
Algorithm to Solve Web Service Complex Request Using Automatic
Composition of Semantic Web Service

Brahim Batouche, Yannick Naudet,
Public Research Center Henri Tudor,

Luxembourg
{brahim.batouche, yannick.naudet}@tudor.lu

Frédéric Guinand
University of Le Havre,

France
frederic.guinand@univ-lehavre.fr

Abstract -- Automatic composition of web services supports
the solving of complex user request. The set of possible
solutions can be represented by a graph, modeling the
composition. Usually, this kind of approach is highly
simplified by considering only sequences of services. This
paper proposes an algorithm for automatic semantic web
services composition, which generates a graph taking into
account any composition structure. The request resolution
process identifies possible composition structures and selects
relevant services based on their semantic description. The
resulted composition graph answers all requested
functionality with coherent composition structures.

Keywords - semantic web service; composition graph;
automatic compositio; web service composition structure.

I. INTRODUCTION

Web services composition is a classical approach to
answer complex queries that cannot be solved with one
single service. Answering to such requests requires
several steps: (1) finding suitable services; (2) finding
how they can be composed together to answer the request;
(3) create the corresponding composite service; (4)
invocate it; (5) maintain it so that it can be reused later.
The structure of the composite service depends obviously
on the request, but also of the available services.

Composing services can be useful in many different
domains, such as, e.g., tourism, transport, multimedia, etc.
Some of them involve a dynamic environment where
events at any time can affect previously computed
compositions answering a request. A fundamental issue is
then how to repair failures in a composite service
execution, which can occur in dynamic environments. A
typical example is when one of the services involved in
the composition is faulty or can no more be executed.
This fail is translated to a complex request and then use
our algorithm to find another composition alternative.
 In this paper we propose an algorithm for
automatically finding all candidate compositions
answering a complex request, without a priori knowledge
of the composition structure. When the request does not
formally specify any chaining between the requested

elements, the algorithm must found suitable composition
structures based on the available services. This problem is
not trivial because there are many possible services
combinations and composition structures. To determine
the composition structure we base in the existing
functionalities, which are automatically determined
because the available services are supposed described
semantically by OWL-S [1].

 In section 2, we present related works. In Section 3,
we first formalize the problem and detail it. Section 4
presents the composition structures and their semantics. In
Section 5, we present our algorithm for automatic
construction of a composition graph. In Section 6, we
provide the experimentation results, and finally, we
conclude in Section 7.

II. RELATED WORKS

Solving a complex request by services composition in
dynamic environments, can be tackled by different
approach.

The algorithm presented in [2] builds a composition
graph answering a request. The algorithm identifies first
the input and output of the request and search for a
matching service. When none can be found a service
having a matching output is selected and recursively,
subsequent services having output matching with the
input of the latter service and input matching with the
request input are sought. The algorithm ends when a
sequence of services starting with the request input and
ending with its output is found, or when the set of
available services has been searched. The provided
composition graph does not allow the direct invocation of
services. Also, it is still limited to sequences structure of
composition.

In [3], the flooding algorithm is used. Once again, the
proposed approach is limited to services sequences and
does not allow composition execution.
 In [3], an architecture for automatic web service
composition is proposed. This architecture allows fast
composition of OWL-S service. However, while authors

84

COGNITIVE 2010 : The Second International Conference on Advanced Cognitive Technologies and Applications

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-108-3

provide interesting ideas for the design of the composite
service and automating service invocation, they only
consider sequences of services. Kazhamiakin and Pistore
[5] proposed a model to answer a request using the
composition of web services, the model supposes the
available services are described by BPEL-WS. A request
requires much functionality, which are identified and then
used in a finite state-machine, implementing the
composition structure. The state-machine provided does
not allow composition execution.

 In [5], a multi-agent system is used to automate the

composition of services. The agents collaborate to provide
the composition needed, an agent is presented by the
OWL-S service and its functional parameters describe the
agent role. With this system, we can consider the
compositional structures: sequence, parallel and
conditional. The conditional structure concerns only the
functional parameter of the service.
 According to the state of the art, many methods of
automatic composition focus to find the needed
functionalities to answer a request and there order but do
not give the link to execute them. So, they usually
consider only the sequence structure. To exceed these
limits, we automate the detection of the composition
structure needed and the selection of the services
requested. To select automatically the services, we use
the I/O dependence basing in the matching function. The
matching function uses only the IO parameter [6] or uses

the IOPE [8], which provides more accurate results.

III. PROBLEM FORMALIZATION

A typical example of complex user request, which we
will use as a basis to present our approach, is the
following: “I want travel from City A to City B, reserve
several hotel rooms in destination city where each book is
billed separately, rent a car for six people, have the
weather and plan for the destination city”. Such request
needs first to be formalized in a machine processable way.

A. Request Formalization

A complex request is a combination of more focused
or atomic sub-requests, which concerns each a service or
functionality. We write: � � �� � ����	, where ��� is a

functionality requested. Our example requires four
functionalities: transport, booking hotel, rent a car, city
information. Each functionality has input/ output
(
���

/���
). Formally, we write a request as a triple: R =

<
�, �, C>, where
� � �
���
��������
��� � ���, … , ����is

the set of inputs, � � � ���
��������
��� � ���, … , ���� is

the set of outputs, and � � � �, … , !�� is the set of
conditions or constraints (related to data, service or
composition). Conditions differ from constraints in that
they must be verified to instance the input parameter of
service, but the constraints to filter the set of available
services, data provided by services or composition paths.
All the sets elements are URIs of concepts defined in
ontologies. While I and O correspond to functional
parameters which describe a domain ontology, C concerns
both functional and non functional parameters. Quality of
Service is an example of such parameter, as well as price,
cardinality of some services output, etc. The non
functional parameters values are found in the service
description. The functional parameters values are
identified after execution the informative service, which
provide information without modify its source database.

• From the fail execution of service to request

The execution of composition can fail if one of its
services fails. The fail can then be translated to a new
request, which depends on the functionalities realized at
the moment of fail. These functionalities correspond to a
set of Terminated Input / Output (TI/TO). The new
request formalized as � � "
� # $
%%%%%%%%%, � # $%%%%%%%%%%%%, � &.
To configure the original composition graph (or find
another alternative) we use reclusively our algorithm with
the new request.

B. Composition Graph Formalization

The composition of services presents a set of
functionalities and there structures, but usually does not
give the execution possibility, e.g. [5] [9]. This brings us
to define two types of composition graph.

Definition: The executable composition graph allows
the service execution, thus making the composition
executable. The abstract composition graph represents
only the structure of the composition and cannot be
executed.

This definition based in the existing (or not) the link to
invocate the service. But [10] defines the abstract
composition according to the existing (or not) the sub-
service I/O of the composition. According to our
definitions, an executable composition graph is an
abstract composition graph whose nodes integrate
services identifiers, (URIs), instead of input / output
parameters only. Abstract graphs represent only
composition of functionalities fitting a request, while

85

COGNITIVE 2010 : The Second International Conference on Advanced Cognitive Technologies and Applications

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-108-3

executable ones describe actual services chaining. We
focus here on finding automatically suitable services
composition structures that we model with an executable
graph.

The executable composition graph corresponding to a
complex request; represents a set of services paths which
constitute possible answers. It is formulated as: G = <N,
V>, where, V is a set of directed arcs and N is a set of
nodes. We distinguish four types of nodes, IS, AS, DA and
SW, where IS is an informative service, AS is an active
service, which provides an action and modify its source
database; DA is the data (information) provided by an IS;
and SW is a switch node that represents a conditional
structure, specifying a condition formula.
 We define a node as
 ' � " ($, �), *�
+,
,, ,, *�
-.�. &, where NT is the
node type, �) is the identifier of starting parallel structure
node (�) � / if ' does not belong to a parallel structure),
*�
+ is the URI of OWL-S service (*�
+ � / if ($ �
01 �2 34),
,/, are respectively the Input and output
of the service, they are defined from *�
+, and *�
-.�.
is the URI of data (*�
-.�. � / if ($ �
3, 13 �2 34).
The special node switch '+6 �" ($ � 34, � , 7� &
, where � is the condition provided by the request and it is
verified by the node, and 7� is the linked node because
the multiple paths in the graph can meet in one SW node,
then a SW node embeds a hash function recording
authorized successors of nodes. For this reason, the SW
node is a kind of meta-node containing several nodes.

 We add the node SN and EN which respectively
starting and ending the composite graph, 3(� " �

� &, which its output corresponds to the request input,
and 8(� " / &.
The functional parameters of the answer composite of
services match with the functional parameters of the
request. So, the non functional parameters values are
calculated according to the parameter type and the
composition structure used, for example, see [11] .

IV. STRUCTURES OF WEB SERVICE COMPOSITIONS

Existing web services languages supporting
composition model different structures in different ways.
Taking the most commonly known, we observed the
following. The structures modeled by OWL-S are:
"sequence", "any-order", "if-then-else", "choice", "while",
"until", "split" and "split-joint". Differently, BPEL4WS
[12] uses: "sequence", "switch" "while" "Pick" and

"flow". A mapping between the two representations
involves three operators: equivalence (e.g., if-then-else is
equivalent to switch; choice is equivalent to pick);
composition (e.g., the flow structure in BPEL4WS can be
decomposed into two structures of OWL-S: split and
split-joint); and identity (for constructs that cannot be
realized with structures of the other representation, e.g.,
any-order is not identity (see Section 4.2)). In order to
insure interoperability with the different representations
and keeping a generic approach, we focus on elementary
structures (sequence, if-then-else, split, split-joint), from
which many others can be modeled.

A. Composition Structures Illustration

A composition may comprise several different
structures, which can themselves contain combinations of
structures. A tree representation helps understanding and
visualizing the composition: the leaves are services; the
nodes and the root are the compositions structures. The
path corresponds to read of composition tree which follow
a prefixed depth approach. The Figure 1 shows for our
example the composition tree and the corresponding
composition flow. The used services are: available train
(AT), available flight (AF), book train (BT), book flight
(BF), available hotel (AH), book hotel (BH), available
rentals car (ARC), rent car (RC), plan touristic map (PT),
city weather (CW).

Figure 1: Service composition illustrated by tree and flow

B. Characteristic of Composition Structures

In the following, we detail the characteristics of
structures we retained and explain how they identified
from the request.

86

COGNITIVE 2010 : The Second International Conference on Advanced Cognitive Technologies and Applications

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-108-3

Sequence "⟶": This structure defines an order between
services. The order can be detected directly or indirectly.
There are two ways to detect the order directly: (1) -
Checking the match between services IOPE; (2) –
Checking the priority between the services answering the
question: which service cancels the other when it is
cancelled?
Since the order operation is transitive: �1 ; <� =
�< ; �� > �1 ; ��. To detect indirectly the order
between A and C. We base on the order of services (e.g.,
B) which have the order with A, C.
Choice "+": (or or-split): This structure represents a
choice between several services that have a same
functionality. �?�� @�1, <1, <2, … , <C� D �1 ; <1� E

�1 ; <F� E … E �1 ; <��, knowing that service “A”
precedes services <� and the services <� have not the
different functionality.
Any-Order "⊙": This structure is not elementary and
represents a random invocation of services. This structure
can be expressed using choice and sequence
structures: 1 ⊙ < D �1 ⟶ <� H �< ⟶ 1�. Therefore
this structure is replicable.
If-then-else " JK": This structure checks a condition of
request to instance the functional parameter of the service.
The structure follows a service if ones of its parameter
(functional/ non functional) correspond to a condition.
Split " L ": This structure indicates a simultaneous start of
multiple services (or services chains). Services that can be
parallelized have the same predecessor and provide
different types of outputs. Each service starts a new sub-
path in the composition. All services chains starting at a
split will be executed in parallel and ended with a split-
joint. 3MN�O�1, <�, <F, … , <�� D �1 ; <�� = �1 ; <F� =
… = �1 ; <��.
Split-joint "P ": This structure ends a parallel structure,
where the sub-composition paths belong to a same "split".
The last services <� in parallel chains have the same
successor 1. QMN�O R S��'O �<�, <F, … , <� , 1� D �<� ;
1� = �<F ; 1� = … = �<� ; 1�, where services "<�" end
the parallel sub-composition paths. It is possible that all
services chains in a same “split” do not end in the same
“split-joint”.
While "TK" and until "U� ": These structures are not
elementary and used for iterative service invocation. They
can be constructed with if-then-else and sequence
structures: TK �1� �JK ⟶ 1 = 1 ⟶JK and
UK �1� � 1 ⟶JK= JK ⟶ 1.

The compositional structures (3O) are illustrated in
the graph by arc or node, 3O �" (, V & (see Figure 1).
The structures while and until � �34, V	, the structure if-
then-else� �34, / 	 and the structure sequence, choice,
split and split-joint� �/, V	, where V is respectively a
sequence-arc, set of sequence-arc, split-arc and split-joint-
arc. This gives to distinct three types of arc �⟶, L, P	.
An arc is defined by its type, departure node and
destination node.

V. ALGORITHM GENERATING THE COMPOSITION

GRAPH

Our algorithm processes progressively the request to
build the executable composition graph. In the following,
we define our terminology.

We name in the graph current layer lk, the set of nodes
in the graph having a same depth level, currently being
processed: lk={n i}. Initially lk={SN}. One step of the
algorithm corresponds to full covers of N�. The node of lk
being processed named current node.
The temporary buffer is used to store the set of nodes
following the current node, and not preceding EN. When
precede EN are placed directly in the end layer of the
graph.
 The algorithm is illustrated in Figure 2. From a
request, it fills the current layer and processes it. For each
node in the current layer, selects the next services
according to their matching with functionalities ��. The
set of nodes created from next services is first put in the
temporary buffer, which is later put in the next layer.
When the current node output matches with one of the
 ���outputs, the algorithm carries on with next node in

current layer. That has the input of a ���not yet covered.

Otherwise, services having inputs matching the current
node output are selected. Corresponding nodes are created
after checking does not already exist in the set of nodes N
in G.
 An arc-sequence is created between the current node
and the next nodes. When a selected service is an IS, it is
invoked to obtain the information it provides before
creating the arc. When the data are obtained, the
algorithm creates an arc sequence between the node of the
service and data nodes created, then it replaces the service
node by the set of data nodes.
When a next node has been newly created, the algorithm
checks the existence of a condition. The next node
contains a condition if the output of the service it
represents corresponds to one of request conditions. In

87

COGNITIVE 2010 : The Second International Conference on Advanced Cognitive Technologies and Applications

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-108-3

this case we create a SW-node and linked to the node by
an arc-sequence. The node following the SW-node is then
selected according to the first node output.
In case all �� have been covered, the next node is affected
to the end layer. Otherwise, it is put into the temporary
buffer, and later to the next layer.
 The checking of split-structures is performed when the
temporary buffer is full, containing all the nodes matching
the current node. The checking of split-joint-structure is
performed when the next node is selected. Therefore, the
algorithm checks split-joint structure before the split
structure.
 The process checks the existence of a split-joint
structure starting from next node. If it is selected from N,
then it is possible to find a node which can precede the
next node. In this case a complete check is performed,
otherwise only a partial check is necessary. The complete
check considers all nodes of the current layer. The partial
check considers a current node and current layer nodes
which have not been yet processed.
 The algorithm creates a split-joint-arc when the split-
joint is verified, i.e., the follow conditions are verified:
-The starting nodes of the split-joint-arc have a same split-
structure, i.e., they contain the same identifier of split
structure �)�'W�, where 'W is the node starting the parallel
structure.
-The nodes have the same succeeding node 'X, where 'X
ends the parallel structure.

 Y '� , 'Z M2 @) 'X, [\ �'� , 'Z�contains d�)e'fgh ijkl
�2@mO12 3MN�OS��'O e'� , 'Z , 'Xg, '� .)@N@Oe�)�'W�g, 'Z .)@N@Oe�)�'n�g

Concatenation of parallel structures is possible. When
nodes of same split-structure don’t regroup in a same
split-joint structure, the node 'Xis included in the
structure split, so it can be grouped with the remaining

nodes. o '� . containse�)�'W�g, '� p N�: 'X. m))��)�'W��.

 The checking for the existence of a split structure is
performed between the current node and the nodes in the
temporary buffer. If these nodes have different
functionalities i.e., different output, then we create a split-
arc and add the identifier of the split structure �)�'W� to

these nodes. Y '� , 'Zr�NN�s 'W, [\ t d�uOv� , �uOvwh & x ijkl
 'y. add d�)e'fgh , '� . add d�)e'fgh , �2@mO12 3MN�Oe'f, '�, 'yg

When a node '� follows the node 'Z which appears in

parallel structure, 'Zcontainse�)�'W�g, then we affect '�

to this structure, '� . m))e�)�'W�g , 'Z .)@N@Oe�)�'W�g.

 When all nodes of the current layer are processed, the
next layer becomes the current layer and so on until the

next layer is empty. The algorithm terminates when this
state is reached.

 Figure 2: Algorithm of solving complex request

Finally, the complexity of each step of the algorithm
graph construction composition is about �|N�|. |3| �,
where S is the set of selected service. Since, the algorithm
is based in the flooding algorithm. To assure the process
logic, we check the composition structures according to
the flooding algorithm step.

VI. EXPERIMENTATION AND RESULTS

We have tested our example request on a base,
containing the services OWL-S descriptions and varying
all the functionality needed in the request.

After running the algorithm, we verify: - the service
composite answering a request has all requested
functionalities, - its internal composition structure is
coherent, i.e., there is no false detection of structures.
Different APIs were used Jena [13], SPARQL [14]; to
check the data constraint and the conditions, OWL-S API
[15], to check the service constraints, and Pellet [16], to

88

COGNITIVE 2010 : The Second International Conference on Advanced Cognitive Technologies and Applications

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-108-3

check the matching level between services I/O and
request I/O.

Figure 3: Resulted executable composition graph

 The Figure 3 illustrates the composition graph given
by the algorithm. The composition path is semantically
correct because it contains all requested functionalities:
transport, booking hotel, etc. And the composition
structures used are coherent with the used services. E.g.,
choice: between the service “Available Hotel 0” and
“Available Hotel 1”. Sequence: between “Book Flight”
and “Available Rentals Car”. While: the node sw0 checks
the number of booking hotel. If the condition is true then
another booking is made; else the loop is left. If-then else:
the node sw1 checks the number of car rented according
to the type of car provided, if the available rental car does
not take six people then rent two cars. Split/Split-joint: the
service “City Heritage Museum” and “City Bus” will be
executed in parallel.

VII. CONCLUSION AND PERSPECTIVES

In this paper, we have proposed an algorithm for
multi-structure web services composition. It allows
answering a user request by composing available
matching services using all possible composition
structures.

The composition graph provided by the algorithm
will mainly be used as input for giving a search space

authorized to optimize the composition of services.
Additionally, we have also shown how to deal with
composition execution failures (in this case, the
composition graph can be adapted).
Finally, the solutions to a request contained in the
composition graph can be formalized using classical
languages like, e.g., BPEL-WS, OWL-S, etc., and stored
in the services base for re-use.

 In future works, we consider all ways to detect a
sequence between services and we integrate the
precondition/effects to calculate a level of matching
between the services and request.

REFERENCES

[1] D Martin, et al.: OWL-S: Semantic Markup for Web Services.
W3C Member Submission, 22, 2004.

[2] G. Silva, F. Pires, and V. Sinderen. An Algorithm for Automatic
Service Composition, 1 st International Workshop on
Architectures, Concepts and Technologies for service Oriented
Computing. pp. 65-74, Barcelona Spain. July 2007.

[3] S. Oh, B. On, E.J. Larson, and D. Lee. BF*: Web Services
Discovery and Composition as Graph Search Problem, 6-8, e-
Technology, e-Commerce, and e-Services, IEEE International
Conference on, 784-786, 2005.

[4] K. Matthias and G. Andreas, Semantic web service composition
planning with OWLS-XPlan, In Proceedings of the 1st Int. AAAI
Fall Symposium on Agents and the Semantic Web, pp. 55-62, 2005.

[5] R. Kazhamiakin and M. Pistore, A Parametric Communication
Model for the Verification of BPEL4WS Compositions, Formal
Techniques for Computer Systems and Business Processes, 318-
332, Trento, Italy. 2005.

[6] D. Pellier and H. Fiorino. Un modèle de composition automatique
et distribuée de services web par planification, Revue d'Intelligence
Artificielle ,v23,13-46, 2009.

[7] M. Klusch, B. Fries, M. Khalid, and K. Sycara, OWLS-MX:
Hybrid OWL-S Service Matchmaking, In Proceedings of 1st Intl.
AAAI Fall Symposium on Agents and the Semantic Web. 2005.

[8] A.B. Bener, V. Ozadali, and E.S.Ilhan. Semantic matchmaker with
precondition and effect matching using SWRL. Expert Systems
with Applications, 36, 9371-9377, 2009.

[9] S.V. Hashemian, and F. Mavaddat. A Graph-Based Approach to
Web Services Composition. Proceedings of Symposium on
Applications and the Internet, 183-189, 2005.

[10] M. Mihhail, M. Riina, and T. Enn. Compositional Logical
Semantics for Business Process Languages. Pro of ICIW. 2007.

[11] C. Wan, C. Ullrich, L. Chen, R. Huang, J. Luo, and Z. Shi. On
Solving QoS-Aware Service Selection Problem with Service
Composition, Grid and Cooperative Computing, 2008.

[12] T. Andrews, et al: ‘Business Process Execution Language for Web
Services Version 1.1’, IBM, May, 2003.

[13] http://jena.sourceforge.net/ (11/03/2010)

[14] http://www.w3.org/TR/rdf-sparql-query/ (11/03/2010)

[15] http://www.mindswap.org/2004/owl-s/api/ (11/03/2010)

[16] http://www.mindswap.org/2003/pellet/ (11/03/2010)

89

COGNITIVE 2010 : The Second International Conference on Advanced Cognitive Technologies and Applications

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-108-3

