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Abstract—This work analyzes efficient non-spreading
(a)synchronous MIMO detection topologies under realistic
channels which results in high throughput and good perfor-
mance × complexity trade-off. In this sense, we look for near-
optimum efficient MIMO detections suitable for (un)coding
schemes. Main system and channel parameters are analyzed,
such as increasing number for transmitter and receiver an-
tennas, number of iterations for convergence under AWGN
and Rayleigh fading channels. Two heuristic local search
MIMO detectors are compared with other near-optimum de-
tectors, specifically SDR (semidefinite relaxation), expectation-
maximization (EM), and linear multiuser detectors. Besides,
the MIMO detectors performances under large MIMO systems
(high number of transmitter and/or receiver antennas) are
analyzed. The performance × complexity tradeoff results have
indicated promising features for the guided local search (GLS)
procedures in high capacity MIMO detectors.

Keywords-MIMO system, heuristic detectors, semidefinite
relaxation.

I. INTRODUCTION

The capacity of a DS/CDMA system in multipath channel
is limited mainly by the multiple access interference (MAI),
self-interference (SI), near-far effect and fading. The Rake
receiver explores the path diversity in order to reduce fading
effect, but it is not able to mitigate the MAI [1], [2].

An alternative to solve this limitation is to apply the mul-
tiuser detection (MUD). The best performance is acquired
by the optimum multiuser detection (OMUD), based on the
log-likelihood function (LLF) [2]. However, this is achieved
at costs of huge computational complexity which increases
exponentially with the number of users. In the last decade, a
variety of multiuser detectors with low complexity and sub-
optimum performance were proposed, such as linear detec-
tors, subtractive interference canceling [1], [2], semidefinite
programming (SDP) approach [3]–[5] and heuristic methods
[6]–[10].

In the near-optimal multiuser detection based on semidef-
inite relaxation (SDR-MuD), the optimal maximum like-
lihood (ML) detection problem is carried out by relaxing
the associated combinatorial programming problem into an
semidefinite programming (SDP) problem with both the
objective function and the constraint functions being con-
vex functions of continuous variables. SDR-MuD approach
has been shown to yield near-optimal detection perfor-

mance in detecting binary/quadrature phase shift keying
(BPSK/QPSK) signals [3]. On the other hand, there are few
works dealing with high-order modulation heuristic detectors
(HeurD) for MIMO systems. Particle swarm optimization
(PSO) approach for MIMO detection with 16- and 64-QAM
was considered in [11], [12]. A 16-QAM local search (LS)
and hybrid PSO heuristic multiuser detectors suitable for
DS/CDMA systems under SISO multipath channels has been
considered in [13].

This work proposes a framework analysis for near-
optimum detection suitable for non-spreading high-order
modulation MIMO systems based on heuristic guided local
search (GLS) approach, comparing with others well estab-
lished detectors methods in the literature. For several MIMO
detectors, the performance×complexity trade-off analysis
is carried out, considering different systems and channels
parameters in order to confirm the efficiency of the heuristic
GLS-MIMO detectors approach. The non-spreading squared
M -PSK MIMO system configurations in flat fading channels
have been explored.

II. NON-SPREADING MIMO SYSTEM MODEL

Figure 1 illustrates different four configurations possibil-
ities for the channel that can be treated with the system
model described herein. In this work we have explored the
configuration a) single-user MIMO (non-spreading systems)
non-selective fading channels with M -PSK or squared M -
QAM modulation formats. Next we describe the adopted
system model.

Consider a generic MIMO system with K transmit anten-
nas and N receive antennas, and not necessarily K ≤ N ,
where K symbols are transmitted from K transmit antennas
simultaneously. Let sk be the symbol transmitted by the kth
transmit antenna. Each transmitted symbol goes through the
wireless channel to arrive at each of N receive antennas.
Denote the path gain from transmit antenna k to receive
antenna n by hnk. Considering a baseband discrete-time
model for a AWGN or flat fading MIMO channel, the signal
received at nth antenna is given by

yn =
K∑

k=1

hnksk + ηn (1)
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Figure 1. Channel configuration possibilities for the MIMO detection
problem.

The hnk,∀n ∈ {1, 2, . . . , N},∀k ∈ {1, 2, . . . ,K} are as-
sumed to be or i.i.d. complex Gaussian r.v’s (fade amplitudes
are Rayleigh distributed) with zero mean and E[(hI

nk)
2] =

E[(hQ
nk)

2] = 0.5, where hI
nk and hQ

nk are the real and
imaginary parts of hnk, or the channel matrix is assumed
unitary for the case of AWGN channel.

The noise sample at the nth receive antenna is assumed
to be complex Gaussian with zero mean, and the samples
{ηn}, n = 1, . . . , N , are assumed to be independent with:

E[η2n] = N0 =
KEs

γ

where Es is the average energy of the transmitted symbols,
and γ is the average received SNR per receive antenna [14].

The received signals are collected from all receive anten-
nas, so (1) can be re writing in a vectorial form as:

y = Hs+ n (2)

where y = [y1 y2 . . . yN ]T is the received signal vector,
s = [s1 s2 . . . sK ]T is the transmitted symbol vector, the
N×K channel matrix H, with channel coefficients hnk, and
n = [η1 η2 . . . ηN ]T is the noise vector. In a first analysis,
H is assumed to be known perfectly at the receiver, and
afterward errors in channel estimation matrix at received can
be introduced. At the transmitter, the channel matrices are
assumed completely unknown.

III. OPTIMUM DETECTION

The optimal maximum likelihood (ML) detector estimates
the symbols for all K users by choosing the symbol combi-
nation associated with the minimal distance metric among all
possible symbol combinations in the M = 2m constellation
points. So, ML detection in a memoryless non-spreading
MIMO Gaussian channels (K ×N ) can be formulated as:

min
s

∥y −Hs∥22 (3)

s.t. {sk} ∈ A, k = 1, . . . ,K

In order to avoid handle complex-valued variables,
the separable squared QAM or M−PSK constellation is
adopted. Hence, (3) can be redefined as the following
decoupled optimization problem:

min
r

∥z−Mr∥22 (4)

s.t. ri ∈ C ⊂ Z, i = 1, . . . , 2K

with definitions:

z :=

[
Re{y}
Im{y}

]
∈ R2N×1; r :=

[
Re{s}
Im{s}

]
∈ R2K×1

(5)

M :=

[
Re{H} −Im{H}
Im{H} Re{H}

]
∈ R2N×2K ; (6)

Clearly, (4) is a quadratic optimization problem with discrete
variables in the set A and can be expressed as:

min
r

rTQr+ qT r (7)

s.t. ri ∈ C ⊂ Z, i = 1, . . . , 2K

where Q = MTM, q = − 2HT z, and r =
[rI1 , r

I
2 , ..., r

I
K , rQ1 , r

Q
2 , ..., r

Q
K ]T , with rIk and rQk the in-

phase and quadrature component, respectively, for the kth
user evaluated symbol. Note that the solution r∗ in (7)
represents the estimation symbol for all K users, simply
by composing the in-phase and quadrature components as:
r∗k = rIk

∗
+ jrQk

∗
. Note that if K > N , Q could become

singular for some channel realization, once that Q is merely
positive semidefinite. This difficulty can be removed by
adding ϵ I with small ϵ > 0 to Q.

The vector r in (7) is a discrete set with size depen-
dence of M and K and can be solved directly using
m−dimensional (m = log2 M ) search method. Therefore,
the associated combinatorial problem in an exhaustive search
fashion has an exponential computational complexity that
becomes prohibitive even for a moderate product M K This
ML detection problem can be solved efficiently by expand-
ing the discrete feasible set into a continuous and convex
feasible region [15]. Hence, manipulations, simplifications
and relaxation over (4) or (7) is explored in the next section.

IV. SUB-OPTIMAL MIMO DETECTORS

Based on the recently proposed non-spreading MIMO
detectors suitable either for coding as uncoding MIMO
schemes, herein we investigate near-optimum detectors
MIMO detectors under same system framework used in [16],
but aiming to improve the performance × complexity trade-
off. The goal is to obtain a structure which high overall
throughput with good performance and relatively simple
detection (or even decoding) using low complexity detectors
topologies. Under uncoded-MIMO systems context, we have
proposed LS, Hyb-opt LS and PSO (named GLS-MIMO)
heuristic detectors. Hence, the performance × complexity
trade-off of the proposed HeurD, specially GLS-MIMO
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detectors, are compared with SDR, EM, linear parallel
interference cancellation (PIC) and minimum mean squared
error (MMSE) MIMO detectors. Below we discuss relax-
ations, simplifications, heuristic and classical criteria such as
expectation-maximization and minimum mean squared error
approaches suitable to non-spreading MIMO detectors.

A. Semidefinite Programming Relaxations (SDR)

In a brute-force fashion, the conventional ML detector
requires to examine all symbol combinations, i.e., 2mK pos-
sibilities, or M2K for the equivalent decoupled optimization
problem (4). Hence, the difficulty in adopting the OMUD
is its high computational complexity, which is proportional
to O(MK). Therefore, when K or/and M increase, the
computational complexity increases rapidly and this option
becomes impractical. SDR and/or heuristic approaches are
alternatives to deal with this problem, reducing complexity
substantially, avoiding this huge complexity at an affordable
performance loss in relation to optimum performance.

1) Relaxation for Decoupled ML Uniform QAM MIMO
Detection Problem: Utilizing upper and lower bounds on
the symbol energy in the relaxation step, a high-order QAM
SDR MIMO detector with complexity that is independent
of the constellation order for uniform QAM was proposed
[17].

Under the hypothesis that A is an square alphabet and
symmetric about the origin1, the decoupled optimization
problem posed by (4) can equivalently be rewritten as [17]:

min
X

Trace(QX) (8)

s.t. X ≥ 0; rank(X) = 1;

X2K+1,2K+1 = 1 Xi,i ∈ C2, i = 1, . . . , 2K;

with: x :=

[
rT

t

]
∈ R2K+1; t ∈ {±1} (9)

Q :=

[
MTM −MT z
−zTM 0

]
; and X := xxT (10)

Since the optimization problem (8)–(10) has nonconvex
constraints: a) rank constraint, rank(X) = 1; b) squared
finite alphabet constraints; Xi,i ∈ C2, i = 1, . . . , 2K,
than, dropping the rank-one constraint a), and relaxing the
constraints b) to the convex half-space (lower and upper)
constraints:

L := min
a∈C

a2 ≤ Xi,i ≤ max
a∈C

a2 =: U, i = 1, . . . , 2K,

we finally obtain the the SDR detector for non-spreading
MIMO system:

min
X

Trace

([
MTM −MT z
−zTM 0

] [
rT

t

] [
rT t

])
s.t. X ≥ 0; L ≤ Xi,i ≤ U i = 1, . . . , 2K;

X2K+1, 2K+1 = 1 (11)

1Always valid for the QAM constellations.

with x ∈ R2K+1, t ∈ {±1}. As suggest in [17], the relaxed
problem in (11) can be solved using any of the available
modern SDP solvers, based on interior point (IP) methods,
such as SeDuMi [18].

After this step, an approximate solution to the original
problem can be generated using Gaussian randomization:

• drawing random vectors x ∼ N (0,Xopt), where Xopt
denotes the solution of (11),

• quantizing each element of x to the nearest point in C:
x̌ = quantize(x),

• reconstructing s from the quantized x, i.e., si ← x̌i,
with e.g. si ∈ {±1,±3} for 16−QAM.

• and finally picking the ŝ that yields the smallest cost
in original minimization problem (4).

Other strategies for approximating s in a squared-QAM
NO-MUD problem can be obtained using a simple quan-
tization or eigenvalue decomposition, as well as a simple
randomization procedures [19], [20].

Previous results using different SDR higher-order QAM
MIMO near-optimum detection strategies [17], [20]–[26].
In this sense, an efficient SDR detector was proposed in
[26]. The focus is to achieve near-optimal BER performance
with worst-case polynomial complexity. This is made by
combining an optimized dual-scaling IP method for the
relaxed SDP with a truncated version of the Sphere Decoder
(SD) [27] and a dimension reduction strategy.

2) SD × SDR Detectors: The SD demonstrates impres-
sive low running time for small systems operating in the
high SNR regime; however for large systems or under low
SNR regions, the running time grows exponentially. The
core of the SD is based on exhaustive search. This feature
is responsible for the increasing complexity under low SNR
and/or huge number of users or antennas in MIMO systems.

On the other hand, the SDR detector is by nature insensi-
tive to SNR changing, and its running time scales gradually
with problem size. The insensitivity to SNR is a major ally in
the low SNR regime, where the ML detection problem shows
great difficulty. However, in the high SNR regime, the SDR
algorithm fails to take advantage of the low noise property
of the channel, when the SD takes advantage. The Sphere
Decoding algorithm with adjustable radius search serves as
a fast heuristic test of low noise channel realizations. The
maximum number of sphere expansions is selected to ensure
that complexity of the truncated Sphere Decoder does not
dominate complexity of the dual-scaling algorithm.

It is worth to note that unlike the excellent performance
obtained with BPSK modulation, the performance of SDR
detector under higher-order QAM modulation formats is still
considerably worse than achievable with the ML detector.
This observation motivate us to propose heuristic alternatives
for low-order modulation as well as high order squared-
QAM formats.
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B. Guided Local Search Heuristic MIMO Detectors

Other approach to reach near-optimum performance con-
sists in to apply heuristic procedures over (4). Comparisons
among heuristic techniques performed for the MUD problem
with BPSK modulation were carried out in [13], [28] and
show that they are able to achieve performances close to
the OMUD with low complexity. A local search M−QAM
SISO MuD based on the BPSK s-LS-MUD has been ana-
lyzed in [28]. In a hybrid heuristic detection, the conven-
tional Rake, or MMSE, or EM receiver output is adopted
as the initial solution. Next, all unitary Hamming distance
(from the initial solution) are evaluated individually through
the equivalent quadratic minimization problem, eq. (7). The
third step consists of switch the search to the simplified k-opt
local search multiuser detector (s-LS-MUD), with k = 1, 2
[28], or even adopting PSO, genetic algorithm (GA), simu-
lating annealing (SA), or other heuristic approach.

1) 1-LS MIMO Detector: The MIMO detector is based
on the guided local search (GLS-MIMO detector) of all
candidates with unitary Hamming distance regarding to the
current solution.

In an exhaustive search approach, there are M branches
originating from each node in any tree search algorithm.
So, for BPSK modulation (M = 2) always there are
two branches, while in 16-QAM there are 16 branches
originating from each node, regarding to a symbol of kth
user or Tx antenna in a MIMO context. Therefore, the
complexity is exponential with the number of users: MK

candidates exist.
On the other hand, in a k-opt local search (k−LS) ap-

proach with binary modulation, at each iteration, the fitness

function (LLF) is evaluated only
(

K
k

)
times. Under

strong interference environment, 1-LS MIMO degradation
can be significant. However, the performance degradation
can be mitigated combining k-opt and p-opt LS, with p > 1
and p ̸= k, with marginal complexity increasing regarding
to single k-opt LS. In general, the simplest strategy in k-p-
opt LS consists in swapping the local search from k-opt to
p-opt and vice-versa along the iterations every time there are
no improvement in the fitness function value, eq. (4) or (7).
Indeed, the performance-complexity of 1-2-opt LS (named
”Hyb. 1-2-LS”) MIMO detector are evaluated in Section V.
The local search setting is swapped (1-opt to 2-opt) after
3 iterations with no fitness values improvement and a total
number of iterations is set to It = 3K.

C. Iterative Expectation-Maximization (EM) Detector

In order to compare the performances and complexities of
the proposed GLS-MuD for MIMO channels, in this section
an extension of the iterative expectation-maximization mul-
tiuser detector (EM-MuD) under BPSK DS/CDMA systems
[29], [30] is provided. In [29], a EM-MuD for BPSK
synchronous DS/CDMA under SISO AWGN channels was

proposed, while in [30] an extension for MIMO flat-fading
channels has been proposed.

In [30], the EM algorithm is applied to the maximum
likelihood detection of BPSK synchronous DS/CDMA un-
der MIMO (layered space-time codes) flat fading channels
systems. The single data stream in the input is demulti-
plexed into K substreams, and each substream is modu-
lated independently; then transmitted over a rich-scattering
wireless channel to N received antennas The conditional
log likelihood function (LLF) of a single layer is iteratively
treated, rather than maximizing the intractable likelihood
function of all layers. Computer simulations demonstrate
some improvement of the EM-MIMO detection scheme
with BPSK modulation in relation to the original V-BLAST
scheme.

Herein, we analyze the performance-complexity of the
BPSK EM-MIMO detector [30] under different scenarios.
Since the symbols can only take the values {±1}, the
iterative decisions for the kth substream of a synchronous
EM detector take the form:

ŝn+1
k = sign

{
Re

[
ŝnkh

H
k hk + βkh

H
k (y −Hŝn)

]}
(12)

where ŝn = [ŝn1 ŝ
n
2 . . . ŝnK ]T is the symbol vector estimative

at the nth iteration, and βk’s are arbitrary real valued scalars
satisfying

∑K
k=1 βk = 1, βk ≥ 0.

For QPSK modulation, the kth symbol estimation at
nth iteration above is given by sn+1

k = csign {·}, with
the same argument of (12), where the complex decisor
csign {a+ jb} = csign{a}+ jcsign{b}.

Eq. (12) provides an iterative method to detect the sym-
bols of all substream (or users). An appropriate initial value
for symbol estimate is given by the output of the conven-
tional maximum ratio combining (MRC) receiver s0 = smrc.
On the other hand, parameter βk has a critical role in the
EM-based algorithm convergence. By setting βk = 0, eq.
(12) loses its iteration capability and reduces to the MRC
receiver:

ŝk = sign
{
Re

[
hH
k hkŝk

]}
= sign

{
Re

[
hH
k y

]}
. (13)

Assuming βk = 1, eq. (12) becomes a linear PIC detector:

ŝn+1
k = sign

{
Re

[
ŝnkh

H
k hk + hH

k (y −Hŝn)
]}

(14)

In [31], the βk’s values were found experimentally, and
found βk = 0.8 for the best performance in a system with
one and two receive antenna scenarios. In our simulation
results, for K and N in the range of [5; 20] antennas, the
best βk = 0.8 value was confirmed.

D. Linear MMSE and Pseudo-Inverse H MIMO Detectors

The well known linear MMSE and channel pseudo-inverse
(Pinv-H) based multiuser sub-optimal detectors are easily
represented for M−PSK MIMO detection, respectively, as

ŝk = sign
{
Re

[
hH
k

(
hH
k hk + σkIN

)†
y
]}

, (MMSE) (15)
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and ŝ = sign
{
Re

[
H†y

]}
, (Pinv-H) (16)

where (·)† represents the pseudo-inverse operator.
Numerical results for the analyzed and proposed NO-

MUD MIMO detectors are discussed in the next section.

V. NUMERICAL RESULTS

The performance of MIMO detectors were obtained
by Monte-Carlo simulations, considering both AWGN and
NLOS flat Rayleigh fading channels; the transmitted and
received antennas were grouped into two categories: de-
termined (K ≤ N ) and undetermined (K > N ) MIMO
channels. Figure 2 shows typical statistics for flat Rayleigh
channel coefficients deployed in simulations. In order to
facilitate the performance-throughput comparison analysis
among the several MIMO detectors, low order modulation
(BPSK) was assumed.
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Figure 2. Typical statistics for the h1,1 and h10,10 Rayleigh channel
coefficients.

A. Performance under AWGN Channels

Figures 3 presents the MIMO detectors performance ten-
dency under AWGN channels when number of transmitted
antennas increases from K = 5 to 10, and to 20, while
the number of receive antennas is held, N = 10. The
GLS-MIMO detector (1-LS) advantage increases when the
channel approaches to the determined limit condition, i.e.
K = N antennas. For the undetermined MIMO channel
condition, Fig. 3.c indicates that a single guided local
search (1-LS) is not enough to deal with the interference
generated under degraded spatial eigen-mode (K >> N ).
Alternativaly, a low complexity GLS-MIMO is evaluated in
the next subsection, namely hybrid 1-shift-2-LS.

Note that although the SDR approach result in high
performance, the complexity is quite high when compared
to the GLS-MIMO detectors, mainly when K ≥ N , as
discussed in Section V-C.
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Figure 3. MIMO detectors performance for AWGN channels: a) K = 5
N = 10; b) K = 10 N = 10; c) K = 20 and N = 10 (undetermined).

B. Performance under Flat Rayleigh Channels

Figures 4 and 5 illustrate the BER degradation reduction
obtained with 1-2-opt LS (”Hyb. 1-2-LS” in legend) under
BPSK modulation and flat Rayleigh channels. The swapping
procedure between the two guided LS algorithms (1 � 2-
opt LS) occurs after 3 iterations with no fitness values
improvement; the total number of iterations was set to
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It = 3K. Figure 5 indicates the performance degradation
versus SNR for the Conventional (MRC), Linear PIC, 1-
opt LS, 1-2-opt LS, and SDR detectors under the increasing
number of transmitted antennas (from K = N = 3 to
K = N = 12).

The same MIMO detectors performance tendency in Fig-
ure 4 was observed with 16-QAM modulation. For the sake
of space limitation, the MIMO detectors performance under
higher M−QAM modulation orders were not shown herein.

It is worth to note that when the number of transmit
and/or receive antennas increase, characterizing large MIMO
systems, i.e., high number of K and/or N antennas (tens
to hundreds) [32], Figs. 4.b and 5.c indicates a relative
improvement performance of GLS MIMO detectors (1-LS
and Shift 1-2-LS) regarding to the linear strategies (MMSE
and Pinv-H) for low SNR. Additionally, the computational
cost/complexity to obtain the channel matrix inverse is high
in comparison with heuristic strategies, indicating a relative
gain for heuristic approaches in these scenarios.
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channels. a) K = 5; b) K = 10. 1 � 2-opt LS occurs after 3 iterations
with no improvement; It = 3K.
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Figure 5. Performance for 1-LS and 1-2-LS with K = N antennas under
flat Rayleigh channel: a) K = N = 3; b) K = N = 8; c) K = N = 12.
1 � 2-opt LS occurs after 3 iterations with no improvement; It = 3K.

C. Complexity

Table I shows the complexity equations representing
the number of complex multiplication/division and addi-
tion/subtraction operations for each analyzed MIMO detec-
tor. The four basic operations were considered with the same
computational complexity. The complexity analysis was ex-

41

COGNITIVE 2010 : The Second International Conference on Advanced Cognitive Technologies and Applications

Copyright (c) IARIA, 2010               ISBN: 978-1-61208-108-3



pressed by one iteration per substream/symbol (or antenna).
The pseudo-inverse operator complexity was calculated with
the Golub-Reinsch SVD [33].

Table I
NUMBER OF OPERATIONS COMPLEXITY FOR THE MIMO DETECTORS

Detector Eq. Complexity
SDR (11) 16K2N + 17KN + 4K2 − 2N + 14K + 2
MRC (13) 2N − 1
Pinv-H (16) 11K3 + 9K2N + 5KN2 −N
MMSE (15) 24N3 +N2 + 5N − 2
EM (12) 2NK + 6N − 1
Lin PIC (14) 2NK + 5N − 1
1-LS Ref. [28] 8NK +N − 2K − 1

Table II indicates the number of operations for each
MIMO detector considering the antennas scenarios discussed
before. Hence, in AWGN channel the operation are con-
sidered real values, while under flat Rayleigh channels,
the operations are assumed complex values. In all cases it
was assumed N = 10 received antennas. The complexity
for the 1-LS and Shift 1-2-LS is almost the same, been
omitted the Shift 1-2-LS complexity. One can see the MIMO
detector with less number of operation for all K = 5, 10
or 20 transmitted antennas is the MRC, but with the worst
performance. While the larger complexity is achieved by the
MMSE, followed by the EM (with It = 100), and Pinv-H,
respectively. Note that under K = 10 transmitted antennas
scenario, the Pinv-H, MMSE and Lin-PIC with It = 100
detectors present approximately the same complexity of EM
MIMO detector with It = 100.

Table II
NUMBER OF OPERATIONS COMPLEXITY FOR THREE MIMO CHANNELS

SCENARIOS. N = 10 RX ANTENNAS.

Detector (@N = 10) Eq. K = 5 K = 10 K = 20

SDR (11) 5002 18218 69262
MRC (13) 19 19 19
Pinv-H (16) 6115 24990 133990
MMSE (15) 24148 24148 24148
EM It = 18 (12) 2862 4662 8262
EM It = 100 (12) 15900 25900 45900
Lin PIC It = 18 (14) 2682 4482 8982
Lin PIC It = 100 (14) 14900 24900 49900
1-LS It = 18 Ref. [28] 7002 14202 28242
1-LS It = 10 Ref. [28] 3890 7890 15690

Analyzing the performance-complexity trade-off provided
by Figs. 4, 5 and Table II one can see that the best choice
is the GLS-MIMO Detectors (1-LS and Shift 1-2-LS).

VI. CONCLUSIONS

The proposed simple guided local search MIMO detec-
tors (1-LS and Shift 1-2-LS) have been shown attractive
option regarding to the linear strategies (MMSE and Pinv-
H), Expectation-Maximization approach, and conventional
MIMO receivers (V-Blast and MRC topologies) as well,
due to either high computational complexity in obtaining
the channel matrix inverse (in case of linear strategies)

or the very poor performance although lower complexity
of MRC and EM strategies. On the other hand the SDR
performance is always better than GLS-MIMO detectors,
but the computational demand is much more intensive than
heuristic approaches.

Finally, under large MIMO systems scenarios (tens to
hundreds K and N ), the GLS MIMO detectors presents a
relative improvement performance under the conventional,
linear, EM and inverted channel matrix approaches.
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PSO Assisted Multiuser Detection for DS-CDMA Commu-
nication Systems, ser. Particle Swarm Optimization: Theory,
Techniques and Applications. Nova Science Publishers, Sept
2010, vol. 1, pp. 247–278.

[14] H. Jafarkhani, Space-Time Coding: Theory and Practice.
Cambridge University Press, 2005.

[15] H. Peng, L. Rasmussen, and T. Lim, “Constrained maximum-
likelihood detection in cdma,” IEEE Transactions on Commu-
nications, vol. 49, no. 1, pp. 142–152, Jan. 2002.

[16] N. S. J. Pau, D. P. Taylor, and P. A. Martin, “Robust high
throughput space time block codes using parallel interference
cancellation,” IEEE Transactions on Wireless Communica-
tions, vol. 7, no. 5, pp. 1603–1613, May 2008.

[17] N. Sidiropoulos and Z.-Q. Luo, “A semidefinite relaxation ap-
proach to mimo detection for high-order qam constellations,”
IEEE Signal Processing Letters, vol. 13, no. 9, pp. 525–528,
Sept. 2006.

[18] J. F. Sturm, “Using sedumi 1.02, a matlab toolbox for
optimization over symmetric cones,” Sofware Methods Op-
timization, vol. 11-12, pp. 625–653, 1999, available online:
http://sedumi.mcmaster.ca.

[19] W. K. Ma, P. C. Ching, and Z. Ding, “Semidefinite relaxation
based multiuser detection for m-ary psk multiuser systems,”
IEEE Transactions on Signal Processing, vol. 52, no. 10, pp.
2862–2872, Oct. 2004.

[20] A. Wiesel, Y. C. Eldar, and S. S. (Shitz), “Semidefinite relax-
ation for detection of 16-qam signaling in mimo channels,”
IEEE Signal Processing Letters, vol. 12, no. 9, pp. 653–656,
Sept. 2005.

[21] X. Wang and Z. Mao, “Multiuser detection for mc-cdma sys-
tem with m-qam using semidefinite programming relaxation,”
in PACRIM - IEEE Pacific Rim Conference on Communica-
tions, Computers and signal Processing, Aug 2005, pp. 530–
533.

[22] Y. Yang, C. Zhao, P. Zhou, and W. Xu, “Mimo detection
of 16-qam signaling based on semidefinite relaxation,” IEEE
Signal Processing Letters, vol. 14, no. 11, pp. 797 – 800, Nov
2007.

[23] Z. Mao, X. Wang, and X. Wang, “Semidefinite programming
relaxation approach for multiuser detection of qam signals,”
IEEE Transactions on Wireless Communications, vol. 6,
no. 12, pp. 4275 – 4279, Dec. 2007.

[24] Y. Zhang, W.-S. Lu, and T. Gulliver, “Integer qp relaxation-
based algorithms for intercarrier-interference reduction in
ofdm systems,” Can. J. Elect. Comput. Eng, vol. 32, no. 4,
pp. 199–205, Fall 2007.

[25] S. Park, H. Zhang, H. Hongchao, D. Han, J. Kim, E. S. Kang,
and W. W. Hager, “A fast suboptimal algorithm for detection
of 16-qam signaling in mimo channels,” in MILCOM - IEEE
Military Communications Conference, Oct. 2007, pp. 1–7.

[26] M. Kisialiou and Z.-Q. Luo, “Efficient implementation of
a quasi-maximum-likelihood detector based on semi-definite
relaxation,” in ICASSP’07 - IEEE International Conference
on Acoustics, Speech and Signal Processing, vol. 4, April
2007, pp. 1329–1332.

[27] U. Fincke and M. Pohst, “Improved methods for calculating
vectors of short length in a lattice, including a complexity
analysis,” Mathematics of Computation, vol. 44, pp. 463–471,
1985.

[28] L. de Oliveira, F.Ciriaco, T. Abrao, and P. Jeszensky, “Local
search multiuser detection,” AEÜ International Journal of
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