ∧id(ω)<id(v) ∧ |β(ω) ∩ β(Y)| ≥q} 
5: if |Y |≥ p    then output (Y, β(Y)) 
6: if |Y| + |Z| < p   then return 
7: for each ω∈Z 
8:     if flag(ω)=0  then r←LCM_CLOSED(Y, ω)  
9:         if r = 0    then LCM_Iter(Y, β(Y), ω) 
10:         else flag(ω) ←r 

Algorithm LCM_CLOSED() 
Input: 
 X is a vertex set and v is a vertex to be added to X 
Description: 
1: for each u∈V1, u∉X, u≠v 
2:    if β({u}) ⊇β(X ∪ {v}) then return id(u) 
3: return 0 
 
The pseudo code of LCM is rebuilt from a program [12]. 

For the bipartite graph G, LCM algorithm will recursively 
list all size-qualified maximal bicliques in G. 

IV. OUR ALGORITHM: EMBS 
In this section, we transform LCM into a new algorithm 

EMBS to search extreme maximal bicliques in a bipartite 
graph.  

A. Dynamic thresholds 
In our algorithm, we introduce two new parameters pm 

and qm representing the best maximal biclique to be found 
currently. In LCM, the thresholds are constant and the 
algorithm enumerates all maximal biclique not less than the 
thresholds. In EMBS, only the best maximal biclique will be 
saved and the thresholds will be dynamically updated 
according to the maximal biclique found. Figure 2 will show 
this difference. 

In Figure 2, M is a matrix sorted, and m and n are the 
amount of rows and columns of M respectively. An element 
at column j of row i means that a node i can use the 

frequency j to communicate with the master node. (a) of 
Figure 2 is the pruning tree of LCM and (b) is that of EMBS. 
The sets in an italic style are the leaves or pruned branches 
while the boldfaced sets are maximal bicliques found. 

From Figure 2 we can see that the enumeration tree of 
EMBS is smaller than that of LCM. The difference is caused 
by dynamic thresholds (pm, qm). The pair (pm, qm) is always 
(2, 2) in (a) of Figure 2. But in (b) of Figure 2 from EMBS, 
(pm, qm) is changed to (2, 3) when the first maximal biclique 
is found and it is changed to (3, 3) when the second one is 
found. Because of the increasing thresholds, more nodes are 
pruned in (b). 

 
Figure 2.  Different pruning tree of LCM and that of EMBS 

B. Improve the judgment of closed state  
Let X be the first parameter of the function LCM_Iter. 

According to the pseudo code, |X| is increasing continuously 
in recursive process while |β(X)| is decreasing. For parameter 
v, if there is a vertex u not included by X, id(u) > id(v) and 
β(X∪{u}) ⊇β(X∪{v}), then X∪{v} is not closed. If id(u) < 
id(v) and β(X∪{u}) ⊇β(X∪{v}), the vertex will be inserted 
to X with v together. So we do not iterate on vertices with id 
less than that of v. For each step S’ iterated from a step S, let 
Y be the set of the vertices selected from S to S’ and let u be 
the vertex making X unclosed in S. If u∉Y, X∪Y∪{v} is 
also not closed because β(X∪Y∪{u}) = β(X∪{u})∩β(Y), 
β(X∪{v})∩β(Y) = β(X∪Y∪{v}) and β(X∪{u}) ⊇β(X∪
{v}). So at step S, we can record the vertex making v 
unclosed and keep this information valid for S’ to skip some 
evaluations on closed states until S returned. But if the vertex 
u has been inserted into Y, X∪Y∪{v} may be closed. At this 
condition, the closeness state of X∪Y∪ {v} should be 
recomputed. 
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LCM algorithm uses two arrays unclosed_u and 
unclosed_v to manage the closeness states. If u makes v 
unclosed at step S, set unclosed_u[v] = u and 
unclosed_v[length] = v while a variable length is used to 
indicate the length of unclosed_v. All elements put to 
unclosed_v by step S will be sorted by the corresponding 
values in unclosed_u. When iterating on a vertex i at step S’, 
LCM deletes all values which are not bigger than i from the 
tail of unclosed_v and clear the corresponding values in 
unclosed_u also.  

Figure 3 is an example to show this clearly. In Figure 3, 
M is the input graph and p, q are two thresholds. From S0 to 
S7 is the recursion starting from set {5}.The sets marked 
italic are unclosed sets. Table in Figure 2 shows the process 
of transformation of unclosed_u and unclosed_v. 
unclosed_u[0] is set to 3 at step S1 and is cleared at step S3. 
But at step S5, unclosed_u[1] is recomputed and reset. In fact, 
the value 3 of unclosed_u[1] should be ignored only when 
the vertex 3 has been in the selected set. 

 
Figure 3.  An example of the recursion process 

In EMBS algorithm, each vertex in V1 has a stack to 
manage closed states. Firstly zero is pushed into every stack 
and supposes that u is the vertex making v unclosed in Si, u 
will be pushed into stack of v and it will be valid until u is 
selected or Si returns. If Sj is an offspring step iterated from Si 
and only if u is selected in Sj, closed state of v will be 
recomputed, or else there is no any calculation on closed 
state about v in step Sj. When step Si returns, every stack 
changed in Si will pop the top element. While using stacks to 
manage closed states, each operation except computing 
closed state can be completed in O(1) time and the result of 
computation can be used more effectively. After optimizing, 

the process of sorting for unclosed_v is cut while all 
redundant recomputation of closed states is reduced. 

C. Reduce the size circularly 
In LCM algorithm, only the vertices in one part of the 

graph are reduced by the relationship of the neighborhoods. 
In EMBS algorithm, all vertices in both parts of the graph 

are reduced. After reducing the vertices in one part, the 
neighborhoods of the vertices in the other part are changed 
simultaneity. So we should reduce the other part again until 
all the two parts can not be reduced any more. 

Figure 4 shows two matrices reduced by LCM and 
EMBS. M is the original matrix. M1 is the matrix reduced by 
LCM and M2 is the matrix reduced by EMBS. It shows that 
the matrix reduced by EMBS is much smaller than the 
matrix done by LCM. The sixth column of M is eliminated 
by LCM while the last two columns and the last two rows of 
M are removed by EMBS. 

 
Figure 4.  Matrices processed by LCM and EMBS 

D. The algorithm 
Detailed algorithm is described below. 

Global variables:  
 R is one part of the result biclique. 
 β(R) is the other part of the result biclique. 
 pm is the current threshold of R(main threshold),  
corresponding to Tn in Section II.  
 qm is the current threshold of β(R),  
corresponding to Tf in Section II.  
 p is the initial threshold of R(main threshold) 
 q is the initial threshold of β(R) 

Algorithm EMBS() 
Input: 
 A bipartite graph G with vertex sets V1, V2
Description: 
1: pm ← p , qm ← q  

/* reduce matrix circularly */ 
2: while ∃v∈ V1 →|β(v)|< pm ∨ ∃v’∈ V2 →|β(v)|< qm 
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3:           then V1 ← V1 – {v}, V2 ← V2 – {v’} 
4: sort {v ∈ V1}, {v ∈ V2} by |β(v)| in decreasing order 
5: initialize a stack for every v ∈ V1, stack[v].push(0) 
6: for each v ∈ V1 
7:     X← Ф 
8:     if β(v) ≥ qm and LCM_CLOSED(X, v) = 0 
9:     then EMBS_Iter(X, V2, v) /* β(Ф)= V2 */ 
10: return <R, β(R)> 

Algorithm EMBS_Iter() 
Input: 
 X is a vertex set 
 β(X) is the neighbourhood of X 
 v is the vertex to be added to X 
Description: 
1: Y←X ∪ {v} 
2: for each u ∈ {ω|ω∈V1–Y ∧ id(ω) < id (v)}  
3:       if  β(u) ⊇ β(Y)   then Y←Y ∪ {u} 
4: Z←{ω|ω∈V1–Y ∧ id(ω)<id(v) ∧ |β(ω) ∩β(Y)| ≥qm} 
5: if |Y| + |Z| < pm    then return 
6: if (|Y|> pm) ∨ (|Y|= pm ∧ |β(Y)| ≥qm) /* see (5) */ 

/* Dynamic thresholds */ 
7: then <R,β(R)>←<Y,β(Y)>, <pm,qm>←<|Y|,|β(Y)|+1> 
8: T← Ф 
9: for each ω∈ Z 
10:    if stack[ω].peek() = 0 ∨ stack[ω].peek()∈ Y 
11:       then r ← LCM_CLOSED(Y, ω) 
12:            if r = 0  then EMBS_Iter(Y, β(Y), ω) 
13:            else stack[ω].push(r), T← T∪{ω} 
14: for each ω∈ T   stack[ω].pop() 

The 7th line of function EMBS_Iter is to update 
thresholds dynamically. In EMBS algorithm, the both line 2 
and 3 are to reduce the size of the matrix circularly, and lines 
between 9th and 14th of function EMBS_Iter represent the 
improvement for judgment of closed state. 

V. WEIGHTED CASE OF CSDM 
In this section, we talk about how to process the case of 

weighted nodes in CSDM problem. We call such case 
wCSDM (weighted CSDM). 

A. Description of wCSDM 
In the Net=<N ∪ F, EN>, we can put a weight property 

to each node n∈N, denoted by w(n). And we denote the sum 
of weight of nodes in N as w(N). A best solution to wCSDM 
BBm=<Nm ∪ Fm, EBB> should satisfy the condition (6) besides 
(1)~(4) in Section II. 

 
i i i B

i B i m

i B i m i

< , > ( ) ( )
( ( ) ( )) )

(( ( ) ( ) )

iN F E w N w N
w N w N N N

w N w N N N F F

∀ < ∨

= ∧ < ∨

= ∧ = ∧ ≤

∪

m

 (6) 

By definition, the best solution is also a maximal biclique. 
Therefore, the algorithm EMBS for CSDM is suitable for 
wCSDM except for some different techniques to prune the 
enumeration tree.  

B. Strategy for sorting nodes 
Different from the line 4 of the algorithm EMBS, a new 

strategy for sorting nodes is presented as below.  
4: Sort {v ∈ V1} by  in decreasing order, and sort {v 

∈ V
( )w v

2} by |β(v)| in decreasing order 
When weight differences between nodes are big, sorting 

by  can speed up pruning process because a solution 
with big weights will be found earlier. If the weight 
differences are not very obvious, and if we still sort them 
such a way, then the solution with more nodes will not be 
found earlier because they may have almost the same weight 
as that of other solutions. Therefore, we need sort {v ∈ V

( )w v

1} 
by |β(v)| in decreasing order if there is no noticeable weight 
differences among nodes.  

C. Pruning Strategy 
Forecasted weight strategy 

For an enumeration over a node combination X = {v ∈ 
V1}, if w(X∪Z)<W where W is the sum of weights of the 
solution found earlier and Z is the set of all nodes in V1 after 
X, then we need no further depth-first enumerations 
branched from X.  
Closeness strategy 

For an enumeration over a node combination X = {v ∈ 
V1}, if X is unclosed, then we only need execute a calculation 
over X∪Z where Z is the set of all nodes that make X 
unclosed. If X∪Z is a solution better than the solution found 
before, then we can update the current solution and all 
thresholds. After this calculation, we rapidly return with no 
more iteration on X∪Z.  

If X is closed, whether we need iterate over a superset of 
X is determined firstly by forecasted weight strategy. Then if 
|β(X) ≤ q|, it is useless to iterate because any superset of X 
will violate the rule by the q threshold defined in algorithm 
EMBS.  

VI. EXPERIMENT AND RESULT 
We evaluate the efficiency of EMBS with dynamic 

thresholds by running on different size of graphs and 
evaluate that of EMBS without dynamic thresholds by 
comparing it to LCM algorithm. The experiments are 
conducted on randomly generated matrices representing 
bipartite graphs. Our computer for experiment is a PC with a 
3.0GHz CPU and 1GB of memory.  

Table I shows the performance of EMBS with dynamic 
thresholds on randomly generated bipartite graphs in 
different size. Row one is the size of the graphs and m+n 
means that there are m vertices in the part representing nodes 
and n vertices in the other part representing frequencies. Row 
two is edge density of the graphs. If there are m+n vertices 
and w edges in the graph, the edge density will be calculated 
by w/(m*n). The first column is the threshold of frequencies 
while the threshold of nodes is 1. The number in the table is 
time in milliseconds and data of first two size graphs are in 
integral number while others maintain two digits after 
decimal point. 
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To evaluate the efficiency of EMBS with dynamic 
thresholds, we use four different sizes of graphs to represent 
different size of subnet. The biggest value of threshold of 
frequencies is eight because we only need to keep at most 
eight frequencies to use over a certain long period. The 
threshold of nods means that one node is needed at least. We 
can find that the running time of EMBS with dynamic 
thresholds is below one second at most times. This 
performance meets the real-time requirements of our 
applications. In some cases, the running time is still very 
long. However, these cases are very rare in real applications. 

Table II shows performance of both LCM and EMBS 
without dynamic thresholds on different number of vertices 
and edge density. At each row of the table, the performance 
is averaged over five randomly generated graphs of the same 
vertices and edge density. The thresholds are both one in this 
case. Note that both LCM and EMBS here are searching for 
all maximal bicliques (complete bipartite graphs) not only 
for the extreme maximal biclique. The first column of the 
table is the amount of nodes in each part of the graph. The 
second column is the edge density in the graph. The third 
column is the amount of all maximal bicliques ever found. 

The maximal bicliques found by LCM and those found by 
EMBS without dynamic thresholds are the same. The forth 
and fifth columns are running time of LCM and EMBS while 
the sixth column is the ratio of data in the fifth column and 
data in the forth column. The last column denotes the 
performance improvement of EMBS, and obviously EMBS 
without dynamic thresholds performs better than LCM 
according to Table II. The first reason is that we reduce the 
time for judgment of closed state, though the pruning tree of 
EMBS and that of LCM are the same. The second reason is 
that EMBS can reduce the graph better than LCM, especially 
when the edge density of graph becomes little.  

For the case of weighted CSDM, we slightly transform 
EMBS to a new version called wEMBS benefiting from 
pruning condition appeared in the Section V. With more 
pruning conditions but with more calculations related to 
weight, it is not a surprise that the performance of wEMBS is 
only somewhat faster than EMBS, as shown in Table III. 
However, this performance is sufficient for our application 
as that of EMBS and the performance instability problem in 
[13] is also solved. 

 

TABLE I.  PERFORMANCE OF EMBS WITH DYNAMIC THRESHOLDS ON RANDOM BIPARTITE GRAPHS.  

Vertices 64+512 32+256 16+128 8+64 
Density 

Threshold 10 30 50 70 90 10 30 50 70 90 10 30 50 70 90 10 30 50 70 90

1 40 34 47 55 87 29 4 7 11 17 1.73 1.39 1.80 2.55 2.82 0.50 0.64 0.77 0.81 0.89

2 5 34 47 55 87 2 5 7 12 17 0.77 1.47 1.79 2.42 4.46 0.49 0.66 0.76 0.82 0.86

3 8 52 92 76 89 2 4 9 15 17 0.77 1.51 2.11 3.18 2.89 0.52 0.70 0.71 0.77 1.49

4 15 144 493 489 95 3 11 16 24 17 0.99 2.02 3.30 5.36 2.81 0.52 1.98 0.78 0.77 0.85

5 18 356 2,099 3,486 109 3 13 51 34 17 1.06 1.79 3.66 5.08 2.72 0.51 0.75 0.75 0.84 0.85

6 32 668 8,251 13,477 149 5 26 101 63 18 0.99 2.20 6.56 6.57 3.44 0.52 0.77 0.81 0.83 0.89

7 36 1,083 19,450 68,684 551 4 34 193 194 17 1.09 2.82 8.31 13.65 3.13 0.52 0.80 0.85 0.83 0.82

8 42 2,049 45,016 340,940 11,295 6 62 432 969 17 1.09 2.88 14.70 16.84 2.74 0.50 0.91 0.94 0.86 0.86

 

TABLE II.  PERFORMANCE OF LCM AND EMBS WITHOUT DYNAMIC THRESHOLDS ON RANDOM BIPARTITE GRAPHS.  

Vertices Edge 
density 

Maximal 
biclique 

Time of LCM
(milliseconds)

Time of EMBS 
(milliseconds) Ratio Performance Improvement  

(1-Ratio) 
100+100 0.10 1,371 120 80 67% 33% 
100+100 0.20 11,340 102 95 93% 7% 
100+100 0.30 96,809 896 848 95% 5% 
100+100 0.50 11,264,781 120,075 113,920 95% 5% 
200+200 0.10 13,640 132 126 95% 5% 
300+300 0.10 59,296 787 731 93% 7% 
400+400 0.10 178,732 3,282 2,908 89% 11% 
500+500 0.10 433,874 10,156 8,672 85% 15% 

1000+1000 0.01 4,233 45 43 96% 4% 
2000+2000 0.01 35,322 511 417 82% 18% 
4000+4000 0.01 419,076 9,399 6,964 74% 26% 
6000+6000 0.01 1,823,122 60,598 44,910 74% 26% 
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TABLE III.  PERFORMANCE (IN MILLISECONDS) OF EMBS VS WEMBS WITH 64 NODES AND 462 FREQUENCIES. 

T 1 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 Average 
EMBS 1.308 15 540 1588 618 331 211 259 178 158 147.8 139 132 128 123 125 116 283.4651

wEMBS 1.309 16 747 1295 491 273 183 222 166 153 147.2 137 129 124 120 124 117 262.0086

 
Data in each column of Table III are from 10 

experiments. For each experiment, the same frequency 
threshold configuration (T) is set for both wEBMS and 
EBMS. Moreover, we have setup a computer simulation 
platform to test spectrum sensing process in network 
scenarios with more than 100 nodes. Especially, we have 
executed a formal verification [14] on the cooperative 
spectrum sensing protocol used by our application. The 
simulation shows real time performance of EMBS & 
wEMBS and the verification guarantees high reliability. 

 

VII. CONCLUSION AND FUTURE WORK 
In this paper, we discussed a new application named 

CSDM in cognitive radio networks. Based on a well-known 
algorithm LCM for frequent item set mining, the CSDM 
problem has been solved by our algorithm EMBS perfectly 
through introducing the idea of dynamic thresholds. 
Benefiting from dynamic thresholds, EMBS can prune small 
maximal bicliques efficiently to find the extreme maximal 
biclique. Therefore, most CSDM problems can be solved in 
real time. We also improved the performance of LCM 
algorithm itself in two aspects: reduce the size of the graph 
and reduce the time for judgment of closed state. We found 
that the performance of EMBS with dynamic thresholds 
relates to the thresholds while the performance of EMBS 
without dynamic thresholds relates to the edge density of the 
graph. And the experiments show that EMBS outperforms 
much more than LCM. 

EMBS solves CSDM problem perfectly in one subnet. 
However, in some real-life applications, nodes in a subnet 
may have different importance or weights. Thus another 
problem wCSDM is presented in this paper and an improved 
version of wEMBS is proposed for wCSDM. And the 
performance of wCSDM is somewhat better than that of 
EMBS because we can combine those pruning techniques for 
CSDM with an extra pruning strategy in terms of weight. 

Meanwhile, we should develop more efficient algorithm 
to achieve real-time performance in some very large wireless 
networks, though such networks are very rare in current 
applications. Still, the future work also includes those related 
applications with different definitions of extreme maximal 
bicliques. For example, some applications may be interested 
in maximal bicliques which includes the most nodes in both 
parts of a biclique. Moreover, some nodes in a special scene 
may have infinite weights and thus they must not be 
removed. In such cases, the current wEMBS can not fulfill 
its work because the infinite weights require a totally 
different strategy for calculating sum of weights. Therefore, 
an adaptive wEMBS is required for the future. 

Currently, the algorithm EMBS has been put to use in a 
real cognitive radio network (CRN) with tree based topology. 
As this network has a limit in its capacity, EMBS gains 

surprising performance of no more than 1 millisecond for 
optimal solutions. Furthermore, we developed a platform for 
simulating with more than one hundred nodes and for 
verifying the protocol of cooperative spectrum sensing. In 
this platform, EMBS accomplished its task in real-time too 
and the protocol runs well after a few bugs are removed. 
Now, wEMBS is also ready to be used as more requirements 
for applications contribute more complexity to our CRNs. 
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