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Abstract—In this paper, spectrum sensing in OFDM-based 
cognitive radio systems is modeled as a pattern recognition 
problem. The proposed scheme uses a linear classifier to decide 
on when the spectrum is busy (class 1) or not busy (class 2). Two 
types of feature vectors are compared in this work, namely 
energy estimates and cross-correlation estimates using the cyclic 
prefix of the OFDM signal. Simulation results indicate that the 
energy-based linear classifier provides excellent performance in 
terms of detection probability over AWGN channels but suffers 
significant degradation if the channel undergoes flat Rayleigh 
fading conditions. On the other hand, the correlation-based 
features offer a more robust performance under both AWGN 
and fading conditions with a detection rate of about 90% at a 
signal-to-noise ratio of –𝟑 dB. 

Keywords- cognitive radio; OFDM; linear classifier; energy 
detection; correlation detection. 

I.  INTRODUCTION  
The radio spectrum is one of the most expensive resources 

in wireless communication systems. Service providers and 
users of the radio spectrum are generally required to obtain a 
license in order to use a particular frequency band. However, 
these users do not use the assigned spectrum at all times of the 
day and spectrum holes are created when the licensed user is 
not using its allotted spectrum resulting in an inefficient use of 
the radio spectrum [1]. To counter this problem, cognitive 
radio technology has been  introduced which allows secondary 
users to access the spectrum only when it is not being used by 
the licensed user. Intuitively, the cognitive radio (CR) should 
be able to sense the spectrum to detect the presence or absence 
of the licensed primary user. By definition, spectrum sensing is 
the task of obtaining awareness about the spectrum usage and 
determining the existence of primary users in a geographical 
area [2]. 

The optimal algorithm for spectrum sensing is the 
likelihood ratio test (LRT) [3][4] and several techniques have 
been proposed in the literature which employ the LRT using 
energy detection [5][6], autocorrelation [7], cyclostationarity 
[8] and pilot tones [9] to sense the spectrum. In addition, CR 
has also been considered as a pattern recognition problem 
where spectrum sensing is done using linear or polynomial 
classifiers [10][11]. This is because the signal received at the 
CR can be either the primary user signal or noise, both of these 
signals have different characteristics which a classifier can 

learn during the training phase and then utilize this learning to 
classify any unseen data into one of two classes: the primary 
signal (class 1) or noise (class 2). Any incoming signal has to 
be classified into one of these classes by the linear classifier. 
However, Orthogonal Frequency Division Multiplexing 
(OFDM) based CRs were not investigated in this research.  

OFDM has rapidly developed into the preferred modulation 
scheme for most wireless standards such as IEEE 802.11a/g, 
IEEE 802.16 and IEEE 802.20 [7]. Consequently, cognitive 
radios operating in wireless channels are expected to be OFDM 
based. In addition, OFDM is the best physical layer candidate 
for cognitive radios because it allows for generation of signals 
which fit into discontinuous and arbitrary sized spectrum 
segments [12]. 

The performance of a CR is measured using detection 
probability which is defined as the probability with which the 
CR (or secondary user) correctly decides that the target radio 
spectrum is occupied by the primary user. Another important 
parameter is the false alarm probability defined as the 
probability with which the CR incorrectly decides on the 
presence of a primary signal thereby not allowing the CR to 
transmit while, in fact, it is eligible to. 

As mentioned earlier, most of the existing techniques 
employ the LRT to decide on the presence or absence of the 
primary OFDM signal. In [7], the autocorrelation coefficient is 
computed at the CR which is zero when no signal is present 
and is a function of different parameters such as the energy per 
bit-to-noise power spectral density (𝐸𝑏/𝑁0), subcarriers, and 
cyclic prefix when the primary signal is received. However, the 
variance of the received signal is unknown and maximum 
likelihood estimate (MLE) is used to compute it. The LRT is 
then applied and its result is compared with a threshold, which 
depends directly on the autocorrelation function of the OFDM 
signal, to make a decision on presence of the primary signal. 
Alternatively, pilot tones in the OFDM signal can also be used 
to sense the spectrum [9]. The time-domain symbol cross-
correlation (TDSC) of two OFDM symbols is computed which 
has a nonzero constant value only if both the symbols have 
same pilots. Comparing the TDSC with a threshold determines 
the presence or absence of the signal.  

In this paper, spectrum sensing technique for an OFDM 
based CR is proposed using a linear classifier instead of the 
traditionally used likelihood ratio test. The linear classifier 
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receives an input signal and decides whether the input signal 
belongs to one of two classes: Class 1: OFDM primary signal 
and Class 2: Noise.  

The rest of the paper is organized as follows: In Section II, 
a system model for the OFDM CRs is presented. Section III 
discusses the proposed spectrum sensing technique and the 
features to be used for sensing. Section IV illustrates the 
performance of the proposed system through simulation results 
and Section V concludes the paper. 

II. SYSTEM MODEL 
In an OFDM system, the available frequency band is 

divided into N overlapping but orthogonal narrow sub-bands 
each associated with a sinusoidal subcarrier. For high data rate 
transmission, each subcarrier is used to carry a small part of 
data and, due to the narrow band nature, does not suffer from 
channel distortion caused by Intersymbol Interference (ISI).  
This is considered as the main advantage of OFDM signal 
since there is no need for complex equalization schemes to 
mitigate ISI as in single-carrier systems. 

The data to be transmitted using M-QAM or M-PSK 
modulation is converted into N parallel streams each to be 
transmitted over a separate subcarrier. An Inverse Fast Fourier 
Transform (IFFT) block is used to modulate the 𝑁 subcarriers 
with the 𝑁  parallel symbol streams. Since the sinusoidal 
subcarriers are orthogonal, they do not cause interference 
among adjacent bands. However, due to channel delays and 
frequency offsets, the orthogonality among the subcarriers may 
be lost. To maintain this orthogonality, a cyclic prefix is added 
to the OFDM signal where the last 𝐿 samples of the signal are 
copied and appended to the beginning to form the cyclic prefix.  

As discussed above, the OFDM signal is constructed by 
feeding 𝑁 symbols (or streams of symbols) to IFFT operator. 
Assume that 𝑆(0), 𝑆(1), . . . , 𝑆(𝑁 − 1) are 𝑁 complex QAM or 
PSK symbols, the output of the IFFT is: 

 𝑠[𝑘] = 1
√𝑁
∑ 𝑆(𝑚)𝑒

𝑗2𝜋𝑘𝑚
𝑁𝑁−1

𝑚=0 , 𝑘 = 0, . . . ,𝑁 − 1, (1) 

where 𝑘  is a discrete time index, 𝑚  is a discrete frequency 
index. Thus, 𝑁 denotes the number of symbols in an OFDM 
data block. The last 𝐿  symbols 𝑠(𝑁 − 𝐿), 𝑠(𝑁 − 𝐿 +
1), . . . , 𝑠(𝑁 − 1)  are added to the front of each block as a 
cyclic prefix to obtain the OFDM symbol of the form: 

𝒔 = [𝑠(𝑁 − 𝐿), . . . , 𝑠(𝑁 − 1), 𝑠(0), 𝑠(1), . . . , 𝑠(𝑁 − 1)]. (2) 

The signal in (2) is first converted from digital to analog to 
form 𝑠(𝑡)  and is then sent over the channel after up-
conversion to the desired radio frequency carrier. 

At the CR, the following signal will be received: 

 𝑥(𝑡) = 𝑐(𝑡)𝑠(𝑡) + 𝑛(𝑡), (3) 

where  𝑐(𝑡) is the channel coefficient at time 𝑡 and 𝑛(𝑡) is the 
additive white Gaussian noise, with zero mean and two-side 
power spectral density of 𝑁0/2, which corrupts the transmitted 

signal. The CR will first down-convert the received signal 
𝑥(𝑡) and then performs analog-to-digital conversion to get the 
following digital signal 

 𝑥[𝑘] = 𝑐[𝑘]𝑠[𝑘] + 𝑛[𝑘], (4) 

where 𝑐[𝑘] is the discrete channel coefficient. At the CR, all 
the computations are done on the signal defined in (4). 

III. SPECTRUM SENSING IN COGNITIVE RADIOS 
As discussed earlier, spectrum sensing can be considered a 

two class pattern recognition problem [10]. The main objective 
of a pattern recognition system is to assign any input signal or 
data to one of a number of known classes (or categories) based 
on features extracted from the input signal. The process of 
acquiring features from the input signal is called feature 
extraction. In this paper, pattern recognition is used at the CR 
to classify the received signal as primary signal or noise such 
that maximum detection probability is achieved while keeping 
the false alarm probability below a certain threshold. A block 
diagram of the proposed system is shown in Fig. 1. 

The feature extracted from the received input signal can be 
one of the many techniques used for spectrum sensing such as 
Energy, Correlation, etc. In Fig. 1, the input to the CR is the 
vector of received signal samples, {𝑥[𝑘]}. The CR then extracts 
the features, 𝒇, from this signal which are then input to the 
linear classifier. The classifier computes an output vector 𝑻 
which is used to classify the input signal based on the features 
into one of the two classes: 

      𝑥[𝑘] = 𝑐[𝑘]𝑠[𝑘] + 𝑛[𝑘] ;  Class 1 (Spectrum busy) (5) 

      𝑥[𝑘] = 𝑛[𝑘]                    ;  Class 2 (Spectrum available) (6) 

where class 1 is the case when the primary OFDM signal is 
present and the spectrum is occupied and class 2 is the case 
when no primary signal is present and the spectrum is 
available. 

A. Energy Detection 
One of the most commonly used techniques for spectrum 

sensing is Energy Detection. With this technique, the CR does 
not require any prior knowledge of the primary signal and, 
therefore, is very easy to implement. The CR senses the 
spectrum for a period of time and compares the received signal 
energy with a defined threshold to decide on the presence or 
absence of the primary signal. However, this type of detection 
is unreliable in fading environments where the energy of the 
primary signal has been severely degraded (attenuated) since 
the signal energy becomes comparable to the noise level. This 
may happen due to deep fades in the channel or due to the 
primary signal energy being very small resulting in a very low 
signal-to-noise ratio (SNR). In such cases, the selection of a 
suitable threshold to decide whether the primary signal is 
present or not becomes a challenging task. 

When the spectrum sensing technique used is energy 
detection, the feature extraction process in the CR will compute 
the energy of the received signal, 𝑥[𝑘], and pass it on to the 
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linear classifier. When the CR estimates the energy of the 
received signal over an observation window of size W, the 
energy, in time-domain, of the detected signal is computed as: 

 𝑓𝐸 = ∑ |𝑥[𝑘]|2𝑊−1
𝑘=0 . (7) 

The extracted energy feature, 𝑓𝐸, is then used by the linear 
classifier to make a decision on the class of the received 
signal, 𝑥[𝑘].  To improve the performance of the energy 
detector, the CR can sense the spectrum more than once (each 
time for a window of W samples) and compute the energy of 
the received signal each time and store it as a feature. The 
linear classifier will now have multiple features and since the 
energy is computed for different instances of time, it will 
 

 
Fig. 1. Block diagram of the proposed system 

make a better and more informed decision on the presence or 
absence of the primary signal. 

B. Correlation Detection 
Energy detection does not require any prior knowledge of 

the type of primary user signal. This could be considered as an 
advantage for such scheme but it results in inferior 
performance compared to other schemes that take advantage of 
certain structure in the OFDM signal. OFDM symbols have an 
inherent special property; namely the cyclic prefix, which can 
be utilized to sense the presence of the primary signal. The 
addition of a cyclic prefix at the beginning of the OFDM 
symbol means that the first 𝐿 samples of the OFDM symbol are 
similar to the last 𝐿  samples. In the case when there is no 
distortion due to noise or channel, the first 𝐿  samples are 
exactly the same as the last 𝐿 samples. This implies that the 
first 𝐿 samples of the OFDM symbol are highly correlated with 
the last 𝐿 samples and this property can be used to sense the 
spectrum for presence of the signal. The CR performs 

correlation between the first 𝑊 samples of the cyclic prefix at 
the start and end of the OFDM symbol and takes the maximum 
correlation value. The size of 𝑊 should always be less than the 
cyclic prefix size 𝐿. If a primary OFDM signal is present, then 
there will be high correlation. On the other hand, if only noise 
is present, then any two samples of Gaussian noise are 
uncorrelated. The correlation at the CR is computed as: 

 𝑓𝐶 = 𝑚𝑎𝑥|𝐸[𝑥𝐵𝑥𝐸∗]|, (8) 

where 𝑥𝐵 = [𝑥1, 𝑥2, … . , 𝑥𝑊] is a vector of first W samples of 
the cyclic prefix at the beginning of the received signal and 
𝑥𝐸 = [𝑥𝑁−𝐿 , 𝑥𝑁−𝐿+1, … . , 𝑥𝑁−𝐿+𝑊]  is a vector of  the last W 
samples of the cyclic prefix at the end of the OFDM signal, 
𝐸[. ]  is the expectation operator and 𝑚𝑎𝑥|. |  takes the 
maximum value of the elements inside the argument. Finally, 
using the correlation, 𝑓𝐶 , as a feature, the linear classifier can 
then make a decision on whether the received signal, 𝑥[𝑘], 
belongs to class 1 or Class 2.  

C. Training the Linear Classifier 
For a linear classifier, a linear discriminant function is 

defined for each class which is used to separate data of a 
particular class from data of another class. A linear 
discriminant function is defined as: 

 𝑔𝑖 = 𝒘𝒊
𝒕𝒇 + 𝑤𝑖0 ;    𝑖 = 1, … ,𝑁𝐶 ,  (9) 

and, 

 𝒇 = [𝑓1 …𝑓𝑑], (10) 

where, for the ith class, 𝑔𝑖 is the linear discriminant function,  
𝒘𝒊 is the weigth vector, 𝑤𝑖0 is the bias or threshold. The vector  
𝒇 is the input feature vector,  𝑁𝐶  is the number of classes (for 
our case, 𝑁𝐶=2), 𝑑 is the dimension of the feature vector 𝒇 (for 
our case 𝑑=1) and 𝑡 is the transpose operation. Any incoming 
feature vector is multiplied by the weights, 𝒘𝒊, and shifted by 
the bias, 𝑤𝑖0, to get the linear discriminant function for each 
class. For a given feature vector, 𝒇, the class which gives the 
maximum value for 𝑔  is the class of 𝒇 . To compute the 
weights for each class, the linear classifier has to be trained 
using training data. As a first step, the bias 𝑤𝑖0 is incorportated 
into the weight vector, 𝒘𝒊, such that a new weight vector 𝒂𝒊 
and a new feature vector, 𝒚, are defined: 

 𝒂𝒊 = [𝑤0 𝒘𝒊
𝒕],     (11) 

and, 

 𝒚 = [1 𝒇] = [𝑦0 𝑦1 …  𝑦𝑑]. (12)           

The linear discriminant function for class i can be 
written as 

 𝑔𝑖 = 𝒂𝒊𝒕𝒚 ;          𝑖 = 1, … ,𝑁𝐶. (13) 
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The weights of the linear classifier have to be 
computed using a set of training data which consists of feature 
vectors belonging to both classes. The training data, 𝒀 , is 
defined as: 

 𝒀 = [𝒚11 𝒚12 … 𝒚1𝐾 𝒚21 … 𝒚2𝐾]𝑡 ,     (14) 

where 𝒚11 … 𝒚1𝐾 are feature vectors of data belonging to class 
1 (OFDM signal) and 𝒚21 … 𝒚2𝐾 are features vectors of data 
belonging to class 2 (noise). The first 𝐾 rows of 𝒀 correspond 
to data belonging to class 1 while the last 𝐾 rows correspond to 
data from class 2. The number of elements in 𝒀 is 2𝐾 ×  𝑑 +
1. Furthermore, two target vectors, 𝒕𝟏 and 𝒕𝟐, are defined for 
each class (𝒕𝟏  for class 1 and 𝒕𝟐 for class 2). Each element of  
𝒕𝟏 and 𝒕𝟐 is basically a linear discriminant function defined in 
(13).  However, since the data is already known, the values of 
𝒕𝟏  are set to zero everywhere except for rows belonging to 
class 1. Similary 𝒕𝟐  is zero everywhere except the rows 
belonging to class 2. 𝒕𝟏  and 𝒕𝟐  are 2𝐾 ×  1  dimensional 
vectors. The first 𝐾  elements of 𝒕𝟏  are 1 while the last 𝐾 
elements of 𝒕𝟐 are 1. The target vectors are combined into a 
matrix 𝑻 defined as: 

 𝑻 = [𝒕𝟏 𝒕𝟐].     (15) 

In addition, a weight matrix, 𝑨 , is formed whose 
columns are the weight matrices for each class. 

 𝑨 = [𝒂𝟏 𝒂𝟐].     (16) 

Therefore, the linear classifier problem now becomes 
a linear equation with 𝑨 being the unknown quantity.  

 𝑻 = 𝒀𝑨.     (17) 

The weight matrix 𝑨 is computed using the pseudo-
inverse of 𝒀: 

 𝑨 = (𝒀𝒕𝒀)−𝟏𝒀𝑻.     (18) 

The training data has to be large enough to provide a good 
estimate of the weight matrix 𝑨. If the data from both classes is 
linearly separable, linear classifier will perform really well. 
However, if the data is not linearly separable, the linear 
classifier may fail. This can happen when at low SNR values 
when the signal and noise have comparable levels. 

D. Testing the Linear Classifier 
After training the linear classifier to compute the weight 

matrix 𝑨, the linear classifier has to be tested using test data, 
𝒀𝒕𝒆𝒔𝒕, to evaluate its performance. Similar to the training data 
described in (14), the test data consists of feature vectors 
belonging to class 1 and class 2. The first 𝑍 elements of 𝒀𝒕𝒆𝒔𝒕 
belong to class 1 while the last 𝑍 elements belong to class 2. 
The linear classifier multiplies the test data, 𝒀𝒕𝒆𝒔𝒕 , with the 
weight matrix, 𝑨 , to get a matrix, 𝑻𝒕𝒆𝒔𝒕  with two columns. 
Ideally, the first column of 𝑻𝒕𝒆𝒔𝒕 should be one for the first 𝑍 
elements (corresponding to class 1) and zero for the rest while 

the second column of 𝑻𝒕𝒆𝒔𝒕  should be zero for the first 𝑍 
elements and one for the last 𝑍  elements (corresponding to 
class 2). However, the obtained values vary around these ideal 
values when novel data is fed to the classifier [10]. 

The obtained 𝑻𝒕𝒆𝒔𝒕  matrix is used to classify the data by 
comparing the values of each row. Usually, the column which 
contains the higher value is decided to be the class of that 
particular feature vector. However, to maintain the false alarm 
probability below a certain target value, a threshold is used to 
distinguish between the two classes. The detection probability 
of the classifier is then determined by comparing the classified 
data with the actual classes of the data. The training and 
threshold setting are usually done offline to reduce the 
complexity of the CR system [10]. 

IV. SIMULATION RESULTS 
In this section, the performance of the linear classifier is 

determined using test data belonging to class 1 and class 2. 
Simulations were used to obtain results due to the complexity 
of analytical evaluation of the proposed technique. The signal 
is received by the CR and energy detection is performed by the 
CR and a decision is made on the presence or absence of the 
primary user signal. In addition to the energy detector, 
simulation results are also presented for the correlation detector 
where the CR uses the correlation between the cyclic prefix at 
the beginning and the end of the OFDM symbol as a feature to 
decide on the availability of the spectrum. The transmitted 
signal is modulated using M-QAM for different values for 
modulation level 𝑀.  For illustration purposes, the Digital 
Video Broadcasting – Terrestrial (DVB-T) standard is used in 
4k mode. Under this condition, an OFDM signal structure with 
4096 subcarriers and the cyclic prefix length 1/8  of the 
number of subcarriers is used. The performance of the linear 
classifier is evaluated at different 𝐸𝑏/𝑁0 values when the signal 
passes through an ideal channel with AWGN only and also 
when the signal experiences flat channel fading with a low 
Doppler frequency of 3 Hz. Before testing the linear classifier, 
for all cases, the weight vector 𝑨, defined in (18) is obtained 
using a random model for the primary user with 50% spectrum 
utilization and defining 2000 training data vectors, 1000 
belonging to class 1 (primary signal) and 1000 to class 2 (noise 
only). This implies that the primary user occupies the spectrum 
only 50% of the time. 

Fig. 2 shows the detection probability achieved by the CR 
using a linear classifier, while maintaining the false alarm 
probability below 0.1, for different values of 𝐸𝑏/𝑁0 using an 
observation window of 𝑊=50 samples and modulation level of 
𝑀=2. The performance is shown for the cases when there is no 
fading and when there is slow fading using the energy detector 
and correlation detector. All results are averaged over 100 
simulation runs. It can be seen that when there is no fading in 
the channel, the energy detector performs very well as it can 
accumulate enough energy to detect the presence of the signal. 
The correlation detector has a similar performance but falls 
behind at very low SNR conditions. On the other hand, when 
fading is present, the energy detector performance is severely 
degraded while the correlation detector exhibits a very small 
degradation in performance. This is because flat fading causes 
significant attenuation in the received signal energy resulting in 
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degradation in performance of the energy detector. The 
correlation detector, however, depends on the repetitiveness in 
the received signal and is therefore less affected by flat fading. 
It is noted that, under AWGN, a detection probability of about 
90% is achieved at about –4 dB and –3 dB for the energy and 
correlation detectors, respectively. Fading degrades the energy 
detector performance by about 15 dB while the correlation 
detector suffers around 6 dB degradation for the same detection 
probability. Ideally, the spectrum utilization can reach 100% 
where the secondary users utilize the spectrum whenever the 
primary user is not active. However, a reduction in the 
spectrum utilization is incurred in the event of a false alarm 
where secondary users decide that the spectrum is busy while 
the primary user is not transmitting. For the simulation 
example used in this paper, the primary user has a utilization of 
50% and hence the secondary users can ideally achieve a 
utilization of 50% but since the false alarm rate was fixed to 
0.1 then the actual utilization for the secondary users will be 
about 45%. Therefore, the total spectrum utilization by the 
primary and secondary users will be about 95%. Note that 
further improvements in spectrum utilization could be obtained 
by reducing the false alarm probability but this may result in 
reducing the detection probability leading to more interference 
from the secondary users to the primary user and hence 
reducing the overall spectrum utilization.  

The performance of the classifier can be improved further 
by increasing the window size 𝑊. However, the window size 
of the correlation detector should not exceed the length of the 
cyclic prefix. Fig. 3 shows the performance of the correlation 
detector for different window sizes in a flat fading channel. The 
modulation level used is 𝑀 =16. An improvement in 
performance is seen as the observation window size is 
increased for the correlation detector. For instance, using an 
observation window of size 10 requires 𝐸𝑏/𝑁0  = -1 dB to 
achieve 90% detection while the same detection probability is 
achieved at 𝐸𝑏/𝑁0 = -6 dB when the window size is increased 
to 100. However, no significant improvement can be seen 
when the observation window size is increased beyond 200. 
For window size of 200 and above, 90% detection is reached at 
around 𝐸𝑏/𝑁0  = -7 dB. 

V.  CONCLUSION 
In this paper, spectrum sensing in a CR is modeled as a 

pattern recognition problem with two classes: the primary user 
signal and noise. Energy detection and correlation detection 
are used as features which are input to the linear classifier that 
decides on the presence or absence of the primary signal while 
maintaining the false alarm probability below a certain value. 
At the CR, training data is used to compute the optimal weight 
matrix. Simulation results show that energy detection provides 
excellent results only when there is no fading by the channel. 
However, in presence of flat fading, the energy detector 
suffers significant degradation in the detection performance 
while the correlation detector maintains good performance for 
most 𝐸𝑏/𝑁0  values. It is also shown that increasing the 
observation window size results in an improvement in the 
performance of the CR.  

 

 
Fig. 2. CR performance in AWGN and flat fading  

 

Fig. 3. Correlation detection performance for different window sizes 
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