
Optimal Algorithm for Cognitive Spectrum Decision Making

Liao Ming-Xue, He Xiao-Xin, Jiang Xiao-Hong
Institute of Software

Chinese Academy of Sciences
Beijing, China

{mingxue, xiaoxin, xiaohong}@iscas.ac.cn

Abstract—In this paper, an optimal algorithm of spectrum
decision making is presented for a real cognitive radio network
with tree-based topology. All nodes of a subnet in such network
have the capability in being aware of spectrum information by
both energy detector based sensing and centralized cooperative
sensing. After gathering sensed information, the master node
will decide which frequency can be used by the subnet and
which slave nodes should leave the subnet if there is no
common frequency among all nodes. The problem is how to
keep nodes staying in the subnet as many as possible.
Traditionally, this is a combination-optimization problem. By
mapping the node set and frequency set to be both parts of a
bipartite graph respectively, the problem can be turned into a
special case of searching for maximal bicliques. Based on a
well-known LCM (Linear time Closed itemset Miner)
algorithm, and using some new techniques in terms of dynamic
thresholds and efficient management of closeness states, we
have solved this problem for our application requiring real-
time performance. For some special cases where nodes in a
subnet may have different weights, our algorithm can also find
an optimal solution with maximal weights in real time.

Keywords-cognitive radio network; spectrum decision
making; maximal biclique; dynamic threshold.

I. INTRODUCTION
In this paper, we propose a new application in CRAHNs

(Cognitive Radio Ad Hoc Networks) [1]. Suppose that there
is a simple network consisting of a master node and several
slave nodes. The constraint in such network is that the slave
nodes only communicate with the master node directly and
they must use the same channel parameters decided by the
master node, such as frequency and power. There are two
main steps for the network to complete its spectrum sensing
process. According to a dedicated energy threshold, the first
step is that all nodes begin a search for idle channels of local
electromagnetic environment through energy detection
method [2]. Then the idle information will be sent to the
master by a control channel. The master then selects the most
reliable channels for further examination by a waveform
based bidirectional channel test with each slave. This test is a
process of centralized cooperative sensing [3] to identify
channels of false usefulness and capture truly useable
channels. By a channel quality threshold, the master gathers
all useful frequency (channel) sets from slave nodes, and
then decides to use which frequency for communication and
to backup several frequencies for use in future because of
high cost of the sensing process. Certainly, the master does
not need to backup too many frequencies as these selected

frequencies will become stale over a certain long period.
However, maybe there is no common frequency to be useful
for all nodes since the electromagnetic surroundings,
especially in variant terrains, are different here and there.
Under this condition, how to choose the slave nodes and the
frequency set is the problem called CSDM (Cognitive
Spectrum Decision Making). It is obvious that we need solve
CSDM twice during spectrum sensing process in our
application.

Traditionally, CSDM is a combination-optimization
problem. We can adopt an exhausting algorithm of
enumerating all combinations of nodes. If there are n nodes
and each slave node have at most m useful frequencies with
the mast node, then the algorithm may take time complexity
of O(2n*m) to run. For bigger n or m, such algorithms have
no chance to meet real-time requirements of applications.

We can model CSDM by enumerating maximal bicliques
from a bipartite graph in which one part represents a node set
while the other part represents a frequency set useful for the
node set to communicate [4].

Let G = <V, E> be a graph with vertex set V and edge set
E. A pair of disjoint nonempty subsets V1 and V2 of V is
called a biclique if (u, v)∈E for all u∈V1 and v∈V2. Define
β(v) as the set of all vertices in G that are adjacent to v, i.e.,
β(v) = {u|(u, v)∈E }. For a nonempty subset X of vertices of
a graph, β(X) is the set of common neighborhoods of all
vertices in X. For an existing biclique sub-graph H = < V1∪
V2, E >, the biclique is a maximal biclique if β(V1) = V2 and
β(V2) = V1.

Enumerating maximal bicliques from a graph can be one-
to-one correspondence with the enumeration of closed
pattern pairs [5]. A closed pattern pair is composed of two
parts: a frequent closed item set and its support set. Many
real-life applications can be modeled by the both conceptions
such as associating rule mining, life science data analysis and
inductive database [6]. One example is given here. For social
relation, common characters of persons can be modeled by
maximal bicliques which is useful in commercial activities.
Surprisingly this idea has similar scenario in wireless
communication filed.

Either enumerating frequent closed item sets or
enumerating maximal bicliques are long studied. There are
several algorithms for these problems at present, such as
CLOSED+ [7], LCM [8][9][10] and [11]. However, all these
algorithms are enumerating all either maximal bicliques or
closed pattern pairs. For CSDM problem, we are only
interested in the best solution defined later in this paper.

50Copyright (c) IARIA, 2012. ISBN: 978-1-61208-197-7

COCORA 2012 : The Second International Conference on Advances in Cognitive Radio

mailto:mingxue,%20xiaoxin,%20xiaohong%7D@iscas.ac.cn

Considering good performance of LCM, we choose it as the
base of our algorithm.

What discussed above is based on a hypothesis that all
nodes have the same importance or that all items are
interchangeable. But in real applications, some nodes may
play more important role in the network. Some importance is
originated from the fact that different nodes have different
functions in a concrete application context. Also in a view of
a tree-formed network, some node inherently has more
importance than other nodes.

Take a two-layer network shown in Figure 1 for example.
All nodes in the network have the same importance. Both
node B and C want to connect node A, while B has three sub
nodes at this time. After a cognitive process, A and B have
found two common frequencies available, and A, C have
three useful frequencies. But there are no common
frequencies among A, B, C. Therefore, the master node A
has two options to make: select either B or C. Obviously A
will make a decision of deleting B and only keep C in its
network, because it choose larger amount of common
frequencies when the both options have the same number of
node. Now the whole network has only two nodes, A and C.
Certainly, this is not the best solution for the two-layer
network as a whole. And by keeping B and deleting C, the
whole network can have five nodes, which is larger. In this
paper we solve this problem through adding a weight
property to each node.

Figure 1. Two-layer network

The remainder of this paper is organized as follows. In
Section II, we describe the details of CSDM. In Section III
and Section IV, we introduce the algorithm LCM and our
algorithm EMBS (Extreme Maximal Biclique Searcher). In
Section V, we talk about how to process the case of weighted
nodes. The experiments and results are listed in Section VI.
The last section will conclude this paper.

II. CSDM PROBLEM
Let Net=<N ∪ F, EN> be a network with a node set N, a

frequency set F and a relationship E between both nodes. A
pair (n, f) ∈ E if and only if a node n can use the frequency f
to communicate with the master node. Any frequency by a
node is detected by a bidirectional wave detection process
between the node and the master node. A subset <Ni ⊆ N, Fi
⊆ F, Ei> is a solution to CSDM if all conditions below are
satisfied. The condition (2) declares that each node that can
use all frequencies in Fi should be in the solution. (3)
expresses a similar meaning: each frequency that can be used
by all nodes in Ni should be in the solution.

 Ni×Fi = Ει ⊆ EΝ (1)

 ((∀f ∈ Fi) (n, f) ∈ Ει) →n ∈ Ni (2)

 ((∀n ∈ Ni) (n, f) ∈ Ει) →f ∈ Fi (3)

Let G = < V1 ∪ V2, EG > be a bipartite graph with vertex
set V1, V2 and edge set EG. To model the network, let the
node set N be V1 and the frequency set F be V2. If there is a
pair of (n, f) in EN, add a corresponding edge into EG.
Therefore, the graph can be modified to G = < N ∪ F, EN >
and each solution to CSDM is a maximal biclique in G
because the conditions satisfied by the solution are the same
as to those satisfied by maximal bicliques.

Proof.
First, a maximal biclique <Ni ⊆ N, Fi ⊆ F, Ei> must be a

solution to CSDM.
If (n, f) ∈ Ei for ∀f ∈ Fi, then n∈β(Fi), by β(Fi) =Ni, n∈

Ni follows.
If (n, f) ∈ Ei for ∀n ∈ Ni, then f∈β(Ni), by β(Ni) =Fi, f∈

Fi follows.
Second, a solution to CSDM <Ni ⊆ N, Fi ⊆ F, Ei> must

be a maximal biclique.
If f∈β(Ni), then ∀n ∈ Ni, (n, f) ∈ Ei, f∈ Fi follows.
If f∈ Fi, by Ni×Fi = Ei, then ∀n ∈ Ni, (n, f) ∈ Ei, f∈β(Ni).
So β(Ni)= Fi.
Similarly, β(Fi)= Ni.□

However, we are only interested in the best solution
BBm=<Nm ∪ Fm, EBB >, i.e., the best maximal biclique (also
called extreme maximal biclique), satisfying (4) and (5).
The condition (4) is a condition to restrict the size of a
solution. It states that the solution should have at least nm
nodes and each node should have at least fm frequencies for
communication with the master node. An optimal solution is
defined by (5). Naturally, we hope that more nodes can be
kept in the network. If two solutions have the same number
of nodes, then the solution with more common frequencies is
much better.

 |Ni| ≥ Tn, |Fi| ≥ Tf (4)

 ∀<Ni, Fi>, |Ni|<|Nm| ∨ (|Ni|=|Nm| ∧ |Fi|≤|Fm|) (5)

III. LCM ALGORITHM
In this section, LCM algorithm is described in graph

format while it is described in the database format in original
paper [8]. This work has been done in detail by [5] and here
we only list the information needed.

Let G=<V1∪V2, EG> be a bipartite graph. For a biclique
sub-graph B = < X∪Y , EB>, the set X and Y are called closed
sets if and only if B is a maximal biclique, or else they are
called unclosed sets. For a vertex v ∈ V

B

1, id(v) is the index of
v in V1 which is sorted by |β(v)| in decreasing order.

Algorithm LCM()

51Copyright (c) IARIA, 2012. ISBN: 978-1-61208-197-7

COCORA 2012 : The Second International Conference on Advances in Cognitive Radio

Global:
 a bipartite graph G with vertex set V1 and V2
 p is the threshold of one part in a maximal biclique
 q is the threshold of the other part in the biclique
Description:
1: sort {v ∈ V1}, {v ∈ V2} by |β(v)| in decreasing order
2: for each v ∈ V1, set flag(v)=0
3: T ← Ф
4: for each v ∈V1
5: X← Ф
6: if β(v) ≥ q and LCM_CLOSED(X, v) = 0
7: then LCM_Iter(X, V2, v) /* β(Ф)= V2 */

Algorithm LCM_Iter()
Input:
 a vertex set X and β(X)
 a vertex v to be added to X
Description:
1: Y ← X ∪ {v}
2: for each u ∈ {ω|ω ∈ V1 ∧ ω∉Y ∧ id(ω) < id(v)}
3: if β(u) ⊇β(Y) then Y←Y ∪ {u}
4: Z←{ω|ω∈V1–Y ∧id(ω)<id(v) ∧ |β(ω) ∩ β(Y)| ≥q}
5: if |Y |≥ p then output (Y, β(Y))
6: if |Y| + |Z| < p then return
7: for each ω∈Z
8: if flag(ω)=0 then r←LCM_CLOSED(Y, ω)
9: if r = 0 then LCM_Iter(Y, β(Y), ω)
10: else flag(ω) ←r

Algorithm LCM_CLOSED()
Input:
 X is a vertex set and v is a vertex to be added to X
Description:
1: for each u∈V1, u∉X, u≠v
2: if β({u}) ⊇β(X ∪ {v}) then return id(u)
3: return 0

The pseudo code of LCM is rebuilt from a program [12].

For the bipartite graph G, LCM algorithm will recursively
list all size-qualified maximal bicliques in G.

IV. OUR ALGORITHM: EMBS
In this section, we transform LCM into a new algorithm

EMBS to search extreme maximal bicliques in a bipartite
graph.

A. Dynamic thresholds
In our algorithm, we introduce two new parameters pm

and qm representing the best maximal biclique to be found
currently. In LCM, the thresholds are constant and the
algorithm enumerates all maximal biclique not less than the
thresholds. In EMBS, only the best maximal biclique will be
saved and the thresholds will be dynamically updated
according to the maximal biclique found. Figure 2 will show
this difference.

In Figure 2, M is a matrix sorted, and m and n are the
amount of rows and columns of M respectively. An element
at column j of row i means that a node i can use the

frequency j to communicate with the master node. (a) of
Figure 2 is the pruning tree of LCM and (b) is that of EMBS.
The sets in an italic style are the leaves or pruned branches
while the boldfaced sets are maximal bicliques found.

From Figure 2 we can see that the enumeration tree of
EMBS is smaller than that of LCM. The difference is caused
by dynamic thresholds (pm, qm). The pair (pm, qm) is always
(2, 2) in (a) of Figure 2. But in (b) of Figure 2 from EMBS,
(pm, qm) is changed to (2, 3) when the first maximal biclique
is found and it is changed to (3, 3) when the second one is
found. Because of the increasing thresholds, more nodes are
pruned in (b).

Figure 2. Different pruning tree of LCM and that of EMBS

B. Improve the judgment of closed state
Let X be the first parameter of the function LCM_Iter.

According to the pseudo code, |X| is increasing continuously
in recursive process while |β(X)| is decreasing. For parameter
v, if there is a vertex u not included by X, id(u) > id(v) and
β(X∪{u}) ⊇β(X∪{v}), then X∪{v} is not closed. If id(u) <
id(v) and β(X∪{u}) ⊇β(X∪{v}), the vertex will be inserted
to X with v together. So we do not iterate on vertices with id
less than that of v. For each step S’ iterated from a step S, let
Y be the set of the vertices selected from S to S’ and let u be
the vertex making X unclosed in S. If u∉Y, X∪Y∪{v} is
also not closed because β(X∪Y∪{u}) = β(X∪{u})∩β(Y),
β(X∪{v})∩β(Y) = β(X∪Y∪{v}) and β(X∪{u}) ⊇β(X∪
{v}). So at step S, we can record the vertex making v
unclosed and keep this information valid for S’ to skip some
evaluations on closed states until S returned. But if the vertex
u has been inserted into Y, X∪Y∪{v} may be closed. At this
condition, the closeness state of X∪Y∪ {v} should be
recomputed.

52Copyright (c) IARIA, 2012. ISBN: 978-1-61208-197-7

COCORA 2012 : The Second International Conference on Advances in Cognitive Radio

LCM algorithm uses two arrays unclosed_u and
unclosed_v to manage the closeness states. If u makes v
unclosed at step S, set unclosed_u[v] = u and
unclosed_v[length] = v while a variable length is used to
indicate the length of unclosed_v. All elements put to
unclosed_v by step S will be sorted by the corresponding
values in unclosed_u. When iterating on a vertex i at step S’,
LCM deletes all values which are not bigger than i from the
tail of unclosed_v and clear the corresponding values in
unclosed_u also.

Figure 3 is an example to show this clearly. In Figure 3,
M is the input graph and p, q are two thresholds. From S0 to
S7 is the recursion starting from set {5}.The sets marked
italic are unclosed sets. Table in Figure 2 shows the process
of transformation of unclosed_u and unclosed_v.
unclosed_u[0] is set to 3 at step S1 and is cleared at step S3.
But at step S5, unclosed_u[1] is recomputed and reset. In fact,
the value 3 of unclosed_u[1] should be ignored only when
the vertex 3 has been in the selected set.

Figure 3. An example of the recursion process

In EMBS algorithm, each vertex in V1 has a stack to
manage closed states. Firstly zero is pushed into every stack
and supposes that u is the vertex making v unclosed in Si, u
will be pushed into stack of v and it will be valid until u is
selected or Si returns. If Sj is an offspring step iterated from Si
and only if u is selected in Sj, closed state of v will be
recomputed, or else there is no any calculation on closed
state about v in step Sj. When step Si returns, every stack
changed in Si will pop the top element. While using stacks to
manage closed states, each operation except computing
closed state can be completed in O(1) time and the result of
computation can be used more effectively. After optimizing,

the process of sorting for unclosed_v is cut while all
redundant recomputation of closed states is reduced.

C. Reduce the size circularly
In LCM algorithm, only the vertices in one part of the

graph are reduced by the relationship of the neighborhoods.
In EMBS algorithm, all vertices in both parts of the graph

are reduced. After reducing the vertices in one part, the
neighborhoods of the vertices in the other part are changed
simultaneity. So we should reduce the other part again until
all the two parts can not be reduced any more.

Figure 4 shows two matrices reduced by LCM and
EMBS. M is the original matrix. M1 is the matrix reduced by
LCM and M2 is the matrix reduced by EMBS. It shows that
the matrix reduced by EMBS is much smaller than the
matrix done by LCM. The sixth column of M is eliminated
by LCM while the last two columns and the last two rows of
M are removed by EMBS.

Figure 4. Matrices processed by LCM and EMBS

D. The algorithm
Detailed algorithm is described below.

Global variables:
 R is one part of the result biclique.
 β(R) is the other part of the result biclique.
 pm is the current threshold of R(main threshold),
corresponding to Tn in Section II.
 qm is the current threshold of β(R),
corresponding to Tf in Section II.
 p is the initial threshold of R(main threshold)
 q is the initial threshold of β(R)

Algorithm EMBS()
Input:
 A bipartite graph G with vertex sets V1, V2
Description:
1: pm ← p , qm ← q

/* reduce matrix circularly */
2: while ∃v∈ V1 →|β(v)|< pm ∨ ∃v’∈ V2 →|β(v)|< qm

53Copyright (c) IARIA, 2012. ISBN: 978-1-61208-197-7

COCORA 2012 : The Second International Conference on Advances in Cognitive Radio

3: then V1 ← V1 – {v}, V2 ← V2 – {v’}
4: sort {v ∈ V1}, {v ∈ V2} by |β(v)| in decreasing order
5: initialize a stack for every v ∈ V1, stack[v].push(0)
6: for each v ∈ V1
7: X← Ф
8: if β(v) ≥ qm and LCM_CLOSED(X, v) = 0
9: then EMBS_Iter(X, V2, v) /* β(Ф)= V2 */
10: return <R, β(R)>

Algorithm EMBS_Iter()
Input:
 X is a vertex set
 β(X) is the neighbourhood of X
 v is the vertex to be added to X
Description:
1: Y←X ∪ {v}
2: for each u ∈ {ω|ω∈V1–Y ∧ id(ω) < id (v)}
3: if β(u) ⊇ β(Y) then Y←Y ∪ {u}
4: Z←{ω|ω∈V1–Y ∧ id(ω)<id(v) ∧ |β(ω) ∩β(Y)| ≥qm}
5: if |Y| + |Z| < pm then return
6: if (|Y|> pm) ∨ (|Y|= pm ∧ |β(Y)| ≥qm) /* see (5) */

/* Dynamic thresholds */
7: then <R,β(R)>←<Y,β(Y)>, <pm,qm>←<|Y|,|β(Y)|+1>
8: T← Ф
9: for each ω∈ Z
10: if stack[ω].peek() = 0 ∨ stack[ω].peek()∈ Y
11: then r ← LCM_CLOSED(Y, ω)
12: if r = 0 then EMBS_Iter(Y, β(Y), ω)
13: else stack[ω].push(r), T← T∪{ω}
14: for each ω∈ T stack[ω].pop()

The 7th line of function EMBS_Iter is to update
thresholds dynamically. In EMBS algorithm, the both line 2
and 3 are to reduce the size of the matrix circularly, and lines
between 9th and 14th of function EMBS_Iter represent the
improvement for judgment of closed state.

V. WEIGHTED CASE OF CSDM
In this section, we talk about how to process the case of

weighted nodes in CSDM problem. We call such case
wCSDM (weighted CSDM).

A. Description of wCSDM
In the Net=<N ∪ F, EN>, we can put a weight property

to each node n∈N, denoted by w(n). And we denote the sum
of weight of nodes in N as w(N). A best solution to wCSDM
BBm=<Nm ∪ Fm, EBB> should satisfy the condition (6) besides
(1)~(4) in Section II.

i i i B

i B i m

i B i m i

< , > () ()
(() ()))

((() ())

iN F E w N w N
w N w N N N

w N w N N N F F

∀ < ∨

= ∧ < ∨

= ∧ = ∧ ≤

∪

m

 (6)

By definition, the best solution is also a maximal biclique.
Therefore, the algorithm EMBS for CSDM is suitable for
wCSDM except for some different techniques to prune the
enumeration tree.

B. Strategy for sorting nodes
Different from the line 4 of the algorithm EMBS, a new

strategy for sorting nodes is presented as below.
4: Sort {v ∈ V1} by in decreasing order, and sort {v

∈ V
()w v

2} by |β(v)| in decreasing order
When weight differences between nodes are big, sorting

by can speed up pruning process because a solution
with big weights will be found earlier. If the weight
differences are not very obvious, and if we still sort them
such a way, then the solution with more nodes will not be
found earlier because they may have almost the same weight
as that of other solutions. Therefore, we need sort {v ∈ V

()w v

1}
by |β(v)| in decreasing order if there is no noticeable weight
differences among nodes.

C. Pruning Strategy
Forecasted weight strategy

For an enumeration over a node combination X = {v ∈
V1}, if w(X∪Z)<W where W is the sum of weights of the
solution found earlier and Z is the set of all nodes in V1 after
X, then we need no further depth-first enumerations
branched from X.
Closeness strategy

For an enumeration over a node combination X = {v ∈
V1}, if X is unclosed, then we only need execute a calculation
over X∪Z where Z is the set of all nodes that make X
unclosed. If X∪Z is a solution better than the solution found
before, then we can update the current solution and all
thresholds. After this calculation, we rapidly return with no
more iteration on X∪Z.

If X is closed, whether we need iterate over a superset of
X is determined firstly by forecasted weight strategy. Then if
|β(X) ≤ q|, it is useless to iterate because any superset of X
will violate the rule by the q threshold defined in algorithm
EMBS.

VI. EXPERIMENT AND RESULT
We evaluate the efficiency of EMBS with dynamic

thresholds by running on different size of graphs and
evaluate that of EMBS without dynamic thresholds by
comparing it to LCM algorithm. The experiments are
conducted on randomly generated matrices representing
bipartite graphs. Our computer for experiment is a PC with a
3.0GHz CPU and 1GB of memory.

Table I shows the performance of EMBS with dynamic
thresholds on randomly generated bipartite graphs in
different size. Row one is the size of the graphs and m+n
means that there are m vertices in the part representing nodes
and n vertices in the other part representing frequencies. Row
two is edge density of the graphs. If there are m+n vertices
and w edges in the graph, the edge density will be calculated
by w/(m*n). The first column is the threshold of frequencies
while the threshold of nodes is 1. The number in the table is
time in milliseconds and data of first two size graphs are in
integral number while others maintain two digits after
decimal point.

54Copyright (c) IARIA, 2012. ISBN: 978-1-61208-197-7

COCORA 2012 : The Second International Conference on Advances in Cognitive Radio

To evaluate the efficiency of EMBS with dynamic
thresholds, we use four different sizes of graphs to represent
different size of subnet. The biggest value of threshold of
frequencies is eight because we only need to keep at most
eight frequencies to use over a certain long period. The
threshold of nods means that one node is needed at least. We
can find that the running time of EMBS with dynamic
thresholds is below one second at most times. This
performance meets the real-time requirements of our
applications. In some cases, the running time is still very
long. However, these cases are very rare in real applications.

Table II shows performance of both LCM and EMBS
without dynamic thresholds on different number of vertices
and edge density. At each row of the table, the performance
is averaged over five randomly generated graphs of the same
vertices and edge density. The thresholds are both one in this
case. Note that both LCM and EMBS here are searching for
all maximal bicliques (complete bipartite graphs) not only
for the extreme maximal biclique. The first column of the
table is the amount of nodes in each part of the graph. The
second column is the edge density in the graph. The third
column is the amount of all maximal bicliques ever found.

The maximal bicliques found by LCM and those found by
EMBS without dynamic thresholds are the same. The forth
and fifth columns are running time of LCM and EMBS while
the sixth column is the ratio of data in the fifth column and
data in the forth column. The last column denotes the
performance improvement of EMBS, and obviously EMBS
without dynamic thresholds performs better than LCM
according to Table II. The first reason is that we reduce the
time for judgment of closed state, though the pruning tree of
EMBS and that of LCM are the same. The second reason is
that EMBS can reduce the graph better than LCM, especially
when the edge density of graph becomes little.

For the case of weighted CSDM, we slightly transform
EMBS to a new version called wEMBS benefiting from
pruning condition appeared in the Section V. With more
pruning conditions but with more calculations related to
weight, it is not a surprise that the performance of wEMBS is
only somewhat faster than EMBS, as shown in Table III.
However, this performance is sufficient for our application
as that of EMBS and the performance instability problem in
[13] is also solved.

TABLE I. PERFORMANCE OF EMBS WITH DYNAMIC THRESHOLDS ON RANDOM BIPARTITE GRAPHS.

Vertices 64+512 32+256 16+128 8+64
Density

Threshold 10 30 50 70 90 10 30 50 70 90 10 30 50 70 90 10 30 50 70 90

1 40 34 47 55 87 29 4 7 11 17 1.73 1.39 1.80 2.55 2.82 0.50 0.64 0.77 0.81 0.89

2 5 34 47 55 87 2 5 7 12 17 0.77 1.47 1.79 2.42 4.46 0.49 0.66 0.76 0.82 0.86

3 8 52 92 76 89 2 4 9 15 17 0.77 1.51 2.11 3.18 2.89 0.52 0.70 0.71 0.77 1.49

4 15 144 493 489 95 3 11 16 24 17 0.99 2.02 3.30 5.36 2.81 0.52 1.98 0.78 0.77 0.85

5 18 356 2,099 3,486 109 3 13 51 34 17 1.06 1.79 3.66 5.08 2.72 0.51 0.75 0.75 0.84 0.85

6 32 668 8,251 13,477 149 5 26 101 63 18 0.99 2.20 6.56 6.57 3.44 0.52 0.77 0.81 0.83 0.89

7 36 1,083 19,450 68,684 551 4 34 193 194 17 1.09 2.82 8.31 13.65 3.13 0.52 0.80 0.85 0.83 0.82

8 42 2,049 45,016 340,940 11,295 6 62 432 969 17 1.09 2.88 14.70 16.84 2.74 0.50 0.91 0.94 0.86 0.86

TABLE II. PERFORMANCE OF LCM AND EMBS WITHOUT DYNAMIC THRESHOLDS ON RANDOM BIPARTITE GRAPHS.

Vertices Edge
density

Maximal
biclique

Time of LCM
(milliseconds)

Time of EMBS
(milliseconds) Ratio Performance Improvement

(1-Ratio)
100+100 0.10 1,371 120 80 67% 33%
100+100 0.20 11,340 102 95 93% 7%
100+100 0.30 96,809 896 848 95% 5%
100+100 0.50 11,264,781 120,075 113,920 95% 5%
200+200 0.10 13,640 132 126 95% 5%
300+300 0.10 59,296 787 731 93% 7%
400+400 0.10 178,732 3,282 2,908 89% 11%
500+500 0.10 433,874 10,156 8,672 85% 15%

1000+1000 0.01 4,233 45 43 96% 4%
2000+2000 0.01 35,322 511 417 82% 18%
4000+4000 0.01 419,076 9,399 6,964 74% 26%
6000+6000 0.01 1,823,122 60,598 44,910 74% 26%

55Copyright (c) IARIA, 2012. ISBN: 978-1-61208-197-7

COCORA 2012 : The Second International Conference on Advances in Cognitive Radio

TABLE III. PERFORMANCE (IN MILLISECONDS) OF EMBS VS WEMBS WITH 64 NODES AND 462 FREQUENCIES.

T 1 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 Average
EMBS 1.308 15 540 1588 618 331 211 259 178 158 147.8 139 132 128 123 125 116 283.4651

wEMBS 1.309 16 747 1295 491 273 183 222 166 153 147.2 137 129 124 120 124 117 262.0086

Data in each column of Table III are from 10

experiments. For each experiment, the same frequency
threshold configuration (T) is set for both wEBMS and
EBMS. Moreover, we have setup a computer simulation
platform to test spectrum sensing process in network
scenarios with more than 100 nodes. Especially, we have
executed a formal verification [14] on the cooperative
spectrum sensing protocol used by our application. The
simulation shows real time performance of EMBS &
wEMBS and the verification guarantees high reliability.

VII. CONCLUSION AND FUTURE WORK
In this paper, we discussed a new application named

CSDM in cognitive radio networks. Based on a well-known
algorithm LCM for frequent item set mining, the CSDM
problem has been solved by our algorithm EMBS perfectly
through introducing the idea of dynamic thresholds.
Benefiting from dynamic thresholds, EMBS can prune small
maximal bicliques efficiently to find the extreme maximal
biclique. Therefore, most CSDM problems can be solved in
real time. We also improved the performance of LCM
algorithm itself in two aspects: reduce the size of the graph
and reduce the time for judgment of closed state. We found
that the performance of EMBS with dynamic thresholds
relates to the thresholds while the performance of EMBS
without dynamic thresholds relates to the edge density of the
graph. And the experiments show that EMBS outperforms
much more than LCM.

EMBS solves CSDM problem perfectly in one subnet.
However, in some real-life applications, nodes in a subnet
may have different importance or weights. Thus another
problem wCSDM is presented in this paper and an improved
version of wEMBS is proposed for wCSDM. And the
performance of wCSDM is somewhat better than that of
EMBS because we can combine those pruning techniques for
CSDM with an extra pruning strategy in terms of weight.

Meanwhile, we should develop more efficient algorithm
to achieve real-time performance in some very large wireless
networks, though such networks are very rare in current
applications. Still, the future work also includes those related
applications with different definitions of extreme maximal
bicliques. For example, some applications may be interested
in maximal bicliques which includes the most nodes in both
parts of a biclique. Moreover, some nodes in a special scene
may have infinite weights and thus they must not be
removed. In such cases, the current wEMBS can not fulfill
its work because the infinite weights require a totally
different strategy for calculating sum of weights. Therefore,
an adaptive wEMBS is required for the future.

Currently, the algorithm EMBS has been put to use in a
real cognitive radio network (CRN) with tree based topology.
As this network has a limit in its capacity, EMBS gains

surprising performance of no more than 1 millisecond for
optimal solutions. Furthermore, we developed a platform for
simulating with more than one hundred nodes and for
verifying the protocol of cooperative spectrum sensing. In
this platform, EMBS accomplished its task in real-time too
and the protocol runs well after a few bugs are removed.
Now, wEMBS is also ready to be used as more requirements
for applications contribute more complexity to our CRNs.

ACKNOWLEDGMENTS
The authors wish to thank both Fan Zhong-Ji and Ji Pan-

Pan who implemented the algorithm of this paper, and to
thank both Liu Jin-Bo and Fan Lin-Lin who developed
formal verification tools for this paper.

REFERENCES
[1] I. F. Akyildiz, W. Y. Lee, and K. Chowdhury, “CRAHNs: Cognitive

Radio Ad Hoc Networks,” Ad Hoc Net. J., vol. 7, no. 5, July 2009.
[2] D. Cabric, A. Tkachenko, and R. Brodersen, “Spectrum sensing

measurements of pilot, energy, and collaborative detection,” in Proc.
IEEE Military Commun. Conf., 2006, pp. 1–7.

[3] T. Yücek and H. Arslan, “A Survey of Spectrum Sensing Algorithms
for Cognitive Radio Applications,” IEEE Communications Surveys &
Tutorials, vol. 11, no. 1, 2009, pp. 116-130.

[4] Z. J. Fan, M. X. Liao, X. X. He, H. H. Hu, X. Zhou., “Efficient
Algorithm for Extreme Maximal Biclique Ming in Cognitive
Spectrum Decision Making”, In IEEE ICCSN, 2011, pp. 25-30.

[5] J. Li, G. Liu, H. Li, and L. Wong, “Maximal Biclique Subgraphs and
Closed Pattern Pairs of the Adjacency Matrix: A One-to-One
Correspondence and Mining Algorithms,” IEEE Trans. Knowledge
and Data Engineering, vol. 19, No. 12, pp. 1625-1637, Dec. 2007.

[6] L. Ji, K. L. Tan, and K. H. Tung, “Compressed Hierarchical Mining
of Frequent Closed Patterns from Dense Data Sets,” IEEE Trans. on
Knowledge and Data Engineering, Vol 19, No.9, Sept 2007.

[7] J. Wang, J. Han, and J. Pei, “CLOSET+: Searching for the best
strategies for mining frequent closed itemsets,” in Proc. of the 9th
ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, 2003, pp. 236–245.

[8] T. Uno, M. Kiyomi, and H. Arimura, “LCM ver.2: Efficient Mining
Algorithms for Frequent/closed/maximal Itemsets,” In Proc. IEEE
ICDM’04 Workshop FIMI’04, 2004.

[9] T. Uno, T. Asai, Y. Uchida, and H. Arimura, “LCM: an Effcient
Algorithm for Enumerating Frequent Closed Item Sets,” In Proc.
IEEE ICDM’03 Workshop FIMI’03, 2003.

[10] T. Uno, M. Kiyomi, and H. Arimura, “LCM ver.3: Collaboration of
Array, Bitmap and Prefix Tree for Frequent Itemset mining,” In Proc.
of the 1st International Workshop on Open Source Data Mining, 2005,
pp. 77–86.

[11] G. Alexe, S. Alexe, Y. Crama, S. Foldes, etc., “Consensus algorithms
for the generation of all maximal bicliques,” Discrete Applied
Mathematics, vol. 145(1), pp. 11–21, 2004.

[12] http://fimi.cs.helsinki.fi/src/, 24.02.2012.
[13] P. P. Ji, M. X. Liao, X. X. He, Y. Deng. “Extreme Maximal Weighted

Frequent Itemset Mining for Cognitive Spectrum Decision Making,”
in IEEE ICCSNT, 2011, pp. 267-271.

[14] J. B. Liu, M. X. Liao, X. X. He, X. H. Hu. “Formal Verification on
Distributed Spectrum Sensing Protocol,” in IEEE ICCSNT, 2011, pp.
190-194.

56Copyright (c) IARIA, 2012. ISBN: 978-1-61208-197-7

COCORA 2012 : The Second International Conference on Advances in Cognitive Radio

http://fimi.cs.helsinki.fi/src/

	I. Introduction
	II. CSDM Problem
	III. LCM Algorithm
	IV. Our Algorithm: EMBS
	A. Dynamic thresholds
	B. Improve the judgment of closed state
	C. Reduce the size circularly
	D. The algorithm
	V. Weighted Case of CSDM
	A. Description of wCSDM
	B. Strategy for sorting nodes
	C. Pruning Strategy

	VI. Experiment and Result
	VII. Conclusion and Future Work
	Acknowledgments
	References

