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Abstract—With the increment in data rates and new wireless 

services, the necessity for more radio frequency (RF) 

bandwidth for data transmission increases. Frequency 

spectrum is a scarce resource, and there is a necessity to 

optimize its use; in cognitive radio, spectrum sensing is the first 

task toward this optimization. It consists of detecting unused 

spectrum portions, allowing its use by a secondary user. In this 

paper, we apply the blind source separation method called 

Independent Component Analysis (ICA) for spectrum sensing, 

by detecting the presence and bandwidth of transmitted signals 

and by a complementary analysis to obtain non-used spectrum 

portions. A measurement setup with three uncorrelated 

sources and predefined bands is proposed. A software-defined 

radio implementing three independent transmitters and a 

broadband receiver antenna used to capture all signals. The 
results show the feasibility of using ICA for spectrum sensing. 

Keywords-Spectrum sensing; ICA; blind sources; software-

defined radio; cognitive radio. 

I.  INTRODUCTION 

Cognitive radios are communication systems with 
capabilities of monitoring the environment, to analyze the 
obtained parameters, to decide about possible adjusts, and to 
adapt itself according to this decision [1]. In this scenario, 
cognitive radio can adjust the transmission frequency to an 
unused frequency band to optimize the spectrum use. 
Spectrum sensing is the determination of empty frequency 
bands, realized in two steps: sensing the channels and using 
the obtained information to decide about what channels are 
empty.  

Spectrum sensing methods are in three broad categories, 
namely energy detection, stochastic methods, and analysis of 
signal characteristics [2], [3]. Energy detection methods due 
their simplicity have low performance, mainly in a noisy 
environment. The stochastic methods are implemented by 
analyzing some statistical characteristics of the signal. These 
methods have good performance, even in noisy environment, 
but they have high computational complexity. Whereas 
signal features analysis is also very accurate, it implies in a 
previous knowledge of the signal characteristics, what may 
be difficult to detect in transmission of other secondary 
users, using their own systems. 

Independent component analysis (ICA) is a blind method 
for source separation that has been very efficient in various 

scenarios. It has been applied in communications, image 
processing, audio separation [4], determination of direction-
of-arrival (DoA) [5]. In this work, ICA is applied to identify 
signal sources in a broad band of frequencies and to use this 
information for spectrum sensing. Besides its low 
computation complexity [4], the ICA algorithm has good 
performance in presence of low signal-to-noise ratio (SNR), 
and it does not require prior information about the sources 
that occupy the monitored spectrum [6].  

The spectrum sensing by ICA was implemented in a 
software-defined radio. An experimental setup was used to 
validate the proposed method.  

The paper is organized as follows: the basic principle of 
ICA method is described in Section II. The software-defined 
radio is presented in Section III. We describe the experiment 
setup in Section IV. The results and some comments about 
them are shown in Section V. Finally, the conclusions are 
drawn in Section VI. 

II. INDEPENDENT COMPONENT ANALYSIS 

The ICA method uses statistical assumptions for blind 
source separation, and it allows recovering statistically 
independent signals from compositions of this signal, called 
mixture signals [7]. A linear model relates independent 
signals and mixed signals. This is model let us consider a 
vector of n signals s = [s1, s2,…, sn]

T , and a vector of m 
measured signals x = [x1, x2, …, xm]

T, where each signal xi (i 
= 1, …, m) is a linear combination of the n source signals. 
We consider n < m to obtain the best ICA performance, as in 
[7]. 

Fig. 1 represents the basic principles of ICA, where the 
measurement vector x is formed by combining elements of 
vector sources s, via a matrix A (x = As). Even s and A are 
unknown, ICA can find a separation matrix W, such that the 
output vector y (y = Wx) is the optimal approximation of s. 

Figure 1.  The ICA block diagram. 
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In this work, we use the FastICA algorithm. Fast ICA is 
an iterative fixed-point algorithm that minimize the mutual 
information of the estimated components from contrast 
function (g = y3, for example) [9]. Assuming a whitened data 
vector and wT is one of the rows of the separating matrix W 
(Fig. 1). Estimation of wT is done iteratively optimizing the 
nongaussianity of the contrast functions and symmetric 
orthogonalization of W until a convergence is achieved. The 
convergence means that the old and new value of w point in 
the same direction, i.e. their dot-product is (almost) equal to 
1[3]. 

III. SOFTWARE-DEFINED RADIO 

Software-Defined Radio (SDR) proposed by Joseph 
Mitola III [10] as the implementation of flexible and 
reconfigurable radio based on software. Compared to 
traditional hardware implementations, SDR gives the 
possibility of implementing various radios on the same 
hardware, or changing the configuration by adjusting the 
software parameters. In addition, with the increase of 
processing power it becomes possible the use of 
sophisticated signal processing in the implemented radios. 

GNU Radio [11] is an open source framework for 
development of SDR. Each SDR in GNU Radio is composed 
by a set of independent interconnected signal processing 
blocks, obtained from the built-in library or created by the 
user. The SDR developed using GNU Radio can run in a 
general-purpose processor, as a personal computer, and using 
a Radio Frequency (RF) interface, it is possible to transmit or 
to receive real signals. 

The Universal Software Radio Peripheral (USRP) [12] is 
a RF front-end composed by a motherboard and a set of 
daughterboard. In the motherboard, there are analog-to-
digital converters in the reception path (antenna to 
computer), digital-to-analog converters in the transmission 
path (computer to antenna), and a Field-Programmable Gate 
Array (FPGA) to multiplex the data from the reception 
daughterboard to computer and vice-versa. 

The daughterboard performs the down conversion 
(reception) or up conversion (transmission). Each 
daughterboard is projected to a range of frequencies, and in a 
typical configuration have four daughterboard: two to 
transmission and two to reception. 

IV. EXPERIMENTAL SETUP  

To validate the use of ICA for spectrum sensing, an 
experimental setup is implemented, where three SDRs, as a 
signal sources, and another one as receiver of the mixed 
signals. Each source is considered as primary user (channel 
owner) to transmit a signal occupying a bandwidth in a 
specific frequency. Care was taken for signal bandwidths to 
not overlap. Transmitting antennas were arranged side-by-
side, and they are positioned d = λ0/2 (λ0 is wavelength in 
free space at 1.252 GHz) a part. The SDR receiver is 
composed by an antenna and a spectrum analyzer, it receives 
the mixture signal. Once captured, the data are recorded and 
used in an offline application of ICA. 

Fig. 2 shows the measurement setup with three primary 
users, and up to four measurements positions. The distances 

(li, i = 1, 2, 3, 4) between the transmitters and receiver 
antennas can be chosen randomly, assured the far field 
condition. For obtained results, the chosen distances are: l1 = 
2.0 m, l2 = 2.06 m, l3 = 2.06 m, and l4 = 2.24 m. 

Figure 2.  Measurement setup with three sources implemented in SDR. 

As depicted in Fig. 2, each signal source is composed by 
one USRP connected to GNU Radio (computer). The SDR 
permits to configure the transmitted signal parameters like 
bandwidth, transmission frequency and amplitude. Dotted 
parts in Fig. 2 indicate the measurement points P#1, P#2, 
P#3 and P#4, sequentially. 

Compared to other available setups, namely the ones that 
use signal generator as transmitters, the SDR provides more 
flexibility. In the former, waveforms are pre-programmed, 
and in the later the user has the capability of to configure the 
waveforms according to the application, e.g., by choosing the 
probability distribution of the signals, or any other parameter 
of interest. 

A. Description of Measurement Setup 

In the setup, each transmitter uses a log-periodic antenna; 
model WA5JVB, 0.9 – 2.6 GHz, and in the receiver was 
used a high gain broadband antenna (RX) (log-periodic A.H 
Systems, SAS 510-7, 0.29 – 7.0 GHz). USRP and computer 
are connected via a Universal Serial Bus (USB) cable; and 
USRPs and antenna by coaxial cables of 1.10 m long. 
Measurements in positions P#1, P#2, P#3, and P#4 were 
done using a spectrum analyzer, R&S FSL6 (9 kHz – 6 
GHz). The RX positions (P#1 to P#4) were randomly chosen. 

B. Measurement Procedure  

Each primary user transmits a chirp signal generated by 
the SDR with 6 MHz bandwidth. Primary user frequency 
transmissions are User1 = 1.240 GHz, User2 = 1.252 GHz, 
and User3 = 1.264 GHz. The receiver was configured to 
operate from 1.235 GHz to 1.270 GHz, with RBW 30 kHz , 
VBW 100 kHz, trace mode: max hold, and sweep point: 
10,000. 

The system was initially calibrated for each user 
individually. Firstly, the User2 and User3 are OFF, and 
measurement taken from User1 as a single canal; secondly, 
by setting User1 and User3 in OFF, User2 is measured; and 
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finally, by setting User1 and User2 in OFF, the User3 is 
measured.  

V. RESULTS AND DISCUSSION  

the spectra of primary users are show in Fig. 3. They 
were obtained for measurements in position P#1. These 
measurements were done for comparison purposes with the 
recovered spectrum by ICA. 

Figure 3.  Spectrum original of the users, measured in position P#1. 

In Fig. 3, it can be observed that the bandwidth between 
User1 and User2 is 5.1 MHz, and between users User2 and 
User3 is 5.4 MHz. The main goal in cognitive radio is to 
detect these empty spaces. Therefore, using ICA to detect the 
SDR transmission the empty band can be identified. All 
graphs presented here have undergone a smoothing of 
0.005% through the method of moving average. 

Details about signals of each user are given in Table I. 

TABLE I.   PARAMETERS OF USERS 

Primary 

users 

Parameters 

Carrier Frequency (MHz) BW (MHz) 
Maximum Power 

(dBm) 

User1 1.240 6.2 – 21.01 

User2 1.252 5.3 – 26.51 

User3 1.264 8.6 – 19.34 

After measured each individual signal, the next step is to 
measure the three users simultaneously (User1, User2 and 
User3 in ON) transmitting. The transmitters (Users) are 
positioned near to each other. The measurements were 
conducted in free space, covering the band from 1.235 to 
1.27 GHz (BW = 35 MHz). This bandwidth is six times 
larger than the one used in [13]. The spectrum of the 
received signals (User1, User2 and User3) in four different 
positions is shown in Fig. 4. 

At the top of Fig. 4 is shown the spectrum of the received 
signal that is composed by three users, measured at positions 
P#1 and P#2 (User1 + User2 + User3); in the bottom it is 
shown the spectrum measured in positions P#3 and P#4. 
Note that the spectrum has bandwidths available between the 
one allocated by primary users. In a practical case, such 

space must be found by the spectral detection method. In this 
work ICA was used. 

Figure 4.  Composition of the spectrum received in positions P#1 to P#4. 

The obtained measurements were used as the input of the 
ICA method. No additional information is needed in the 
receiver, as in [13] for instance, where it is assumed that the 
receiver already knows the bandwidth of the channels and 
the carrier frequency. 

ICA was applied to the data measured in positions P#1 to 
P#4. They are the elements of the x vector (see Fig. 1). 
Initially, only three measured positions of the spectrum 
presented in Fig. 4 were considered. The results for the 
estimated spectrum using FastICA algorithm are shown in 
Fig. 5.  

Figure 5.  Estimated spectrum by ICA, from data shown in Fig. 4, in 

positions P#1 to P#3. 

The spectrum obtained by ICA (Fig. 5) shows the 
frequency bands occupied by the primary users (4.5 MHz, 
5.7 MHz and 4.9 MHz). The detected empty bandwidths are 
(2.2431 - 2.2485 GHz, and 2.2556 - 2.2665 GHz). The 
information about empty bands is the objective of this work, 
since it indicates where secondary users can be allocated to 
transmit. To determine the bandwidths, we consider points 
where the signal reaches 0 dBm. We can observe that the 
bandwidths are not the same as the original (Fig. 4), but are 
close to, except for the primary User3. To overcome this 
problem, another measurement was considered in the 
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estimation. Fig. 6 shows the spectrum estimated to four 
measurements in positions P#1 to P#4. 

Figure 6.  Estimated spectrum by ICA, from data shown in Fig. 4, in 

positions P#1 to P#4. 

In the new estimated spectrum, shown in Fig. 6, it can be 
observed that the frequency bandwidths occupied by primary 
users are closer to the original spectrum, particularly for 
User3. Estimated and occupied bandwidths by primary users 
are: 5.45 MHz, 5.75 MHz and 8.5 MHz. Once these bands 
are detected, such channels can be used to identify the empty 
bands, which are: 2.2438 - 2.2485 GHz (4.7 MHz) and 
2.2546 - 2.2595 GHz (4.9 MHz). As expected, one can 
conclude that with more input data the ICA method was able 
to identify more precisely the primary users and the free 
frequency bands, which can be used for cognitive radio 
applications.  

The necessity of more input data to make a better 
estimation does not compromise the computational cost of 
the FastICA algorithm. Although the signals used in the 
experiment do not have a defined bandwidth, the obtained 
results show that ICA can be applied to spectrum sensing in 
cognitive radio.  

VI. CONCLUSION AND FUTURE WORK 

In this paper, it was shown the application ICA methods 
to spectrum sensing. Results showed that ICA has 
advantages over traditional methods for spectrum detection, 
since it does not requires prior information about the 
channels to be detected. This fact allows it to detect the 
existence of other users that are not regulated (primary 
users). ICA can also sweep a wide frequency range without 
compromising the complexity and speed of the algorithm. 

As a future work, we propose to compare ICA methods 
with traditional spectrum sensing methods in same 
conditions, to analyze the response of ICA in three scenarios: 
when the user bandwidth is not constant; in the low SNR 
regime (around 2 dB) that is different from was shown here; 
and when users are occupy open TV channels. 

We also intend to use SDR in the receiver, instead of the 
spectrum analyzer, for implementing real time spectrum 
estimation. 
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