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Abstract -- Automatic composition of web services supports 
the solving of complex user request. The set of possible 
solutions can be represented by a graph, modeling the 
composition. Usually, this kind of approach is highly 
simplified by considering only sequences of services. This 
paper proposes an algorithm for automatic semantic web 
services composition, which generates a graph taking into 
account any composition structure. The request resolution 
process identifies possible composition structures and selects 
relevant services based on their semantic description. The 
resulted composition graph answers all requested 
functionality with coherent composition structures.  

Keywords - semantic web service; composition graph; 
automatic compositio; web service composition structure.  

I. INTRODUCTION 

Web services composition is a classical approach to 
answer complex queries that cannot be solved with one 
single service. Answering to such requests requires 
several steps: (1) finding suitable services; (2) finding 
how they can be composed together to answer the request; 
(3) create the corresponding composite service; (4) 
invocate it; (5) maintain it so that it can be reused later. 
The structure of the composite service depends obviously 
on the request, but also of the available services.  

Composing services can be useful in many different 
domains, such as, e.g., tourism, transport, multimedia, etc.  
Some of them involve a dynamic environment where 
events at any time can affect previously computed 
compositions answering a request.  A fundamental issue is 
then how to repair failures in a composite service 
execution, which can occur in dynamic environments. A 
typical example is when one of the services involved in 
the composition is faulty or can no more be executed. 
This fail is translated to a complex request and then use 
our algorithm to find another composition alternative.  
      In this paper we propose an algorithm for 
automatically finding all candidate compositions 
answering a complex request, without a priori knowledge 
of the composition structure. When the request does not 
formally specify any chaining between the requested 

elements, the algorithm must found suitable composition 
structures based on the available services. This problem is 
not trivial because there are many possible services 
combinations and composition structures. To determine 
the composition structure we base in the existing 
functionalities, which are automatically determined 
because the available services are supposed described 
semantically by OWL-S [1]. 

 In section 2, we present related works. In Section 3, 
we first formalize the problem and detail it. Section 4 
presents the composition structures and their semantics. In 
Section 5, we present our algorithm for automatic 
construction of a composition graph. In Section 6, we 
provide the experimentation results, and finally, we 
conclude in Section 7. 

II. RELATED WORKS  

Solving a complex request by services composition in 
dynamic environments, can be tackled by different 
approach. 

The algorithm presented in [2] builds a composition 
graph answering a request. The algorithm identifies first 
the input and output of the request and search for a 
matching service. When none can be found a service 
having a matching output is selected and recursively, 
subsequent services having output matching with the 
input of the latter service and input matching with the 
request input are sought.  The algorithm ends when a 
sequence of services starting with the request input and 
ending with its output is found, or when the set of 
available services has been searched. The provided 
composition graph does not allow the direct invocation of 
services. Also, it is still limited to sequences structure of 
composition.  

In [3], the flooding algorithm is used. Once again, the 
proposed approach is limited to services sequences and 
does not allow composition execution. 
      In [3], an architecture for automatic web service 
composition is proposed. This architecture allows fast 
composition of OWL-S service. However, while authors 
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provide interesting ideas for the design of the composite 
service and automating service invocation, they only 
consider sequences of services. Kazhamiakin and Pistore 
[5] proposed a model to answer a request using the 
composition of web services, the model supposes the 
available services are described by BPEL-WS.  A request 
requires much functionality, which are identified and then 
used in a finite state-machine, implementing the 
composition structure.  The state-machine provided does 
not allow composition execution.  

      In [5], a multi-agent system is used to automate the 

composition of services. The agents collaborate to provide 
the composition needed, an agent is presented by the 
OWL-S service and its functional parameters describe the 
agent role. With this system, we can consider the 
compositional structures: sequence, parallel and 
conditional. The conditional structure concerns only the 
functional parameter of the service.  
      According to the state of the art, many methods of 
automatic composition focus to find the needed 
functionalities to answer a request and there order but do 
not give the link to execute them. So, they usually 
consider only the sequence structure. To exceed these 
limits, we automate the detection of the composition 
structure needed and the selection of the services 
requested.  To select automatically the services, we use 
the I/O dependence basing in the matching function. The 
matching function uses only the IO parameter [6] or uses 

the IOPE [8], which provides more accurate results.   

III.  PROBLEM FORMALIZATION  

A typical example of complex user request, which we 
will use as a basis to present our approach, is the 
following: “I want travel from City A to City B, reserve 
several hotel rooms in destination city where each book is 
billed separately, rent a car for six people, have the 
weather and plan for the destination city”. Such request 
needs first to be formalized in a machine processable way. 

A. Request Formalization  

A complex request is a combination of more focused 
or atomic sub-requests, which concerns each a service or 
functionality. We write: � � �� � ����	, where ��� is a 

functionality requested.   Our example requires four 
functionalities: transport, booking hotel, rent a car, city 
information. Each functionality has input/ output 
(
���

/���
). Formally, we write a request as a triple: R = 

<
�, �, C>, where   
� � � 
���
��������
��� � ���, … , ����is 

the set of inputs,  � � � ���
��������
��� � ���, … , ���� is 

the set of outputs,   and  � � � �, … ,  !�� is the set of 
conditions or constraints (related to data, service or 
composition). Conditions differ from constraints in that 
they must be verified to instance the input parameter of 
service, but the constraints to filter the set of available 
services, data provided by services or composition paths.  
All the sets elements are URIs of concepts defined in 
ontologies. While I and O correspond to functional 
parameters which describe a domain ontology, C concerns 
both functional and non functional parameters. Quality of 
Service is an example of such parameter, as well as price, 
cardinality of some services output, etc. The non 
functional parameters values are found in the service 
description. The functional parameters values are 
identified after execution the informative service, which 
provide information without modify its source database.  

• From the fail execution of service to  request   

The execution of composition can fail if one of its 
services fails.  The fail can then be translated to a new 
request, which depends on the functionalities realized at 
the moment of fail. These functionalities correspond to a 
set of Terminated Input / Output (TI/TO). The new 
request formalized as � � " 
� # $
%%%%%%%%%,  � # $%%%%%%%%%%%%, � &.  
To configure the original composition graph (or find 
another alternative) we use reclusively our algorithm with 
the new request.  

B. Composition Graph Formalization 

The composition of services presents a set of 
functionalities and there structures, but usually does not 
give the execution possibility, e.g. [5] [9]. This brings us 
to define two types of composition graph.  

Definition: The executable composition graph allows 
the service execution, thus making the composition 
executable. The abstract composition graph represents 
only the structure of the composition and cannot be 
executed. 

This definition based in the existing (or not) the link to 
invocate the service. But [10] defines the abstract 
composition according to the existing (or not) the sub-
service I/O of the composition. According to our 
definitions, an executable composition graph is an 
abstract composition graph whose nodes integrate 
services identifiers, (URIs), instead of input / output 
parameters only. Abstract graphs represent only 
composition of functionalities fitting a request, while 
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executable ones describe actual services chaining. We 
focus here on finding automatically suitable services 
composition structures that we model with an executable 
graph.  

The executable composition graph corresponding to a 
complex request; represents a set of services paths which 
constitute possible answers.  It is formulated as: G = <N, 
V>, where, V is a set of directed arcs and N is a set of 
nodes. We distinguish four types of nodes, IS, AS, DA and  
SW, where IS is an informative service, AS is an active 
service, which provides an action and modify its source 
database; DA is the data (information) provided by an IS; 
and SW is a switch node that represents a conditional 
structure, specifying a condition formula.  
       We define a  node as 
 ' � " ($, �), *�
+, 
,, ,, *�
-.�. &, where NT is the 
node type, �) is the identifier of starting parallel structure 
node (�) � / if ' does not belong to a parallel structure),  
*�
+ is the URI of OWL-S service (*�
+ � / if ($ �
01 �2 34),  
,/, are respectively the Input and output 
of the service, they are defined from *�
+, and *�
-.�. 
is the URI of data (*�
-.�. � / if ($ � 
3, 13 �2 34 ).  
The special node switch '+6 �" ($ � 34,  � , 7� &
, where  � is the condition provided by the request and it is 
verified by the node, and 7� is the linked node because 
the multiple paths in the graph can meet in one SW node, 
then a SW node embeds a hash function recording 
authorized successors of nodes. For this reason, the SW 
node is a kind of meta-node containing several nodes.  
 
     We add the node SN and EN which respectively 
starting and ending the composite graph, 3( � "  �

� &, which its output corresponds to the request input,  
and 8( � " / &. 
The functional parameters of the answer composite of 
services match with the functional parameters of the 
request. So, the non functional parameters values are 
calculated according to the parameter type and the 
composition structure used, for example, see [11] .  

IV.  STRUCTURES OF WEB SERVICE COMPOSITIONS 

Existing web services languages supporting 
composition model different structures in different ways. 
Taking the most commonly known, we observed the 
following. The structures modeled by OWL-S are: 
"sequence", "any-order", "if-then-else", "choice", "while", 
"until", "split" and "split-joint". Differently, BPEL4WS 
[12] uses: "sequence", "switch" "while" "Pick" and 

"flow". A mapping between the two representations 
involves three operators: equivalence (e.g., if-then-else is 
equivalent to switch; choice is equivalent to pick); 
composition (e.g., the flow structure in BPEL4WS can be 
decomposed into two structures of OWL-S: split and 
split-joint); and identity (for constructs that cannot be 
realized with structures of the other representation, e.g., 
any-order is not identity (see Section 4.2)).   In order to 
insure interoperability with the different representations 
and keeping a generic approach, we focus on elementary 
structures (sequence, if-then-else, split, split-joint), from 
which many others can be modeled.   

A. Composition Structures Illustration  

A composition may comprise several different 
structures, which can themselves contain combinations of 
structures. A tree representation helps understanding and 
visualizing the composition: the leaves are services; the 
nodes and the root are the compositions structures. The 
path corresponds to read of composition tree which follow 
a prefixed depth approach.  The Figure 1 shows for our 
example the composition tree and the corresponding 
composition flow. The used services are: available train 
(AT), available flight (AF), book train (BT), book flight 
(BF), available hotel (AH), book hotel (BH), available 
rentals car (ARC), rent car (RC), plan touristic map (PT),  
city weather (CW).  

 

Figure 1: Service composition illustrated by tree and flow  

B. Characteristic of Composition Structures  

In the following, we detail the characteristics of 
structures we retained and explain how they identified 
from the request.    
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Sequence "⟶": This structure defines an order between 
services. The order can be detected directly or indirectly. 
There are two ways to detect the order directly: (1) - 
Checking the match between services IOPE; (2) –
Checking the priority between the services answering the 
question: which service cancels the other when it is 
cancelled?  
Since the order operation is transitive: �1 ; <� =
�< ; �� > �1 ; ��.  To detect indirectly the order 
between A and C. We base on the order of services (e.g., 
B) which have the order with A, C. 
Choice "+": (or or-split): This structure represents a 
choice between several services that have a same 
functionality.  �?�� @�1, <1, <2, … , <C� D �1 ; <1� E 

�1 ; <F� E … E  �1 ; <��, knowing that service “A” 
precedes services <� and the services <� have not the 
different functionality.  
Any-Order "⊙": This structure is not elementary and 
represents a random invocation of services.  This structure 
can be expressed using choice and sequence 
structures: 1 ⊙ < D �1 ⟶ <� H �< ⟶ 1�. Therefore 
this structure is replicable. 
If-then-else " JK": This structure checks a condition of 
request to instance the functional parameter of the service. 
The structure follows a service if ones of its parameter 
(functional/ non functional) correspond to a condition.   
Split " L ": This structure indicates a simultaneous start of 
multiple services (or services chains). Services that can be 
parallelized have the same predecessor and provide 
different types of outputs. Each service starts a new sub-
path in the composition. All services chains starting at a 
split will be executed in parallel and ended with a split-
joint.  3MN�O�1, <�, <F, … , <�� D �1 ; <�� = �1 ; <F� =
… =  �1 ; <��.  
Split-joint "P ": This structure ends a parallel structure, 
where the sub-composition paths belong to a same "split". 
The last services <�  in parallel chains have the same 
successor 1. QMN�O R S��'O �<�, <F, … , <� , 1� D �<� ;
1� = �<F ; 1� = … = �<� ; 1�, where services "<�" end 
the parallel sub-composition paths. It is possible that all 
services chains in a same “split” do not end in the same 
“split-joint”. 
While "TK" and until "U� ": These structures are not 
elementary and used for iterative service invocation. They 
can be constructed with if-then-else and sequence 
structures:   TK �1� �JK ⟶ 1 = 1 ⟶JK and   
UK �1� � 1 ⟶JK= JK ⟶ 1. 
 

The compositional structures (3O) are illustrated in 
the graph by arc or node, 3O �" (, V & (see Figure 1). 
The structures while and until � �34, V	, the structure if-
then-else� �34, / 	 and the structure sequence, choice, 
split and split-joint� �/, V	, where V is respectively a 
sequence-arc, set of sequence-arc, split-arc and split-joint-
arc. This gives to distinct three types of arc �⟶, L, P	.  
An arc is defined by its type, departure node and 
destination node. 

V. ALGORITHM GENERATING THE COMPOSITION 

GRAPH  

Our algorithm processes progressively the request to 
build the executable composition graph. In the following, 
we define our terminology.  

We name in the graph current layer lk, the set of nodes 
in the graph having a same depth level, currently being 
processed: lk={n i}. Initially lk={SN}.  One step of the 
algorithm corresponds to full covers of N�. The node of lk 
being processed named current node.    
The temporary buffer is used to store the set of nodes 
following the current node, and not preceding EN. When 
precede EN are placed directly in the end layer of the 
graph. 
     The algorithm is illustrated in Figure 2. From a 
request, it fills the current layer and processes it. For each 
node in the current layer, selects the next services 
according to their matching with functionalities ��. The 
set of nodes created from next services is first put in the 
temporary buffer, which is later put in the next layer. 
When the current node output matches with one of the 
 ���outputs, the algorithm carries on with next node in 

current layer. That has the input of a  ���not yet covered. 

Otherwise, services having inputs matching the current 
node output are selected. Corresponding nodes are created 
after checking does not already exist in the set of nodes N 
in G. 
     An arc-sequence is created between the current node 
and the next nodes. When a selected service is an IS, it is 
invoked to obtain the information it provides before 
creating the arc. When the data are obtained, the 
algorithm creates an arc sequence between the node of the 
service and data nodes created, then it replaces the service 
node by the set of data nodes. 
When a next node has been newly created, the algorithm 
checks the existence of a condition. The next node 
contains a condition if the output of the service it 
represents corresponds to one of request conditions. In 
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this case we create a SW-node and linked to the node by 
an arc-sequence. The node following the SW-node is then 
selected according to the first node output.   
In case all ��  have been covered, the next node is affected 
to the end layer. Otherwise, it is put into the temporary 
buffer, and later to the next layer.  
     The checking of split-structures is performed when the 
temporary buffer is full, containing all the nodes matching 
the current node. The checking of split-joint-structure is 
performed when the next node is selected. Therefore, the 
algorithm checks split-joint structure before the split 
structure. 
   The process checks the existence of a split-joint 
structure starting from next node. If it is selected from N, 
then it is possible to find a node which can precede the 
next node. In this case a complete check is performed, 
otherwise only a partial check is necessary. The complete 
check considers all nodes of the current layer. The partial 
check considers a current node and current layer nodes 
which have not been yet processed.  
      The algorithm creates a split-joint-arc when the split-
joint is verified, i.e., the follow conditions are verified: 
-The starting nodes of the split-joint-arc have a same split-
structure, i.e., they contain the same identifier of split 
structure �)�'W�, where 'W is the node starting the parallel 
structure. 
-The nodes have the same succeeding node 'X, where 'X 
ends the parallel structure.  

 Y '� , 'Z  M2  @) 'X, [\ �'� , 'Z�contains d�)e'fgh ijkl  
�2@mO12 3MN�OS��'O e'� , 'Z , 'Xg, '� . )@N@Oe�)�'W�g, 'Z . )@N@Oe�)�'n�g 

Concatenation of parallel structures is possible. When 
nodes of same split-structure don’t regroup in a same 
split-joint structure, the node 'Xis included in the 
structure split, so it can be grouped with the remaining 

nodes. o '� . containse�)�'W�g, '� p N�: 'X. m))��)�'W��. 

     The checking for the existence of a split structure is 
performed between the current node and the nodes in the 
temporary buffer. If these nodes have different 
functionalities i.e., different output, then we create a split-
arc and add the identifier of the split structure �)�'W�  to 

these nodes. Y '� , 'Zr�NN�s 'W, [\ t d�uOv� , �uOvwh & x  ijkl  
 'y. add d�)e'fgh , '� . add d�)e'fgh , �2@mO12 3MN�Oe'f, '�, 'yg 

When a node '� follows the node  'Z which appears in 

parallel structure, 'Zcontainse�)�'W�g, then we affect '�  

to this structure, '� . m))e�)�'W�g , 'Z . )@N@Oe�)�'W�g. 

      When all nodes of the current layer are processed, the 
next layer becomes the current layer and so on until the 

next layer is empty. The algorithm terminates when this 
state is reached.  

 
    Figure 2: Algorithm of solving complex request   

Finally, the complexity of each step of the algorithm 
graph construction composition is about  �|N�|. |3| �, 
where S is the set of selected service. Since, the algorithm 
is based in the flooding algorithm. To assure the process 
logic, we check the composition structures according to 
the flooding algorithm step. 

VI. EXPERIMENTATION AND RESULTS 

We have tested our example request on a base, 
containing the services OWL-S descriptions and varying 
all the functionality needed in the request.   

After running the algorithm, we verify: - the service 
composite answering a request has all requested 
functionalities, - its internal composition structure is 
coherent, i.e., there is no false detection of structures. 
Different APIs were used Jena [13], SPARQL [14]; to 
check the data constraint and the conditions, OWL-S API 
[15], to check the service constraints, and Pellet [16], to 
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check the matching level between services I/O and 
request I/O.  

 

Figure 3: Resulted executable composition graph 

 The Figure 3 illustrates the composition graph given 
by the algorithm. The composition path is semantically 
correct because it contains all requested functionalities: 
transport, booking hotel, etc. And the composition 
structures used are coherent with the used services. E.g., 
choice: between the service “Available Hotel 0” and 
“Available Hotel 1”. Sequence: between “Book Flight” 
and “Available Rentals Car”. While: the node sw0 checks 
the number of booking hotel. If the condition is true then 
another booking is made; else the loop is left. If-then else: 
the node sw1 checks the number of car rented according 
to the type of car provided, if the available rental car does 
not take six people then rent two cars. Split/Split-joint: the 
service “City Heritage Museum” and “City Bus” will be 
executed in parallel.  

VII.  CONCLUSION AND PERSPECTIVES 

In this paper, we have proposed an algorithm for 
multi-structure web services composition. It  allows 
answering a user request by composing available 
matching services using all possible composition 
structures.  

The composition graph provided by the algorithm 
will mainly be used as input for giving a search space 

authorized to optimize the composition of services. 
Additionally, we have also shown how to deal with 
composition execution failures (in this case, the 
composition graph can be adapted).  
Finally, the solutions to a request contained in the 
composition graph can be formalized using classical 
languages like, e.g., BPEL-WS, OWL-S, etc., and stored 
in the services base for re-use. 

        In future works, we consider all ways to detect a 
sequence between services and we integrate the 
precondition/effects to calculate a level of matching 
between the services and request.  
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